Stability of a functional equation on Banach lattices

Patricia Szokol

joint work with Nutefe Kwami Agbeko

Debrecen–Katowice Winter Seminar

on Functional Equations and Inequalities

Hajdúszoboszló, Hungary, January 31– February 3, 2018

This research was supported by the National Research, Development and Innovation Office – NKFIH Reg. No. PD124875.
Introduction

Definition

A vector space V endowed with a partial order is called a Riesz space if for any $x, y, z \in V$ the following properties satisfy:

1. Translation invariance: $x \leq y$ implies $x + z \leq y + z$;
2. Positive homogeneity: For any nonnegative scalar α, $x \leq y$ implies $\alpha x \leq \alpha y$;
3. For any pair of vectors $x, y \in V$ there exists a least upper bound (denoted by $x \lor y$) in V with respect to the partial order (\leq).

Example 1: (\mathbb{R}^n, \leq_1), where $x \leq_1 y \iff x_i \leq y_i$, for all $i = 1, \ldots, n$.

Example 2: (\mathbb{R}^2, \leq_2), where $x \leq_2 y \iff (x_1 < y_1)$ or $(x_1 = y_1$ and $x_2 \leq y_2)$.

Example 3: (V, \leq_3), where V is the set of all real functions and $f \leq_3 g \iff f(x) \leq g(x)$, $(x \in \mathbb{R})$.

Patricia Szokol

Stability of a functional equation on Banach lattices
A vector space V endowed with a partial order is called a Riesz space if for any $x, y, z \in V$ the following properties satisfy:

1. **translation invariance**: $x \leq y$ implies $x + z \leq y + z$;
2. **positive homogeneity**: For any nonnegative scalar α, $x \leq y$ implies $\alpha x \leq \alpha y$;
3. For any pair of vectors $x, y \in V$ there exists a least upper bound (denoted by $x \lor y$) in V with respect to the partial order (\leq).
Definition

A vector space V endowed with a partial order is called a Riesz space if for any $x, y, z \in V$ the following properties satisfy:

1. **Translation invariance**: $x \leq y$ implies $x + z \leq y + z$;
2. **Positive homogeneity**: For any nonnegative scalar α, $x \leq y$ implies $\alpha x \leq \alpha y$;

Example 1: (\mathbb{R}^n, \leq_1), where $x \leq_1 y \iff x_i \leq y_i$, for all $i = 1, \ldots, n$.

Example 2: (\mathbb{R}^2, \leq_2), where $x \leq_2 y \iff (x_1 < y_1)$ or $(x_1 = y_1$ and $x_2 \leq y_2)$.

Example 3: (\mathbb{V}, \leq_3), where \mathbb{V} is the set of all real functions and $f \leq_3 g \iff f(x) \leq g(x)$, $(x \in \mathbb{R})$.

Patricia Szokol

Stability of a functional equation on Banach lattices
A vector space V endowed with a partial order is called a Riesz space if for any $x, y, z \in V$ the following properties satisfy:

1. **Translation invariance:** $x \leq y$ implies $x + z \leq y + z$;
2. **Positive homogeneity:** For any nonnegative scalar α, $x \leq y$ implies $\alpha x \leq \alpha y$;
3. For any pair of vectors $x, y \in V$ there exists a least upper bound (denoted by $x \vee y$) in V with respect to the partial order (\leq).
Definition

A vector space \(V \) endowed with a partial order is called a Riesz space if for any \(x, y, z \in V \) the following properties satisfy:

1. **translation invariance:** \(x \leq y \) implies \(x + z \leq y + z \);
2. **positive homogeneity:** For any nonnegative scalar \(\alpha \), \(x \leq y \) implies \(\alpha x \leq \alpha y \);
3. **for any pair of vectors** \(x, y \in V \) **there exists a least upper bound** (denoted by \(x \vee y \)) in \(V \) with respect to the partial order \((\leq) \).

Example

1. \((\mathbb{R}^n, \leq_1)\), where \(x \leq_1 y \iff x_i \leq y_i \), for all \(i = 1, \ldots, n \).
A vector space V endowed with a partial order is called a Riesz space if for any $x, y, z \in V$ the following properties satisfy:

1. **Translation invariance**: $x \leq y$ implies $x + z \leq y + z$;
2. **Positive homogeneity**: For any nonnegative scalar α, $x \leq y$ implies $\alpha x \leq \alpha y$;
3. For any pair of vectors $x, y \in V$ there exists a least upper bound (denoted by $x \vee y$) in V with respect to the partial order (\leq).

Example

1. (\mathbb{R}^n, \leq_1), where $x \leq_1 y \iff x_i \leq y_i$, for all $i = 1, \ldots, n$.
2. (\mathbb{R}^2, \leq_2), where

$$x \leq_2 y \iff (x_1 < y_1) \text{ or } (x_1 = y_1 \text{ and } x_2 \leq y_2).$$
A vector space V endowed with a partial order is called a Riesz space if for any $x, y, z \in V$ the following properties satisfy:

1. **translation invariance**: $x \leq y$ implies $x + z \leq y + z$;
2. **positive homogeneity**: For any nonnegative scalar α, $x \leq y$ implies $\alpha x \leq \alpha y$;
3. for any pair of vectors $x, y \in V$ there exists a least upper bound (denoted by $x \lor y$) in V with respect to the partial order (\leq).

Example

1. (\mathbb{R}^n, \leq_1), where $x \leq_1 y \iff x_i \leq y_i$, for all $i = 1, \ldots, n$.
2. (\mathbb{R}^2, \leq_2), where

 $x \leq_2 y \iff (x_1 < y_1)$ or $(x_1 = y_1$ and $x_2 \leq y_2$).
3. (V, \leq_3), where V is the set of all real functions and

 $f \leq_3 g \iff f(x) \leq g(x)$, $(x \in \mathbb{R})$.
Definition

Let V be a Riesz space and $f \in V$. Then,

1. the positive part of f: $f^+ = 0 \vee f$;
2. the negative part of f: $f^- = (-f) \vee 0$;
3. the modulus of f: $|f| = f^+ \vee f^-$.

Definition

Let V be a Riesz space and $\|\cdot\|$ be a norm. We say, that $(V, \|\cdot\|)$ is a normed Riesz space if $|f| \leq |g|$ implies that $\|f\| \leq \|g\|$.

If a normed Riesz space is complete, then it is called Banach lattice.

Example

Let X be a topological space, Y a Banach lattice and $C(X,Y)$ the space of bounded, continuous functions from X to Y with the supremum norm.

Then, $C(X,Y)$ becomes a Banach lattice with the pointwise order.
Definition

Let V be a Riesz space and $f \in V$. Then,

1. the positive part of f: $f^+ = 0 \lor f$;
2. the negative part of f: $f^- = (-f) \lor 0$;
3. the modulus of f: $|f| = f^+ \lor f^-$.

Definition

Let V be a Riesz space and $\| \cdot \|$ be a norm. We say, that $(V, \| \cdot \|)$ is a normed Riesz space if $|f| \leq |g|$ implies that $\|f\| \leq \|g\|$.
Let V be a Riesz space and $f \in V$. Then,

1. the positive part of f: $f^+ = 0 \lor f$;
2. the negative part of f: $f^- = (-f) \lor 0$;
3. the modulus of f: $|f| = f^+ \lor f^-$.

Let V be a Riesz space and $\| \cdot \|$ be a norm. We say, that $(V, \| \cdot \|)$ is a normed Riesz space if $|f| \leq |g|$ implies that $\|f\| \leq \|g\|$. If a normed Riesz space is complete, then it is called Banach-lattice.
Definition

Let V be a Riesz space and $f \in V$. Then,
1. the positive part of f: $f^+ = 0 \lor f$;
2. the negative part of f: $f^- = (-f) \lor 0$;
3. the modulus of f: $|f| = f^+ \lor f^-$.

Definition

Let V be a Riesz space and $\| \cdot \|$ be a norm. We say, that $(V, \| \cdot \|)$ is a normed Riesz space if $|f| \leq |g|$ implies that $\|f\| \leq \|g\|$. If a normed Riesz space is complete, then it is called Banach-lattice.

Example

Let X be a topological space, Y a Banach lattice and $C(X, Y)$ the space of bounded, continuous functions from X to Y with the supremum norm. Then, $C(X, Y)$ becomes a Banach lattice with the pointwise order.
Let $\varepsilon, p, q \in (0, \infty)$ be three numbers, G_1 and G_2 be two Riesz spaces, $d(\cdot, \cdot)$ be a metric defined on G_2, $\Delta^*_G, \Delta^{**}_G \in \{\wedge G, \vee G\}$ and $\Delta^*_G, \Delta^{**}_G \in \{\wedge G, \vee G\}$ be four lattice operations.
Let $\varepsilon, p, q \in (0, \infty)$ be three numbers, G_1 and G_2 be two Riesz spaces, $d(\cdot, \cdot)$ be a metric defined on G_2, $\Delta^*_G, \Delta^{**}_G \in \{\text{\wedge}_G, \text{\vee}_G\}$ and $\Delta^*_G, \Delta^{**}_G \in \{\text{\wedge}_G, \text{\vee}_G\}$ be four lattice operations. Does there exist a real number $\delta > 0$ such that, if a mapping $F : G_1 \to G_2$ satisfies
Let $\varepsilon, p, q \in (0, \infty)$ be three numbers, G_1 and G_2 be two Riesz spaces, $d(\cdot, \cdot)$ be a metric defined on G_2, $\Delta^*_G, \Delta^{**}_G \in \{\land_G, \lor_G\}$ and $\Delta^*_G, \Delta^{**}_G \in \{\land_G, \lor_G\}$ be four lattice operations. Does there exist a real number $\delta > 0$ such that, if a mapping $F : G_1 \to G_2$ satisfies

$$d((F((\tau^q|x|)\Delta^*_G(\eta^q|y|))) \Delta^*_G(F((\tau^q|x|)\Delta^{**}_G(\eta^q|y|))), (\tau^pF(|x|)) \Delta^{**}_G(\eta^pF(|y|))) \leq \delta$$

for all $x, y \in G_1$ and all $\tau, \eta \in [0, \infty)$,
Let $\varepsilon, p, q \in (0, \infty)$ be three numbers, G_1 and G_2 be two Riesz spaces, $d(\cdot, \cdot)$ be a metric defined on G_2, $\Delta^*_G_1, \Delta^{**}_G_1 \in \{\land G_1, \lor G_1\}$ and $\Delta^*_G_2, \Delta^{**}_G_2 \in \{\land G_2, \lor G_2\}$ be four lattice operations. Does there exist a real number $\delta > 0$ such that, if a mapping $F : G_1 \rightarrow G_2$ satisfies

$$d\left((F((\tau^q|x|)\Delta^*_G_1(\eta^q|y|)) \Delta^*_G_2(F((\tau^q|x|)\Delta^{**}_G_1(\eta^q|y|)))\right),$$

$$(\tau^pF(|x|)) \Delta^{**}_G_2(\eta^pF(|y|)) \leq \delta$$

for all $x, y \in G_1$ and all $\tau, \eta \in [0, \infty)$, then there exists an operation-preserving functional $T : G_1 \rightarrow G_2$,
Let $\varepsilon, p, q \in (0, \infty)$ be three numbers, G_1 and G_2 be two Riesz spaces, $d(\cdot, \cdot)$ be a metric defined on G_2, $\Delta^*_G, \Delta^{**}_G \in \{\wedge_G, \vee_G\}$ and $\Delta^*_G, \Delta^{**}_G \in \{\wedge_G, \vee_G\}$ be four lattice operations. Does there exist a real number $\delta > 0$ such that, if a mapping $F : G_1 \rightarrow G_2$ satisfies
\[
d((F((\tau^q|x|)\Delta^*_{G_1}(\eta^q|y|))) \Delta^*_G (F((\tau^q|x|)\Delta^{**}_{G_1}(\eta^q|y|)))) , \\
(\tau^p F(|x|)) \Delta^{**}_G (\eta^p F(|y|))) \leq \delta
\]
for all $x, y \in G_1$ and all $\tau, \eta \in [0, \infty)$, then there exists an operation-preserving functional $T : G_1 \rightarrow G_2$, i.e. a functional T such that
\[
(T ((\tau^q|x|) \Delta^*_{G_1}(\eta^q|y|))) \Delta^*_G (T ((\tau^q|x|) \Delta^{**}_{G_1}(\eta^q|y|))) = \\
(\tau^p T (|x|)) \Delta^{**}_G (\eta^p T (|y|)) ,
\]
with the property that
Let $\varepsilon, p, q \in (0, \infty)$ be three numbers, G_1 and G_2 be two Riesz spaces, $d(\cdot, \cdot)$ be a metric defined on G_2, $\Delta^*_G, \Delta^{**}_G \in \{\land_G, \lor_G\}$ and $\Delta^*_G, \Delta^{**}_G \in \{\land_G, \lor_G\}$ be four lattice operations. Does there exist a real number $\delta > 0$ such that, if a mapping $F : G_1 \to G_2$ satisfies

$$d\left((F((\tau^q|x|)\Delta^*_{G_1}(\eta^q|y|))) \Delta^*_G \left(F((\tau^q|x|)\Delta^{**}_{G_1}(\eta^q|y|)) \right) , \right.$$

$$\left. (\tau^p F(|x|)) \Delta^{**}_G \left(\eta^p F(|y|) \right) \right) \leq \delta$$

for all $x, y \in G_1$ and all $\tau, \eta \in [0, \infty)$, then there exists an operation-preserving functional $T : G_1 \to G_2$, i.e. a functional T such that

$$\left(T ((\tau^q |x|) \Delta^*_{G_1} (\eta^q |y|)) \right) \Delta^*_G \left(T ((\tau^q |x|) \Delta^{**}_{G_1} (\eta^q |y|)) \right) =$$

$$\left(\tau^p T (|x|) \right) \Delta^{**}_G \left(\eta^p T (|y|) \right),$$

with the property that

$$d\left(T(x), F(x) \right) \leq \varepsilon$$

for all $x \in G_1$ and all $\tau, \eta \in [0, \infty)$?
Remark

If $T : G_1 \to G_2$ is an operation-preserving functional, then for all $x \in G_1$ and all $\tau \in [0, \infty)$

$$T(\tau^q |x|) = \tau^p T(|x|).$$
Remark

If \(T : G_1 \to G_2 \) is an operation-preserving functional, then for all \(x \in G_1 \) and all \(\tau \in [0, \infty) \)
\[
T(\tau^q|x|) = \tau^p T(|x|).
\]

Remark

If \(\tau = \eta = 1 \), then the above problem reduces to the problem posed and treated by Nutefe Agbeko Kwami.
Remark

If $T : G_1 \rightarrow G_2$ is an operation-preserving functional, then for all $x \in G_1$ and all $\tau \in [0, \infty)$

$$T(\tau^q |x|) = \tau^p T(|x|).$$

Remark

If $\tau = \eta = 1$, then the above problem reduces to the problem posed and treated by Nutefe Agbeke Kwami.

All along $(\mathcal{X}, \wedge, \vee)$ will stand for a normed Riesz space and $(\mathcal{Y}, \wedge, \vee)$ for a Banach lattice with \mathcal{X}^+ and \mathcal{Y}^+ their respective positive cones.
Remark

If $T : G_1 \to G_2$ is an operation-preserving functional, then for all $x \in G_1$ and all $\tau \in [0, \infty)$

$$T(\tau^q |x|) = \tau^p T(|x|).$$

Remark

If $\tau = \eta = 1$, then the above problem reduces to the problem posed and treated by Nutefe Agbeko Kwami.

All along $(\mathcal{X}, \wedge, \vee)$ will stand for a normed Riesz space and $(\mathcal{Y}, \wedge, \vee)$ for a Banach lattice with \mathcal{X}^+ and \mathcal{Y}^+ their respective positive cones.

Definition

We say, that a functional $H : \mathcal{X} \to \mathcal{Y}$ is cone-related if $H(\mathcal{X}^+) \subset \mathcal{Y}^+$, where $H(\mathcal{X}^+) = \{H(|x|) : x \in \mathcal{X}\}$.
Theorem

Let \((p, q) \in (0, \infty) \times (0, \infty)\) be a pair of real numbers, and \(F : \mathcal{X} \rightarrow \mathcal{Y}\) a cone-related functional for which there are numbers \(\vartheta > 0\) and \(\alpha\) with \(q\alpha \in (p, \infty)\) such that for all \(x, y \in \mathcal{X}\) and \(\tau, \eta \in [0, \infty)\)

\[
\|\tau^p F((\tau q|x|) \Delta^\ast \mathcal{X}(\eta q|y|)) - (\tau^p F(|x|)) \Delta^\ast \mathcal{Y}(\eta|y|)\| \leq 2(p-1)\vartheta(\|x\|^{\alpha} + \|y\|^{\alpha})
\]

Then the sequence \((2^{np} F(2^{-nq}|x|))_{n \in \mathbb{N}}\) is a Cauchy sequence for every \(x \in \mathcal{X}\).

Let \(T : \mathcal{X}^+ \rightarrow \mathcal{Y}^+\) be a functional, defined by

\[
T(|x|) = \lim_{n \to \infty} 2^{np} F(2^{-nq}|x|), \quad x \in \mathcal{X}.
\]

Then \(T\) both is an operation-preserving functional and satisfies inequality

\[
\|T(|x|) - F(|x|)\| \leq 2p\vartheta 2q^{\alpha} - 2p\|x\|^{\alpha}, \quad x \in \mathcal{X}.
\]
Theorem

Let \((p, q) \in (0, \infty) \times (0, \infty)\) be a pair of real numbers, and \(F : \mathcal{X} \to \mathcal{Y}\) a cone-related functional for which there are numbers \(\vartheta > 0\) and \(\alpha\) with \(q\alpha \in (p, \infty)\) such that for all \(x, y \in \mathcal{X}\) and \(\tau, \eta \in [0, \infty)\)

\[
\| (F (|\tau^q x|) \Delta^*_\mathcal{X} (|\eta^q y|)) \Delta^*_\mathcal{Y} (F (|\tau^q x|) \Delta^*_\mathcal{X} (|\eta^q y|)) - (\tau^p F (|x|)) \Delta^*_\mathcal{Y} (\eta^p F (|y|)) \| \leq 2^{(p-1)\vartheta} (\|x\|^\alpha + \|y\|^\alpha),
\]

Then the sequence \(2^{np} F (2^{nq} |x|)\) \(n \in \mathbb{N}\) is a Cauchy sequence for every \(x \in \mathcal{X}\).

Let \(T : \mathcal{X} \Rightarrow \mathcal{Y}\) be a functional, defined by

\[
T (|x|) = \lim_{n \to \infty} 2^{np} F (2^{nq} |x|),
\]

Then \(T\) both is an operation-preserving functional and satisfies inequality

\[
\| T (|x|) - F (|x|) \| \leq 2^{p-1} \vartheta (\|x\|^\alpha + \|y\|^\alpha),
\]
Let \((p, q) \in (0, \infty) \times (0, \infty)\) be a pair of real numbers, and \(F : \mathcal{X} \to \mathcal{Y}\) a cone-related functional for which there are numbers \(\vartheta > 0\) and \(\alpha\) with \(q\alpha \in (p, \infty)\) such that for all \(x, y \in \mathcal{X}\) and \(\tau, \eta \in [0, \infty)\)

\[
\|((F (|\tau^q\, x|)) \Delta^*_x (\eta^q \, |y|)) \Delta^*_y (F (|\tau^q\, x|) \Delta^*_x (\eta^q \, |y|))) - (\tau^p \, F (|x|)) \Delta^*_y (\eta^p \, F (|y|))\| \\
\leq 2^{(p-1)} \vartheta (\|x\|^\alpha + \|y\|^\alpha).
\]

Then the sequence \((2^{np} \, F (2^{-nq} \, |x|)))_{n \in \mathbb{N}}\) is a Cauchy sequence for every \(x \in \mathcal{X}\).
Theorem

Let \((p, q) \in (0, \infty) \times (0, \infty)\) be a pair of real numbers, and \(F : \mathcal{X} \to \mathcal{Y}\) a cone-related functional for which there are numbers \(\vartheta > 0\) and \(\alpha\) with \(q\alpha \in (p, \infty)\) such that for all \(x, y \in \mathcal{X}\) and \(\tau, \eta \in [0, \infty)\)

\[
\left\| (F ((\tau^q |x|)) \Delta^*_x (\eta^q |y|)) \right\| \Delta^*_y \left(F ((\tau^q |x|)) \Delta^*_x (\eta^q |y|) \right) - \left(\tau^p F (|x|) \right) \Delta^*_y (\eta^p F (|y|)) \right\|
\leq 2^{(p-1)q} \vartheta \left(\|x\|^\alpha + \|y\|^\alpha \right).
\]

Then the sequence \((2^{np} F (2^{-nq} |x|))_{n \in \mathbb{N}}\) is a Cauchy sequence for every \(x \in \mathcal{X}\). Let \(T : \mathcal{X}^+ \to \mathcal{Y}^+\) be a functional, defined by
Main results

Theorem

Let \((p, q) \in (0, \infty) \times (0, \infty)\) be a pair of real numbers, and \(F : \mathcal{X} \to \mathcal{Y}\) a cone-related functional for which there are numbers \(\vartheta > 0\) and \(\alpha\) with \(q\alpha \in (p, \infty)\) such that for all \(x, y \in \mathcal{X}\) and \(\tau, \eta \in [0, \infty)\)

\[
\| (F (\tau^q |x|)) \Delta^*_\mathcal{X} (\eta^q |y|)) - (\tau^p F (|x|)) \Delta^*_\mathcal{Y} (\eta^p F (|y|)) \| \leq 2^{(p-1)\vartheta} (\|x\|^{\alpha} + \|y\|^{\alpha}).
\]

Then the sequence \((2^{np} F (2^{-nq} |x|))\) \(n \in \mathbb{N}\) is a Cauchy sequence for every \(x \in \mathcal{X}\). Let \(T : \mathcal{X}^+ \to \mathcal{Y}^+\) be a functional, defined by

\[
T (|x|) = \lim_{n \to \infty} 2^{np} F (2^{-nq} |x|), \quad x \in \mathcal{X}.
\]
Main results

Theorem

Let \((p, q) \in (0, \infty) \times (0, \infty)\) be a pair of real numbers, and \(F : \mathcal{X} \to \mathcal{Y}\) a cone-related functional for which there are numbers \(\vartheta > 0\) and \(\alpha\) with \(q\alpha \in (p, \infty)\) such that for all \(x, y \in \mathcal{X}\) and \(\tau, \eta \in [0, \infty)\)

\[
\|(F ((\tau^q |x|)) \Delta^*_\mathcal{X} (\eta^q |y|))) - (\tau^p F (|x|)) \Delta^*_\mathcal{Y} (\eta^p F (|y|)) \| \leq 2^{(p-1)}\vartheta (\|x\|^\alpha + \|y\|^\alpha).
\]

Then the sequence \((2^{np} F (2^{-nq} |x|))\) is a Cauchy sequence for every \(x \in \mathcal{X}\). Let \(T : \mathcal{X}^+ \to \mathcal{Y}^+\) be a functional, defined by

\[
T (|x|) = \lim_{n \to \infty} 2^{np} F (2^{-nq} |x|), \quad x \in \mathcal{X}.
\]

Then \(T\) both is an operation-preserving functional and satisfies inequality

\[
\| T (|x|) - F (|x|) \| \leq \frac{2^p \vartheta}{2q\alpha - 2p} \|x\|^\alpha, \quad x \in \mathcal{X}.
\]
Main results

Theorem

Let \((p, q) \in (0, \infty) \times (0, \infty)\), a pair of real numbers and \(F : \mathcal{X} \to \mathcal{Y}\) a cone-related functional for which there are numbers \(\beta \in [0, \infty), \vartheta > 0\) and \(\alpha\) with \(q\alpha \in (0, p)\) such that for all \(x, y \in \mathcal{X}\) and all \(\tau, \eta \in [0, \infty)\)

\[
\|F((\tau q|x|) \ast X(\eta q|y|)) \ast Y(F((\tau q|x|) \ast X(\eta q|y|))) - (\tau p F(|x|)) \ast Y(\eta p F(|y|))\| \\
\leq \beta + \vartheta 2^{-p - 1} + \beta q 2^{q - 2} q^2 \alpha - 2 q^2 \alpha.
\]

Then the sequence \((2 - np F(2 n q|x|))\) is a Cauchy sequence for every fixed \(x \in \mathcal{X}\).

Let \(T : \mathcal{X}^+ \to \mathcal{Y}^+\) be a functional, defined by \(T(|x|) = \lim_{n \to \infty} 2 - np F(2 n q|x|), x \in \mathcal{X}\).

Then \(T\) is an operation-preserving functional and satisfies inequality

\[
\|T(|x|) - F(|x|)\| \leq \beta 2^{-p} + \vartheta \|x\| \alpha 2^{q} \alpha - 2 q^{2} \alpha,
\]

\(x \in \mathcal{X}\).
Main results

Theorem

Let \((p, q) \in (0, \infty) \times (0, \infty)\), a pair of real numbers and \(F : \mathcal{X} \to \mathcal{Y}\) a cone-related functional for which there are numbers \(\beta \in [0, \infty), \vartheta > 0\) and \(\alpha\) with \(q\alpha \in (0, p)\) such that for all \(x, y \in \mathcal{X}\) and all \(\tau, \eta \in [0, \infty)\)

\[
\left\| (F ((\tau^q |x|) \Delta_{\mathcal{X}}^* (\eta^q |y|))) - (\tau^p F (|x|)) \Delta_{\mathcal{Y}}^* (\eta^p F (|y|)) \right\| \\
\leq \beta + \vartheta 2^{-(p+1)} (\|x\|^\alpha + \|y\|^\alpha).
\]
Theorem

Let \((p, q) \in (0, \infty) \times (0, \infty)\), a pair of real numbers and \(F : \mathcal{X} \to \mathcal{Y}\) a cone-related functional for which there are numbers \(\beta \in [0, \infty)\), \(\vartheta > 0\) and \(\alpha\) with \(q\alpha \in (0, p)\) such that for all \(x, y \in \mathcal{X}\) and all \(\tau, \eta \in [0, \infty)\)

\[
\| (F ((\tau^q |x|) \Delta_{\mathcal{X}}^* (\eta^q |y|))) \| \Delta_{\mathcal{Y}}^* (F ((\tau^q |x|) \Delta_{\mathcal{X}}^* (\eta^q |y|)))) - (\tau^p F (|x|)) \Delta_{\mathcal{Y}}^* (\eta^p F (|y|)) \| \\
\leq \beta + \vartheta 2^{-(p+1)} (\|x\|^{\alpha} + \|y\|^{\alpha}).
\]

Then the sequence \((2^{-np} F (2^{nq} |x|))_{n \in \mathbb{N}}\) is a Cauchy sequence for every fixed \(x \in \mathcal{X}\).
Main results

Theorem

Let \((p, q) \in (0, \infty) \times (0, \infty)\), a pair of real numbers and \(F : \mathcal{X} \to \mathcal{Y}\) a cone-related functional for which there are numbers \(\beta \in [0, \infty), \vartheta > 0\) and \(\alpha\) with \(q\alpha \in (0, p)\) such that for all \(x, y \in \mathcal{X}\) and all \(\tau, \eta \in [0, \infty)\)

\[
\begin{align*}
\|(F((\tau^q|x|) \Delta^*_\mathcal{X} (\eta^q |y|))) - (\tau^p F(|x|)) \Delta^*_\mathcal{Y} (\eta^p F(|y|))\| & \leq \beta + \vartheta 2^{-(p+1)} (\|x\|^\alpha + \|y\|^\alpha).
\end{align*}
\]

Then the sequence \((2^{-np} F (2^{nq} |x|))_{n \in \mathbb{N}}\) is a Cauchy sequence for every fixed \(x \in \mathcal{X}\). Let \(T : \mathcal{X}^+ \to \mathcal{Y}^+\) be a functional, defined by

\[
T(|x|) = \lim_{n \to \infty} 2^{-np} F (2^{nq} |x|), \quad x \in \mathcal{X}.
\]
Main results

Theorem

Let \((p, q) \in (0, \infty) \times (0, \infty)\), a pair of real numbers and \(F : \mathcal{X} \to \mathcal{Y}\) a cone-related functional for which there are numbers \(\beta \in [0, \infty), \vartheta > 0\) and \(\alpha\) with \(q\alpha \in (0, p)\) such that for all \(x, y \in \mathcal{X}\) and all \(\tau, \eta \in [0, \infty)\)

\[
\left\| (F (|x|) \Delta^*_\mathcal{X} (\eta^q |y|)) - (\tau^p F (|x|)) \Delta^*_\mathcal{Y} (\eta^p F (|y|)) \right\| \leq \beta + \vartheta 2^{-(p+1)} (\|x\|^\alpha + \|y\|^\alpha).
\]

Then the sequence \((2^{-np} F (2^{nq} |x|))_{n \in \mathbb{N}}\) is a Cauchy sequence for every fixed \(x \in \mathcal{X}\). Let \(T : \mathcal{X}^+ \to \mathcal{Y}^+\) be a functional, defined by

\[
T (|x|) = \lim_{n \to \infty} 2^{-np} F (2^{nq} |x|), \quad x \in \mathcal{X}.
\]

Then \(T\) both is an operation-preserving functional and satisfies inequality

\[
\| T (|x|) - F (|x|) \| \leq \frac{\beta 2^p}{2^p - 1} + \frac{\vartheta \|x\|^\alpha 2^{q\alpha}}{2^p - 2^{q\alpha}}, \quad x \in \mathcal{X}.
\]
Theorem

Let \((X, d)\) be a complete metric space, \(S\) an appropriate set and \(f : S \to X\), \(G : S \to S\), \(H : X \to X\) and \(\delta : S \to [0, \infty)\) functions that satisfy the inequality

\[d(H(f(G(x)))), f(x)) \leq \delta(x), \quad x \in S.\]
Theorem

Let \((X, d)\) be a complete metric space, \(S\) an appropriate set and \(f : S \rightarrow X, G : S \rightarrow S, H : X \rightarrow X\) and \(\delta : S \rightarrow [0, \infty)\) functions that satisfy the inequality

\[
d (H (f (G (x))), f (x)) \leq \delta (x), \quad x \in S.
\]
Theorem

Let \((X, d)\) be a complete metric space, \(S\) an appropriate set and \(f : S \rightarrow X\), \(G : S \rightarrow S\), \(H : X \rightarrow X\) and \(\delta : S \rightarrow [0, \infty)\) functions that satisfy the inequality

\[
d(H(f(G(x))), f(x)) \leq \delta(x), \quad x \in S.
\]

If \(H\) is continuous and satisfies the inequality

\[
d(H(u), H(v)) \leq \varphi(d(u, v)), \quad u, v \in X,
\]

for a certain non-decreasing subadditive function \(\varphi : [0, \infty) \rightarrow [0, \infty)\) and for every \(x \in S\) the following series is convergent

\[
\sum_{j=0}^{\infty} \varphi^j(\delta(G^j(x))),
\]
then there exists a unique function $F : S \rightarrow X$ solution of the functional equation

$$H(F(G(x))) = F(x), \quad x \in S,$$

and satisfying the following inequality:

$$d(F(x), f(x)) \leq \sum_{j=0}^{\infty} \phi_j(\delta(G_j(x))).$$

Furthermore, the function F is given by

$$F(x) = \lim_{n \rightarrow \infty} H^n(f(G^n(x))).$$
Theorem

then there exists a unique function \(F : S \rightarrow X \) solution of the functional equation

\[
H(F(G(x))) = F(x), \quad x \in S,
\]

and satisfying the following inequality:

\[
d(F(x), f(x)) \leq \sum_{j=0}^{\infty} \varphi^j(\delta(G^j(x))).
\]
then there exists a unique function $F : S \rightarrow X$ solution of the functional equation

$$H(F(G(x))) = F(x), \quad x \in S,$$

and satisfying the following inequality:

$$d(F(x), f(x)) \leq \sum_{j=0}^{\infty} \varphi^j(\delta(G^j(x))).$$

Furthermore, the function F is given by

$$F(x) = \lim_{n \rightarrow \infty} H^n(f(G^n(x))).$$
Fix arbitrarily $\tau, \eta \in (0, 2)$ and consider the function

$$F : [0, \infty) \rightarrow [0, \infty), \quad F(x) = x^{\alpha+1}, \quad \alpha = \frac{p}{q}.$$
Fix arbitrarily $\tau, \eta \in (0, 2)$ and consider the function

$$F : [0, \infty) \to [0, \infty), \quad F(x) = x^{\alpha+1}, \quad \alpha = \frac{p}{q}.$$

Since F is increasing the first equality in the chain below is valid, entailing the subsequent relations:

$$|F ((\tau^q x) \lor (\eta^q y)) - (\tau^p F(x)) \land (\eta^p F(y))| =$$

$$\left| (\tau^q x)^{\alpha+1} \lor (\eta^q y)^{\alpha+1} - (\tau^p x^{\alpha+1}) \land (\eta^p y^{\alpha+1}) \right|$$

$$\leq (\tau^q x)^{\alpha+1} \lor (\eta^q y)^{\alpha+1} + (\tau^p x^{\alpha+1}) \land (\eta^p y^{\alpha+1})$$

$$\leq (2^q x)^{\alpha+1} \lor (2^q y)^{\alpha+1} + (2^p x^{\alpha+1}) \land (2^p y^{\alpha+1})$$

$$\leq 2^{p+q}(x^{\alpha+1} \lor y^{\alpha+1}) + 2^{p+q}(x^{\alpha+1} \land y^{\alpha+1}) = 2^{p+q} (x^{\alpha+1} + y^{\alpha+1})$$

for all $x, y \in [0, \infty)$.
We have mentioned (in general) that if T is an operation-preserving functional, i.e.

$$T ((\tau^q x) \lor (\eta^q y)) = (\tau^p T (x)) \land (\eta^p T (y)),$$

then $T (\tau^q x) = \tau^p T (x)$ for all $x \in [0, \infty)$ and all $\tau \in [0, \infty)$. Let $T : [0, \infty) \to [0, \infty)$ be such a function.
We have mentioned (in general) that if T is an operation-preserving functional, i.e.

$$T \left((\tau^q x) \lor (\eta^q y) \right) = (\tau^p T(x)) \land (\eta^p T(y)),$$

then $T(\tau^q x) = \tau^p T(x)$ for all $x \in [0, \infty)$ and all $\tau \in [0, \infty)$. Let $T : [0, \infty) \to [0, \infty)$ be such a function. Since $x = \left(x^{1/q} \right)^q$, and α is the ratio of p and q, we can then note that $T(x) = x^\alpha T(1)$ for every $x \in [0, \infty)$.
We have mentioned (in general) that if T is an operation-preserving functional, i.e.

$$T((\tau^q x) \lor (\eta^q y)) = (\tau^p T(x)) \land (\eta^p T(y)),$$

then $T(\tau^q x) = \tau^p T(x)$ for all $x \in [0, \infty)$ and all $\tau \in [0, \infty)$. Let $T : [0, \infty) \to [0, \infty)$ be such a function. Since $x = (x^{1/q})^q$, and α is the ratio of p and q, we can then note that $T(x) = x^\alpha T(1)$ for every $x \in [0, \infty)$. Now,

$$\sup_{x \in (0, \infty)} \frac{|F(x) - T(x)|}{2^p + q x^{\alpha+1}} = \sup_{x \in (0, \infty)} \frac{|x^{\alpha+1} - T((x^{1/q})^q)|}{2^p + q x^{\alpha+1}} = \sup_{x \in (0, \infty)} \frac{|x^{\alpha+1} - x^\alpha T(1)|}{2^p + q x^{\alpha+1}} = \frac{1}{2^p + q} \sup_{x \in (0, \infty)} \left| 1 - \frac{T(1)}{x} \right| = \infty.$$

