Isometries on positive definite operators with unit Fuglede-Kadison determinant

Patricia Szokol

joint work with Marcell Gaál and Gergő Nagy

57th International Symposium on Functional Equations
Jastarnia, Poland, June 2 - June 9, 2019

This research was supported by the National Research, Development and Innovation Office – NKFIH Reg. No. PD124875.
Case of positive definite matrices (\mathbb{P}_n):

Definition. We say that a norm N on $n \times n$ matrices (\mathbb{M}_n) is symmetric if

$$N(AXB) \leq \|A\|N(X)\|B\|, \quad A, B, X \in \mathbb{M}_n.$$

- Molnár, (2013): described the structure of all surjective isometries on positive definite matrices relative to the metric d_N, which is defined by

$$d_N(A, B) = N(\log A^{-1/2} BA^{-1/2}), \quad A, B \in \mathbb{P}_n.$$

- Molnár, (2013): determined all surjective isometries of the space (\mathbb{P}_n, δ_S), where

$$\delta_S(A, B)^2 = \text{Tr} \log \frac{Y + I}{2\sqrt{Y}} = \left\| \log \frac{Y + I}{2\sqrt{Y}} \right\|_1$$

with $Y = A^{-1/2} BA^{-1/2}$ and $\|\|_1$ denotes the trace-norm on \mathbb{M}_n.

Positive operators with unit determinant
The metrics d_N and δ_S can be regarded as particular distance measures of the form

$$d_{N,f}(A, B) = N(f(A^{-1/2}BA^{-1/2})), \quad A, B \in \mathbb{P}_n,$$

where N is a symmetric norm on \mathbb{M}_n and $f: [0, \infty[\rightarrow \mathbb{R}$ is an appropriate real function. We emphasize that the so-obtained function $d_{N,f}$ is a so-called **generalized distance measure**. By this concept we mean a function $d: X \times X \rightarrow [0, \infty]$ (X is any set) such that for arbitrary $x, y \in X$ we have $d(x, y) = 0$ if and only if $x = y$.

- Molnár, Sz., (2015): established the complete description of 'generalized isometries' with respect to generalized distance measures of the above-formulated form on the set \mathbb{P}_n, where the norm N is symmetric and the function f satisfies some mild assumptions.
Theorem. Let \(N \) be a symmetric norm on \(\mathbb{M}_n \). Assume \(f : [0, \infty[\to \mathbb{R} \) is a continuous function such that

1. \(f(y) = 0 \) holds if and only if \(y = 1 \);
2. there exists a number \(K > 1 \) such that

\[
|f(y^2)| \geq K |f(y)|, \quad y \in [0, \infty[.
\]

Assume that \(n \geq 3 \). If \(\phi : \mathbb{P}_n \to \mathbb{P}_n \) is a surjective map which satisfies

\[
d_{N,f}(\phi(A), \phi(B)) = d_{N,f}(A, B), \quad A, B \in \mathbb{P}_n,
\]

then there exist an invertible matrix \(T \in \mathbb{M}_n \) and a real number \(c \) such that \(\phi \) is of one of the following forms

1. \(\phi(A) = (\det A)^c TAT^*, \quad A \in \mathbb{P}_n; \)
2. \(\phi(A) = (\det A)^c TA^{-1}T^*, \quad A \in \mathbb{P}_n; \)
3. \(\phi(A) = (\det A)^c TA^{Tr}T^*, \quad A \in \mathbb{P}_n; \)
4. \(\phi(A) = (\det A)^c T(A^{Tr})^{-1}T^*, \quad A \in \mathbb{P}_n. \)
Case of positive definite matrices (\mathbb{P}_n):

<table>
<thead>
<tr>
<th>d_N</th>
<th>N</th>
<th>$f(y) = \log(y)$</th>
<th>δ^2_S</th>
<th>Sra-metric</th>
<th>$| . |_1$</th>
<th>$f(y) = \log((y + 1)/(2\sqrt{y}))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>N</td>
<td>$f(y) = y^{-1} - \log y^{-1} - 1$</td>
<td>S_{JKL}</td>
<td>Jeffrey’s Kullback-Leibler divergence</td>
<td>$| . |_1$</td>
<td>$f(y) = (y + y^{-1} - 2)/2$</td>
</tr>
<tr>
<td>$D_{LD}^\alpha(A, B)$</td>
<td>log-determinant α-divergence</td>
<td>$| . |_1$</td>
<td>$f(y) = \log \left(\frac{(1-\alpha)+(1+\alpha)y}{2y(1+\alpha)/2} \right)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Positive operators with unit determinant
Case of positive definite matrices (\mathbb{P}_n):

- Moakher, (2004): studied in details the manifold of \mathbb{P}_n with unit determinant.

- Fletcher and Joshi (2005): investigated the same structure because of its interesting connections to the space of so-called diffusion tensors. In fact, they also studied the set \mathbb{P}_n with determinant $c > 0$, which is a so-called totally geodesic submanifold of the manifold of \mathbb{P}_n.

- Molnár, Sz., (2015): Motivated by the previous facts, described all generalized isometries with respect to generalized distance measures on the set \mathbb{P}_n with determinant 1 or with a fixed determinant $c > 0$.
\(\mathcal{A} \): a finite von Neumann algebra acting on a complex separable Hilbert space, which is a factor, that is, its center is one dimensional;

\(\mathcal{A}^+ \): the set of positive elements in \(\mathcal{A} \);

\(\mathcal{A}^{++} \): the set of positive invertible elements in \(\mathcal{A} \).

The most natural notion of the determinant of operators on infinite dimensional Hilbert space is the Fredholm determinant.

Simon, (2005): Let \((\lambda_n)_{n \in \Gamma} \) be a (possibly finite) sequence of the nonzero eigenvalues of the compact operator \(T - I \) counted according to their algebraic multiplicities. Then the product \(\prod_{n \in \Gamma} (1 + \lambda_n) \) exists, and \(\det T \) is given by the formula

\[
\det T = \prod_{n \in \Gamma} (1 + \lambda_n).
\]

Every finite factor admits a unique faithful tracial state \(\tau \), by which we mean a positive linear functional \(\tau : \mathcal{A} \rightarrow \mathbb{C} \) with the following properties:

(i) \(\tau(AB) = \tau(BA) \) for all \(A, B \in \mathcal{A} \);
(ii) \(\tau(A^* A) = 0 \) if and only if \(A = 0 \);
(iii) \(\tau(I) = 1 \).

Then the associated Fuglede–Kadison determinant \(\Delta_{FK} : \mathcal{A} \rightarrow \mathbb{C} \) is defined as

\[
\Delta_{FK}(A) = \exp(\tau(\log |A|)),
\]

whenever \(A \in \mathcal{A} \) is an invertible element. (Here, the operator \(|A|\) is obtained from \(A^* A \) by taking square root.)
Properties of $\Delta_{ FK}$:

- $\Delta_{ FK}(I) = 1$;
- positive homogeneous on A^{++};
- multiplicative;
- $\Delta_{ FK}(A^{-1}) = \Delta_{ FK}(A)^{-1}$ for any invertible element $A \in A$;
- if H is a complex Hilbert space with $\dim H = n < \infty$:
 \[
 \Delta_{ FK}(A) = \sqrt{ |\det(A)| }
 \]
 for all invertible elements of the finite von Neumann factor of \mathbb{M}_n.

Notation:

- A^{++}_1: the set of all operators $A \in A^{++}$ with $\Delta_{ FK}(A) = 1$;
- A^{++}_c: the collection of all operators $A \in A^{++}$ with $\Delta_{ FK}(A) = c$ for a given number $c > 0$.

Positive operators with unit determinant
Theorem. Let \mathcal{A}, \mathcal{B} be finite von Neumann factors, $N: \mathcal{A} \to \mathbb{R}$, $M: \mathcal{B} \to \mathbb{R}$ be complete, symmetric norms and $f, g:]0, +\infty[\to \mathbb{R}$ be continuous functions satisfying

(f1) $f(y) = 0$ holds if and only if $y = 1$;

(f2) there exists a number $K > 1$ such that

$$|f(y^2)| \geq K|f(y)|, \quad y \in]0, \infty[.$$

Suppose further that $\phi: \mathcal{A}_1^{++} \to \mathcal{B}_1^{++}$ is a surjective transformation with the property

$$d_{M,f}(\phi(A), \phi(B)) = d_{N,g}(A, B), \quad A, B \in \mathcal{A}_1^{++}. \quad (1)$$

Then there exists an algebra \ast-isomorphism or \ast-antiisomorphism $\theta: \mathcal{A} \to \mathcal{B}$ and an element $T \in \mathcal{B}_1^{++}$ such that ϕ is of one of the following forms:

(b1) $\phi(A) = T\theta(A)T$ for all $A \in \mathcal{A}_1^{++}$;

(b2) $\phi(A) = T\theta(A^{-1})T$ for all $A \in \mathcal{A}_1^{++}$.
Corollary.
Let \mathcal{A}, \mathcal{B} be finite von Neumann factors, $c > 0$ be a scalar and $N: \mathcal{A} \to \mathbb{R}$, $M: \mathcal{B} \to \mathbb{R}$ be complete, symmetric norms. Assume that $f, g: [0, +\infty[\to \mathbb{R}$ are continuous functions satisfying (f1)-(f2). Suppose further that $\phi: \mathcal{A}_c^{++} \to \mathcal{B}_c^{++}$ is a surjective map with the property

$$d_{M,f}(\phi(A), \phi(B)) = d_{N,g}(A, B), \quad A, B \in \mathcal{A}_c^{++}. $$

Then there exists an algebra \ast-isomorphism or \ast-antiisomorphism $\theta: \mathcal{A} \to \mathcal{B}$ and an element $T \in \mathcal{B}_1^{++}$ such that ϕ is of one of the following forms:

(c1) $\phi(A) = T\theta(A)T$ for all $A \in \mathcal{A}_c^{++}$;

(c2) $\phi(A) = c^2 T\theta(A^{-1})T$ for all $A \in \mathcal{A}_c^{++}$.

Positive operators with unit determinant
References

