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Abstract. Let v
(s)
d denote the set of coefficient vectors of contractive

polynomials of degree d with 2s non-real zeros. We prove that v
(s)
d

can be computed by a multiple integral, which is related to the Selberg
integral and its generalizations. We show that the boundary of the
above set is the union of finitely many algebraic surfaces. We investigate

arithmetical properties of v
(s)
d and prove among others that they are

rational numbers. We will show that within contractive polynomials,
the ‘probability’ of picking a totally real polynomial decreases rapidly
when its degree becomes large.

1. Introduction

Let P (X) = Xd + pd−1X
d−1 + · · · + p0 ∈ R[X]. In these notes, we

often have to switch between P (X) and the vector of its coefficients vP =
(p0, . . . , pd−1) ∈ Rd. To simplify the notation, we identify P and vP from
now on.

Let d be a positive integer, B > 1 a real number. Denote by Ed(B) the
set of d-dimensional vector v’s whose roots (by the above identification) lie
within the ball of radius B centered at the origin. In this Part I of our
paper we are dealing solely with the case B = 1 therefore we will use the
abbreviation Ed instead of Ed(1). The elements of Ed are called contractive
polynomials.

This set was studied by several authors. I. Schur [12] proved a necessary
and sufficient condition for v ∈ Ed, which implies that the boundary of Ed is
the union of finitely many algebraic surfaces. A.T. Fam and J.S. Meditsch
[6] improved this result by proving that the boundary of Ed is the union
of two hyperplanes and one hypersurface. Two hyperplanes corresponds to
roots 1 and −1 respectively. You find a throughout study of the boundary
in Kirschenhofer et al. [10].
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Later A.T. Fam [7] computed the volume of Ed:

(1) vd = λd(Ed) =


22m

2
m∏
j=1

(j − 1)!4

(2j − 1)!2
, if d = 2m,

22m
2+2m+1

m∏
j=1

j!2(j − 1)!2

(2j − 1)!(2j + 1)!
, if d = 2m+ 1,

where λd(.) denotes the d-dimensional Lebesgue measure.
Given a polynomial P in R[x], the non-real roots of P appear in complex

conjugate pairs. Thus d = r+2s, where r denotes the number of real and s
the number of non-real pairs of roots. The pair (r, s) is called the signature
of the polynomial. However in this paper, we derive asymptotic formulas
with a fixed d, we call s the signature for simplicity, because r = d−2s. The
set Ed splits naturally into ⌊d/2⌋+1 disjoint subsets according the signature

s. In the sequel E(s)
d denotes the subset of Ed whose elements have signature

s.

This paper is organized as follows. First we show in Theorem 2.1 that

λd(E
(s)
d ) can be computed by a certain multiple integral. It turned out that

for s = 0 this is a simple variant of Sd(1, 1, 1/2), where Sd(α, β, γ) denotes
the Selberg integral, which is a generalization of beta integral studied from
many different points of view, see e.g. [13, 3, 8]. By using a generalization of
it, due to K. Aomoto [5], we prove in Theorem 4.2 an expression for s = 1,

which makes it possible to compute v
(1)
d for large values of d.

Here we turn to the investigation of the arithmetic nature of v
(s)
d . We

prove in Theorem 5.1, that they are rational numbers. We express Sd(1, 1, 1/2)
as product of binomial coefficients, which enables us to show that they are
reciprocal of integers in Corollary 5.1. After this we summarize our obser-

vations on our computations on v
(s)
d . We conjecture that v

(s)
d /v

(0)
d is always

an integer. In the case d even and s = d/2 our Conjecture 5.2 is completely
explicit. Theorem 5.2 supports our conjectures.

The quotient p
(s)
d = v

(s)
d /vd may be viewed as the probability of picking

an element v ∈ Ed of the signature s. By Theorem 5.1 these probabilities
are rational numbers. It might be surprising to observe that totally real

polynomial are very rare. If the sets E(s)
d would have approximately the

same volume then p
(s)
d ∼ 2/d. However using the explicit formulae for v

(0)
d

and vd we show p
(0)
d ∼ 2−d2/2, which is much smaller than we expected.

In the last section we prove a generalization of the results of I. Schur [12]

as well as of A.T. Fam and J.S. Meditsch [6], that the boundary of E(s)
d is

the union of finitely many algebraic surfaces in Theorem 7.1.
In Part II [1] we apply our results to estimate the distribution of polyno-

mials with integer coefficients with given degree and signature. We are able
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to complete this program with respect to three natural parameters, which
we will call ‘measures’.

2. The volume of E(s)
d .

The aim of this section is to prove that the volume of E(s)
d can be expressed

by a multiple integral. We denote by ResX(P (x), Q(x)) the resultant of the
polynomials P (x), Q(x) ∈ R[x].

Theorem 2.1. Let d ≥ 1 and r, s non-negative integers such that r+2s = d.

Then the set E(s)
d is Riemann measurable. Let Rj(X) = X2−yjX+zj, where

0 ≤ zj ≤ 1 and the discriminant of Rj(X) is negative, j = 1, . . . , s. Put

Dr,s = [−1, 1]r × [−2
√
z1, 2

√
z1]× [0, 1]× · · · × [−2

√
zs, 2

√
zs]× [0, 1].

Then we have

v
(s)
d = λd(E

(s)
d ) =

1

r!s!

∫
Dr,s

|∆r|∆s∆r,s dX,

where

∆r =
∏

1≤j<k≤r

(xj − xk),

∆s =
∏

1≤j<k≤s

ResX(Rj(X), Rk(X)),

∆r,s =

r∏
j=1

s∏
k=1

Rk(xj)

and dX = dx1 . . . dxrdy1dz1 . . . dysdzs.

To prove this theorem we need some preparation. Let the signature of
P (X) = Xd + pd−1X

d−1 + · · · + p0 ∈ R[X] be 0 ≤ s ≤ ⌊d/2⌋. Assume
that its zeroes are x1, . . . , xd. Assume further that they are ordered such
that x1, . . . , xr ∈ R and the others belong to C \ R. Moreover xr+2j =
x̄r+2j−1, j = 1, . . . , s, where x̄ denotes the complex conjugate of x. Denote
Sj(x1, . . . , xd), j = 1, . . . , d the j-th elementary symmetric polynomial of
x1, . . . , xd, i.e., let

Sj(x1, . . . , xd) =
∑

1≤i1<···<ij≤d

xi1 . . . xij ,

where the sum is extended to all possible values of the indices i1, . . . , ij .
For later use we define S0(x1, . . . , xd) = 1. The classical Viéta’s formulae
connect the roots and coefficients of P (X). With the notation pd = 1 they
are

(2) pj = (−1)d−jSd−j , j = 0, . . . , d.



4 SHIGEKI AKIYAMA AND ATTILA PETHŐ

The last system of equations defines a mapping Rr ×Cs 7→ Rd. To compute

the volume of E(s)
d we need a mapping Rd 7→ Rd. Write

P (X) =
d∏

j=1

(X − xj)

=
r∏

j=1

(X − xj)
s∏

j=1

((X − xr+2j−1)(X − xr+2j))

=

r∏
j=1

(X − xj)

s∏
j=1

(X2 − (xr+2j−1 + xr+2j)X + xr+2j−1xr+2j).

As the coefficients of the quadratic factors are real numbers, this form to-
gether with (2) gives the desired relations. Therefore we introduce the
following new variables yj = xj (j = 1, . . . , r) and yr+2j−1 = xr+2j−1 +
xr+2j , yr+2j = xr+2j−1xr+2j (j = 1, . . . , s). Under this notation, we prove a

Lemma 2.1. Let d = r+2s, Rj(X) = X2−yr+2j−1X+yr+2j for j = 1, . . . , s

and J =
(
∂Si(x1,...,xd)

∂yj

)
1≤i,j≤d

. Then

det(J) =
∏

1≤j<k≤r

(yj − yk)
r∏

j=1

s∏
k=1

Rk(yj)
∏

1≤j<k≤s

ResX(Rj(X), Rk(X)).

Proof. Let J1 =
(
∂Si(x1,...,xd)

∂xj

)
1≤i,j≤d

. We easily see

(3) det(J) =
det(J1)∏s

k=1(xr+2k−1 − xr+2k)
.

by the Jacobian computation to transform variables from xj to yj . In the
second step we prove

(4) det(J1) =
d∏

j=1

d∏
k=j+1

(xj − xk).

Let H be a subset of {1, . . . , d}. If t ≤ d− |H| then denote St,H the t-th
elementary symmetric polynomial of the variables {x1, . . . , xd} \ {xj : j ∈
H}, otherwise let St,H = 0.

For 1 ≤ t, k ≤ d we have

St,∅ = ykSt−1,{k} + St,{k},

which implies
∂St,∅
∂xk

= St−1,{k}.

Subtract the 1-st column of J1 from the k-th column, where 2 ≤ k ≤ d.
All the entry of the first row will be zero, except the north west entry. Let
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t ≥ 2. Then the t-th entry of the k-th column is St−1,{k} − St−1,{1}, which
can rewrite as follows

St−1,{k} − St−1,{1} = x1St−2,{k,1} + St−1,{k,1} − xkSt−2,{k,1} − St−1,{k,1}

= (x1 − xk)St−2,{k,1}.

Thus all entries of the k-th column are divisible by (x1−xk). Factoring out
all these factors from the determinant we get

det(J1) = det(J2)

d∏
k=2

(x1 − xk),

where J2 is a (d− 1)× (d− 1) matrix, which has the same structure as J1,
but without the variable x1. With induction we get (4).

Summarizing our computation we proved so far that

det(J) =
∏

1≤j<k≤d

(xj − xk)/

s∏
k=1

(xr+2k−1 − xr+2k).

After canceling by the denominator, split the remaining product into three
factors as follows

Π1 =
∏

1≤j<k≤r

(xj − xk),

Π2 =
∏

1≤j<k≤s

(xr+2j−1 − xr+2k−1)(xr+2j−1 − xr+2k)(xr+2j − xr+2k−1)(xr+2j − xr+2k),

Π3 =

r∏
k=1

s∏
j=1

(xk − xr+2j−1)(xk − xr+2j).

Obviously, Π1 = ∆r. We have (xk−xr+2j−1)(xk−xr+2j) = x2k−yr+2j−1xk+
yr+2j = Rj(xk), thus Π3 = ∆r,s. Finally as the roots ofRj(X) are xr+2j−1, xr+2j

we get

ResX(Rj(X), Rk(X)) = (xr+2j−1−xr+2k−1)(xr+2j−1−xr+2k)(xr+2j−xr+2k−1)(xr+2j−xr+2k),

which means Π2 = ∆s and the lemma is proved. �

Remark 2.1. By equation (3) Lemma 2.1 can be written in the form

det(J) =
Disc(x1, . . . , xd)∏s

j=1(2iℑxr+2j)
.

Thus, if s = 0 we obtain the discriminant of the polynomial
∏d

j=1(X − xj).

Now we are in the position to prove Theorem 2.1. In the proof of Lemma
2.1 it was convenient to use the same name for the variables. To continue this
notation would make our presentation unnecessary complicated. Therefore
we use in the sequel the notation: xi = yi, i = 1, . . . , r, yi = yr+2i−1, zi =
yr+2i, i = 1, . . . , s introduced in the theorem.
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Proof of Theorem 2.1. Let v ∈ E(s)
d . The polynomial Pv(X) can be

expressed by its coefficients and by its roots, moreover we have the following
relation between these representations

P (X) = Xd + pd−1X
d−1 + · · ·+ p0 =

r∏
j=1

(X − xj)

s∏
k=1

(X2 − ykX + zk).

It is clear that

λd(E
(s)
d ) =

∫
E(s)
d

dp0 . . . dpd−1.

Now we change the variables p0, . . . , pd−1 to x1, . . . , xr, y1, z1, . . . , ys, zs. This
gives rise to one to r!s! correspondence, up to measure zero exceptions. It
is clear that xj ∈ [−1, 1], j = 1 . . . , r. The variable zk is the absolute value
of a complex number lying in the closed unit circle, thus zk ∈ [0, 1], k =
1, . . . , s. The polynomial Rk(X) has two non-real roots, thus its discriminant
y2k − 4zk ≤ 0, hence yk ∈ [−2

√
zk, 2

√
zk]. Moreover the Jacobian of the

variable change was computed in Lemma 2.1. Thus we obtain

λd(E
(s)
d ) =

1

r!s!

∫
Dr,s

| det(J)| dX.

As the polynomials Rk(X) are positive definite, Rk(xj) ≥ 0 and we also
have ResX(Rj(X), Rk(X)) ≥ 0, thus we may omit the absolute value sign
around ∆s and ∆r,s. �

3. On the Selberg integral and its generalization by Aomoto

After expressing v
(s)
d in Theorem 2.1 by a multiple integral, the main

question is how to compute it. We will show in the next section, that it
can be expressed by Selberg’s integral, if s = 0 and by a generalization of
Selberg’s integral due to K. Aomoto, if s = 1. To prepare our results we
summarize in this section the necessary knowledge about these integrals.

Let n be a positive integer, Cn = [0, 1]n and

∆(t) = ∆(t1, . . . , tn) =
∏

1≤j<k≤n

(tj − tk).

In 1944 A. Selberg [13] proved the beautiful formula

Sn(α, β, γ) =

∫
Cn

n∏
j=1

tα−1
j (1− tj)

β−1|∆|2γdt1 . . . dtn

=

n−1∏
j=0

Γ(α+ jγ)Γ(β + jγ)Γ(1 + (j + 1)γ)

Γ(α+ β + (n+ j − 1)γ)Γ(1 + γ)
,

which is valid for complex parameters α, β, γ such that ℜ(α),ℜ(β),ℜ(γ) >
−min{1/n,ℜ(α)/(n− 1),ℜ(β)/(n− 1)}.

Beside the original proof of Selberg, there are at least two more essentially
different proofs of this formula, due to G.W. Anderson [2] and K. Aomoto [5].
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You find a good overview of the history, the generalizations and applications
of the Selberg integral in the book of G.E. Andrews and R. Askey and R. Roy
[3] as well as in the survey paper [8]. We formulate here one generalization
of the Selberg integral, which we will need later.

Let w(t) = w(t1, . . . , tn) =
∏n

j=1 t
α−1
j (1− tj)

β−1|∆|2γ and

B(j, k, ℓ) =

∫
Cn

j∏
i=1

ti

j+k−ℓ∏
i=j+1−ℓ

(1− ti)w(t) dt1 . . . dtn.

Thus j represents the number of extra ti factors, k the number of extra 1−ti
factors, and ℓ the number of variables that overlap among the extra factors.
Assuming ℓ ≤ j, k ≤ n and j + k − ℓ ≤ n then by Theorem 8.3.1 of [3] we
have

B(j, k, ℓ) =
ℓ∏

i=1

α+ β + (n− i− 1)γ

α+ β + 1 + (2n− i− 1)γ

×
∏j

i=1(α+ (n− i)γ)
∏k

i=1(α+ (n− i)γ)∏j+k
i=1 (α+ β + (2n− i− 1)γ)

Sn(α, β, γ)

for all complex numbers α, β, γ satisfying the former conditions. We need
only the special case k = ℓ, α = β = 1, γ = 1/2. Then, as is pointed out on
p. 408 of [3], the integral defining B(j, k, k) can be written in the form

B(j, k, k) =

∫
Cn

j∏
i=1

ti

k∏
i=1

(1− ti)w(t) dt1 . . . dtn.

Setting (α, β, γ) = (1, 1, 1/2) and B(j, k) = B(j, k, k) we obtain

B(j, k) =

k∏
i=1

2 + (n− i− 1)/2

3 + (2n− i− 1)/2

×
∏j

i=1(1 + (n− i)/2)
∏k

i=1(1 + (n− i)/2)∏j+k
i=1 (2 + (2n− i− 1)/2)

Sn(1, 1, 1/2)

for n ≥ j ≥ k.

4. Computation of v
(0)
d and v

(1)
d .

In this section we prove expressions for v
(s)
d for s = 0, 1.

In Remark 2.1 an explicit formula for det(J) is given in the case s = 0.
Then our multiple integral simplifies to a transformed Selberg integral [13, 8]
and we obtain
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Theorem 4.1. Let d be a positive integer. Then

v
(0)
d =

2d(d+1)/2

d!
Sd(1, 1, 1/2)

=
2d(d+1)/2

d!

d−1∏
j=0

(Γ(1 + j/2))2Γ(1 + (j + 1)/2)

Γ(2 + (d+ j − 1)/2)Γ(3/2)
.

Proof. Using the notations of Theorem 2.1 we have r = d, s = 0, hence

v
(0)
d =

1

d!

∫
[−1,1]d

∣∣∣∣∣∣
∏

1≤j<k≤d

(xj − xk)

∣∣∣∣∣∣ dx1 . . . dxd.
Rearranging x1, . . . , xd in decreasing order all factors are non-negative and
we may omit the absolute value. Taking in account that x1, . . . , xd have d!
different orderings we obtain

v
(0)
d =

∫ 1

−1

∫ 1

x1

. . .

∫ 1

xd−1

∏
1≤j<k≤d

(xj − xk) dx1 . . . dxd.

Now we change the variables by xi = 2Xi − 1, i = 1, . . . , d and get

v
(0)
d = 2d(d+1)/2

∫ 1

0

∫ 1

X1

. . .

∫ 1

Xd−1

∏
1≤j<k≤d

(Xj −Xk) dX1 . . . dXd.

Finally we perform the first step backwards and obtain

v
(0)
d =

2d(d+1)/2

d!

∫ 1

0
. . .

∫ 1

0

∣∣∣∣∣∣
∏

1≤j<k≤d

(Xj −Xk)

∣∣∣∣∣∣ dX1 . . . dXd

=
2d(d+1)/2

d!
Sd(1, 1, 1/2).

�
This relation implicitly appears in G.W. Anderson [2].

For s > 0 we were not able to find similar simple relation between the

Selberg integral or its generalizations and our expressions for v
(s)
d , although

their form and numerical investigations suggest strong connections. For
s = 1, using Aomoto’s generalization [5], more precisely its variant in the
book [3], we were able to derive a bit more complicated formula, which we
present now.

Theorem 4.2. Let d ≥ be an integer. Then

v
(1)
d = 2(d−1)(d−2)/2

d−2∑
j=0

d−2−j∑
k=0

(−1)d−k22d−2−2k−j

j!k!(d− 2− j − k)!

× Bd−2(d− 2− k, d− 2− k − j)

∫ 1

0

∫ 2
√
z

−2
√
z
yj(y + z + 1)k dy dz.
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Proof. As in the proof d−2 appears often and this makes the formulae more
complicated, we use the abbreviation δ = d− 2. By Theorem 2.1 we have

v
(1)
d =

1

δ!

∫
Dδ,1

∆|∆δ(x)| dXdy dz,

where

∆ = ∆δ,1 =
δ∏

i=1

(x2i − yxi + z), ∆δ(x) =
∏

1≤j<k≤δ

(xj − xk)

and

dX = dx1 . . . dxδ.

Remark that for simplicity we replaced y1, z1 by y, z. We transform the
range of integration for x1, . . . , xδ to the range used by Selberg and Aomoto
by performing the substitutions xi = 2Xi−1, i = 1, . . . , δ. (These early sub-
stitutions results much simpler final formulae, as we would do them later.)
After some simple calculations we obtain

(5) v
(1)
d =

2(δ+1)δ/2

δ!

∫
[0,1]δ

|∆δ(X)|
∫ 1

0

∫ 2
√
z

−2
√
z
P (X, y, z) dy dz dX,

with

P (X, y, z) =

δ∏
i=1

((2Xi − 1)2 − (2Xi − 1)y + z)

=
δ∏

i=1

(−4Xi(1−Xi)− 2Xiy + (y + z + 1)).

By performing the multiplications we can separate the variables as follows

P (X, y, z) =
δ∑

j=0

(−2)j
δ−j∑
k=0

(−4)δ−k−jyj(y + z + 1)kΣ1Σ2,

where

Σ1 =
∑

(i1,...,ij)∈I1

Xi1 · · ·Xij ,

Σ2 =
∑

(ij+1,...,iδ−k)∈I2

Xij+1(1−Xij+1) · · ·Xiδ−k
(1−Xiδ−k

)

and I1, I2 runs through all ordered disjoint subsets of {1, . . . , δ} with size j
and δ − j − k respectively.

Inserting this expressions into (5) we can separate the variables. Moreover
it is obvious that∫

[0,1]δ
|∆δ(X)|Xi1 · · ·XijXij+1(1−Xij+1) · · ·Xiδ−k

(1−Xiδ−k
) dX
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does dot depend on the actual values of (i1, . . . , ij), (ij+1, . . . , iδ−k) but only
on the size of the (ordered) sets I1, I2 to which they belong. It is also clear
that this integral is equal to Bδ(δ − k, δ − j − k). With these observations
we can simplify considerably our integral, and obtain

v
(1)
d =

2(δ+1)δ/2

δ!

δ∑
j=0

(−2)j
(
δ

j

) δ−j∑
k=0

(−4)δ−k−j

(
δ − j

k

)
Bδ(δ − k, δ − j − k)

×
∫ 1

0

∫ 2
√
z

−2
√
z
yj(y + z + 1)k dy dz.

After some obvious simplification we obtain the final formula

v
(1)
d = 2(δ+1)δ/2

δ∑
j=0

δ−j∑
k=0

(−1)δ−k22δ−2k−j

j!k!((δ − j − k)!
Bδ(δ − k, δ − j − k)

×
∫ 1

0

∫ 2
√
z

−2
√
z
yj(y + z + 1)k dy dz.

�

5. Arithmetical properties of v
(s)
d

After expressing v
(s)
d in Theorem 2.1 by a multiple integral, which was

simplified in the cases s = 0, 1 in the last section, we investigate arithmetical
properties of these numbers. We start with a general fact.

Theorem 5.1. The numbers vd and v
(s)
d are rational. Moreover

(6) vd =

⌊d/2⌋∑
s=0

v
(s)
d .

Proof. The first and the last statements are obvious by the formula (1) and
by the definitions of the volumes respectively. We included they only for
completeness.

The second assertion is true for s = 0, 1 by Theorems 4.1 and 4.2 respec-
tively. Thus we may assume s ≥ 2. By Theorem 2.1 we have

v
(s)
d =

1

r!s!

∫
Dr,s

|∆r|∆s∆r,s dX

with the notations explained there. In the first step we prove

(7) v
(s)
d =

1

r!s!

∫
Dr,0

W (x1, . . . , xr)|∆r| dx,

where dx = dx1 . . . dxr and W (x1, . . . , xr) ∈ Q[x1, . . . , xr] is symmetric. As
∆r does not depend on y1, z1, . . . , ys, zs we may take

W =

∫
Fs

∆s∆r,s dY,
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where Fs = [−2
√
z1, 2

√
z1] × [0, 1] × · · · × [−2

√
zs, 2

√
zs] × [0, 1] and dY =

dy1dz1 . . . dysdzs. Remark that

∆s∆r,s =
∏

1≤j<k≤s

ResX(Rj(X), Rk(X))

s∏
j=1

r∏
k=1

Rj(xk)

is obviously a symmetric polynomial with rational coefficients in x1, . . . , xr.
Further we have

∆s∆r,s = ∆s−1∆r,s−1W1(y1, z1),

where

W1(y1, z1) =
s∏

j=2

ResX(Rj(X), R1(X))
r∏

k=1

R1(xk)

is a polynomial with coefficients in Q = Q[x1, . . . , xk, y2, . . . ys, z2, . . . , zs],
which is again symmetric in x1, . . . , xr. Now we can rewrite the formula for
W as follows

W =

∫
Fs−1

∆s−1∆r,s−1

∫ 1

0

∫ 2
√
z1

−2
√
z1

W1(y1, z1)dy1dz1dY1

with dY1 = dy2dz2 . . . dysdzs. It is clear that∫ 2
√
z1

−2
√
z1

W1(y1, z1) dy1

is a polynomial in
√
z1 with coefficients from Q. Thus the same is true for∫ 1

0

∫ 2
√
z1

−2
√
z1

W1(y1, z1) dy1dz1.

As W1 is symmetric in x1, . . . , xr, this property remains unaffected after the
two integration.

Now we can continue the above described process with the pairs of vari-
ables (y2, z2), . . . , (ys, zs), which finally leads to the proof of (7).

Performing in (7) the variable change xi = 2Xi−1, i = 1, . . . , r we obtain

v
(s)
d =

2r(r+1)/2

r!s!

∫
Cr

W ′(X1, . . . , Xr)|∆r(X1, . . . , Xr)| dX

with Cr = [0, 1]r and dX = dX1 . . . dXr.Moreover we haveW ′(X1, . . . , Xr) =
W (2X1 − 1, . . . , 2Xr − 1). As W is a symmetric polynomial with rational
coefficients, the same is true for W ′.

It follows from a very general result of K. Aomoto [4], p.177 (see also [5],
p.545), that the last integral divided by Sr(1, 1, 1/2) is a rational number,
which implies the assertion immediately.

In our simple situation the proof of rationality can be completed di-
rectly. Indeed, as in the proof of Theorem 4.1 we can rearrange the variables
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x1, . . . , xr in (7) in decreasing order. Then ∆r > 0 and we may omit the
absolute value. Thus we obtain

v
(s)
d =

1

s!

∫ 1

−1

∫ 1

x1

. . .

∫ 1

xr−1

W (x1, . . . , xr)∆(x1, . . . , xr) dxr . . . dx1.

As the integrand is a polynomial with rational coefficients, this property is
not affected during the successive integration by xr, . . . , x1. In the last step
we obtain a polynomial with rational coefficients without variable, i.e., a
rational number. The theorem is proved. �

In the sequel we concentrate mainly on the case r = 0. First we prove a
much simpler formula for Sd(1, 1, 1/2) as given in Theorem 4.1.

Lemma 5.1. If d is a positive integer then

(8) Sd(1, 1, 1/2) = d!
d∏

i=1

(i− 1)!2

(2i− 1)!
.

Proof. In this proof we use the abbreviation Sd = Sd(1, 1, 1/2). By Theorem
4.1 we have

Sd+1

Sd
=

Γ(1 + d/2)2Γ(1 + (d+ 1)/2)

Γ(d+ 1)Γ(3/2)

d−1∏
j=0

Γ(2 + (d+ j − 1)/2)

Γ(2 + (d+ j)/2)

=
Γ(1 + d/2)2Γ(3/2 + d/2)2

Γ(d+ 2)Γ(d+ 3/2)Γ(3/2)
.

Using the functional equation Γ(x+1) = xΓ(x) we can simplify considerably
the last formula

Sd+1

Sd
=

Γ(1 + d/2)2Γ(1/2 + d/2)2

Γ(d+ 1)Γ(d+ 1/2)Γ(3/2)

(1/2 + d/2)2

(d+ 1)(d+ 1/2)

=
Sd

Sd−1

d+ 1

2(2d+ 1)
.

This implies

Sd+1

Sd
=

(
2d+ 1

d

)−1

after a short computation. The quotient of consecutive values of the se-

quence d!
∏d

i=1(i − 1)! · (i − 1)!/(2i − 1)! satisfy the same relation. As the
starting values of both sequences coincide we proved the statement. �

Corollary 5.1. For d ≥ 1 we have

1

Sd(1, 1, 1/2)
=

d−1∏
j=0

(
2j + 1

j

)
,

i.e. the number Sd(1, 1, 1/2) is the reciprocal of an integer.
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Proof. The statement is true for d = 1. Further

1

Sd+1(1, 1, 1/2)
=

1

Sd(1, 1, 1/2)

Sd(1, 1, 1/2)

Sd+1(1, 1, 1/2)
=

(
2d+ 1

d

)
1

Sd(1, 1, 1/2)
,

which proves the assertion. �

Theorem 2.1 makes it possible the numerical computation of v
(s)
d . We

did it by using the computer algebra software Mathematica. It was able

to compute v
(s)
d for all possible signatures for d ≤ 8 and check the formula

(6). For d = 9 we failed for s = 2 by time constraint. We computed v
(2)
9

indirectly by formula (6), which is actually

v
(2)
9 = v9 − (v

(0)
9 + v

(1)
9 + v

(3)
9 + v

(4)
9 ).

In Table 1, you find these computed values for d ≤ 9.

d v
(0)
d

v
(1)
d v

(2)
d v

(3)
d v

(4)
d

2 4
3

8
3

3 16
45

224
45

4 64
1575

1664
525

2048
525

5 1024
496125

428032
496125

3334144
496125

6 16384
343814625

1114112
10418625

93519872
22920975

268435456
68762925

7 524288
1032475318875

2124414976
344158439625

379792130048
344158439625

6491843067904
1032475318875

8 16777216
6643978676960625

1114476904448
6643978676960625

313947815149568
2214659558986875

693972225753088
189827962198875

562949953421312
189827962198875

9 4294967296
726818047366107571875

92376156602368
42754002786241621875

12626155878219776
1433566168374965625

708177690171753365504
726818047366107571875

3280392695179091378176
726818047366107571875

Table 1.

We also computed the value v
(5)
10 = 4835703278458516698824704

2664364983316916082328125 . Unfortunately
our method is not generalizable, therefore we do not present it here.
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In Table 2 we display the quotients vd/v
(0)
d and v

(s)
d /v

(0)
d for 2 ≤ d ≤

8, 1 ≤ s ≤ ⌊d/2⌋.

d vd/v
(0)
d

v
(1)
d /v

(0)
d v

(2)
d /v

(0)
d v

(3)
d /v

(0)
d v

(4)
d /v

(0)
d

2 3 2

3 15 14

4 175 78 96

5 3675 418 3256

6 169785 2244 85620 81920

7 14567553 12156 2173188 12382208

8 2678348673 66428 56138244 1447738880 1174405120

9 930152232009 365636 1490456292 164885467424 763775942656

Table 2.

Our numerical investigations lead to a

Conjecture 5.1. The quotient v
(s)
d /v

(0)
d is an integer.

The conjecture is true for the computed values, i.e. for any signatures for
d ≤ 9. It is also true for d = 10, s = 5. The formula of Theorem 4.2 makes

the computation of v
(1)
d much more efficient. Using it we computed v

(1)
d for

d ≤ 100. This range could easily be extended, but we could not expected
new information, hence we stopped there. Our computation confirmed Con-
jecture 5.1.

Conjecture 5.1 together with relation (6) implies that vd/v
(0)
d is an integer

for d ≥ 1. In this case the formulae (1) and (8) imply
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vd

v
(0)
d

=


2−m

m∏
j=1

(j − 1)!4

(2j − 1)!2

2m∏
j=1

(2j − 1)!

(j − 1)!2
, if d = 2m,

2−m
m∏
j=1

j!2(j − 1)!2

(2j − 1)!(2j + 1)!

2m+1∏
j=1

(2j − 1)!

(j − 1)!2
, if d = 2m+ 1,

which can easily be transformed to a simpler form

(9)
vd

v
(0)
d

=


2−m

2m∏
j=m+1

(
2j

j

)m−1∏
j=1

(
2j

j

)−1

, if d = 2m,

2−m−1
2m+1∏
j=m+1

(
2j

j

) m∏
j=1

(
2j

j

)−1

, if d = 2m+ 1.

We are able to prove that these numbers are indeed integers.

Theorem 5.2. The numbers
vd

v
(0)
d

are odd integers.

To prove this theorem we need a simple but important lemma.

Lemma 5.2. Let an, n = 0, 1, . . . be a purely periodic sequence of real num-
bers with period length ℓ. Assume that ai ≤ ai+1, 0 ≤ i ≤ ℓ − 2. Let c, d be
integers such that d ≥ 0, c > 0, gcd(c, ℓ) = 1. If R is a non-negative integer
then

R∑
i=0

ai ≤
R∑
i=0

aci+d.

Proof. There exist integers q, t such that R = qℓ+ t, 0 ≤ t < ℓ. Then

R∑
i=0

ai =

t−1∑
i=0

ai +

R∑
i=t

ai

=

t−1∑
i=0

ai +

q−1∑
j=0

ℓ−1∑
i=0

ajℓ+i

=

t−1∑
i=0

ai + q

ℓ−1∑
i=0

ai.

Similarly

R∑
i=0

aci+d =

t−1∑
i=0

aci+d +

q−1∑
j=0

ℓ−1∑
i=0

acjℓ+ci+d

=
t−1∑
i=0

aci+d + q
ℓ−1∑
i=0

aci+d.
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However, as c and ℓ are coprime, if i runs through a complete residue system

modulo ℓ, then ci + d do the same. Hence
∑ℓ−1

i=0 aci+d =
∑ℓ−1

i=0 ai and we

only have to compare
∑t−1

i=0 ai and
∑t−1

i=0 aci+d. Since (c, ℓ) = 1 the mapping
i mod ℓ 7→ ci + d mod ℓ is injective for 0 ≤ i < ℓ. Thus the monotonicity
assumption implies that

∑t−1
i=0 ai attains the minimum of all the sum of the

shape
∑

i∈K ai for any subset K ⊂ Z/ℓZ of cardinality t.
�

Proof of Theorem 5.2. Let f(x) = ⌊2x⌋ − 2⌊x⌋. It is a periodic
function with period one. Moreover f(x) = 0 if x ∈ [0, 1/2) and f(x) = 1 if
x ∈ [1/2, 1) thus f(x) is increasing in the interval [0, 1).

Let p be an odd prime and denote νp(x) the largest exponent e such that
pe divides x. Let R be a positive integer. Then by Legendre’s formula

νp

(
R∏

n=0

(
2n

n

))
=

R∑
n=0

∞∑
j=1

(⌊
2n

pj

⌋
− 2

⌊
n

pj

⌋)

=

∞∑
j=1

R∑
n=0

f

(
n

pj

)
.

For j ≥ 1 set aj,n = f
(

n
pj

)
. The sequence aj,n is purely periodic with

period length pj . The increasing property of f in [0, 1) implies that aj,n is
increasing for 0 ≤ n < pj . Using this notation (9) implies

νp

(
vd

v
(0)
d

)
=

∞∑
j=1

(
m−1∑
k=0

aj,m+k+1 −
m−1∑
k=0

aj,k

)
for d = 2m. To get the same number of factors in numerator and denom-
inator we extended the product in the denominator with the trivial factor(
0
0

)
= 1. With the choice c = 1, d = m + 1 the assumptions of Lemma

5.2 hold, thus all differences in the brackets are non-negative. Hence the
denominator of vd

v
(d,0)
d

has no odd divisors.

Finally we prove that vd

v
(0)
d

is odd. This is true for d = 2. Assume that it

is true for d = 2m. By (9) we have

ν2

(
vd+2

v
(0)
d+2

)
= ν2

(
vd

v
(0)
d

)
− 1 + ν2

((
4m+ 4

2m+ 2

))
+ ν2

((
4m+ 2

2m+ 1

))
− ν2

((
2m+ 2

m+ 1

))
− ν2

((
2m

m

))
.

It follows from a classical result of E.E. Kummer [11], (see also the expository

paper of Granville [9]) that ν2
((

2n
n

))
is exactly the number of ones in the bi-

nary expansion of n. As 2m+2 = 2(m+1) the number of one’s in the binary

expansions of 2m+ 2 and m+ 1 is equal, thus ν2

((
4m+4
2m+2

))
= ν2

((
2m+2
m+1

))
.
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Further 2m+ 1 has exactly one more one’s in its binary expansion than m,

thus ν2

((
4m+2
2m+1

))
= ν2

((
2m
m

))
+ 1. Hence

ν2

(
vd+2

v
(0)
d+2

)
= ν2

(
vd

v
(0)
d

)

holds for d even. As this number is zero for d = 2, it is zero for all even d.
The proof of the case d odd is similar, therefore we left it for the reader.

�

We finish this part with a conjecture, which is true for d ≤ 5.

Conjecture 5.2. We have

(10)
v
(d)
2d

v
(0)
2d

= 22d(d−1)

(
2d

d

)
.

Combining Theorems 2.1 and 4.1 this conjecture can be written in the
form

Conjecture 5.3. Let d ≥ 1, 0 ≤ zj ≤ 1, j = 1, . . . , d,

D0,d = [−2
√
z1, 2

√
z1]× [0, 1]× · · · × [−2

√
zd, 2

√
zd]× [0, 1],

Rk(x) = x2 − yjx + zj , j = 1, . . . , d and dX = dy1dz1 . . . dyddzd. Then we
have

1

d!

∫
D0,d

∏
1≤j<k≤d

Resx(Rj(x), Rk(x)) dX =
24d

2−d

(2d)!

(
2d

d

)
S2d(1, 1, 1/2).

All our attempts to prove this conjecture failed. It seems unlikely to

have a simple formula like (10) for other ratios v
(s)
2d /v

(0)
2d or v

(s)
2d+1/v

(0)
2d+1 with

0 < s < d, because we find large prime factors.

6. A probability results

It is natural to ask: what is the probability p
(0)
d that picking v ∈ Ed the

corresponding polynomial Pv is totally real, i.e has only real roots? Let
d = r + 2s, where r, s are non-negative integers. More generally we can

ask the probability p
(s)
d that picking v ∈ Ed such that the corresponding

polynomial Pv has signature (r, s)? Notice that in this setting we pick the
coefficients of the polynomial!

Of course we can express these probabilities with our former notations as

p
(s)
d =

v
(s)
d

vd
.

By Theorem 5.1 these probabilities are rational numbers.
The next natural question is the behavior of these numbers. Are they of

similar size or there is significant difference between them?
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We have the complicated, but exact formula (1) for vd, but not for v
(s)
d

for s ≥ 0, thus not for p
(s)
d either. However, in the case d = 0 Theorem

4.1 makes it possible to prove an accurate estimate for the size of p
(0)
d . We

extend this with a hypothetical estimate for p
(d/2)
d , provided d is even

Theorem 6.1. Let d ≥ 2 be an integer. Then

log
(
p
(0)
d

)
= − log 2

2
d2 +

1

8
log d+O(1).

Moreover, if d is even and Conjecture 5.2 is true then

(11) log
(
p
(d/2)
d

)
= −3

8
log d+O(1).

Proof. We give a non computer assisted proof1. Using ideas of A.T. Fam
[7], we have

(12)

(
2n

n

)
=

(2n)!

n!2
=

n∏
k=1

(2k)(2k − 1)

k2
= 22n

n∏
k=1

2k − 1

2k

for all positive integers n.
First we prove (11). Let d be even, say d = 2m. As

p
(m)
2m = p

(0)
2m

v
(m)
2m

v
(0)
2m

we get

p
(m)
2m = 22m

2−m
2m∏

j=m+1

(
2j

j

)−1 m∏
j=1

(
2j

j

)
by using (9) and Conjecture 5.2. Combining this with (12) we obtain

p
(m)
2m = 22m

2−m
2m∏

j=m+1

2−2j
j∏

k=1

2k

2k − 1

m∏
j=1

22j
j∏

k=1

2k − 1

2k

= 2−m
m∏
j=1

(
2j

2j − 1

)m 2m∏
j=m+1

(
2j

2j − 1

)2m+1−j m∏
j=1

(
2j − 1

2j

)m+1−j

= 2−m
m∏
j=1

(
4m− 2j + 2

4m− 2j + 1

)j m∏
j=1

(
2j − 1

2j

)−j+1

.

1The computation is not easy even by symbolic computation programs like Mathemat-
ica, because we have to fix properly the branches of complex functions.
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Taking logarithm we get

log
(
p
(m)
2m

)
= −m log 2−

m∑
j=1

(j − 1) log

(
1− 1

2j

)

+

m∑
j=1

j log

(
1 +

1

4m− 2j + 1

)

= −m log 2− 1

2

m∑
j=1

(
1− 2m+ 1

2m+ 1− j

)
+

m

2
− 3

8

m∑
j=1

1

j
+O(1)

= −3

8
logm+O(1).

Here we used the three term Taylor expansion of log(1 + x).

Now we compute an asymptotic estimate for p
(0)
2m. We start with

p
(0)
2m = p

(m)
2m 2−2m(m−1)

(
2m

m

)−1

.

Using (12) we get

p
(0)
2m = p

(m)
2m 2−2m(m−1)2−2m

m∏
k=1

(
1− 1

2k

)−1

.

Taking logarithm, using (11) and the first term of the Taylor expansion for
log(1− x) we obtain

log
(
p
(0)
d

)
= −2m2 log 2 +

1

2

m∑
k=1

1

k
− 3

8
logm+O(1),

which proves the first assertion for d even.
Finally we are dealing with the case d is odd, say d = 2m+ 1. By (9) we

have

p
(0)
2m+1 = p

(0)
2m 2

(
2m

m

)(
4m+ 2

2m+ 1

)−1

.

By applying (12) this implies

p
(0)
2m+1 = p

(0)
2m 2−2m−1

2m+1∏
k=m+1

(
1− 1

2k

)−1

.

Taking logarithm, using the expression for log p
(0)
2m and Taylor formula we

obtain the result. �

Theorem 6.1 means that the probability to picking a totally real polyno-

mial of degree d is asymptotically 2−d2/2. On the other hand there are only
[d/2] + 1 different signatures, thus the polynomials are distributed among
the different signatures not equally, the totally real signature for example is
a very rare one.
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Using the formula in Theorem 4.2 we computed v
(1)
d for d ≤ 100. After

having these values we also computed v
(1)
d /v

(0)
d , which happen to be integers.

Moreover we found that the growth rate of this integer sequence is for d ≥ 5
monotonically increasing and lie in the interval [5.358974359, 5.798986043].
We are not able to prove, but it seems that the growth rate is bounded

above, say by q. (We expect that q ≤ 6.) If this is true then v
(1)
d /v

(0)
d ≤ qd.

Combining this with Theorem 6.1 we get

log p
(1)
d ≤ − log 2

2
d2 + d log q,

i.e., the signature s = 1 has a bit larger probability as the case s = 0, but it
is still very rare comparing to the uniform distribution.

On the other hand we have some information on the totally complex case,
which is the other extremum. For even d we proposed Conjecture 5.2, which
is supported by our computations. Assuming it we obtained that in this case
the frequency of totally complex polynomials is about d−3/8. This number
is much bigger than 2/d, which would be the probability if the polynomials
were uniformly distributed among the different signature classes. As already
for d = 6 the most frequent signature is (4, 1) one may expect that the peak
of the frequency curve will move from the totally complex case. As we have
no theoretical and only few computational support, we do not continue the
speculation.

7. On the boundary of E(s)
d

For the sake of completeness we now turn to the boundary of E(s)
d and

prove a generalization of the the result of I. Schur [12] as well as of A.T.
Fam and J.S. Meditsch [6]. Although this description is not as explicit as
the cited ones, we included it, because we need it in Part II.

Theorem 7.1. Let d ≥ 1 and r, s be non-negative integers such that r+2s =

d. Then the boundary of the set E(s)
d is the union of finitely many algebraic

surfaces.

Proof. Let v0 ∈ Rd be a boundary point of E(s)
d . If one of its coordi-

nates is 1 or −1 then v0 satisfies the linear equation v0(1, . . . , 1) = 0 or
v0(1,−1, 1, . . . , (−1)d) = 0 respectively, where vu denotes the direct prod-
uct of the vectors v and u. If the polynomial corresponding to v0 has a
non-real root lying on the unit circle then by [6] v0 lies on a hypersurface.

Assume in the sequel that v0 is a boundary point of E(s)
d , such that the

roots of Pv0(X) lie inside the unit circle. It will be called an inner boundary
point. Then for any δ > 0 there exist v1,v2 ∈ Rd such that

(13) ∥ v0 − v1 ∥, ∥ v0 − v2 ∥< δ, v1 ∈ E(s)
d and v2 ∈ E(s1)

d , s1 ̸= s.

We may assume without loss of generality that s > s1, whence r < r1 and
it is fixed.
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Denote by αi, i = 0, 1, 2 the vectors of roots of Pvi(X) ordered such that
first are coming the real roots, then the non-real ones such that the complex
conjugates follow each other. Then there exist a coordinate, say 1 ≤ j ≤ s,
such that α1,r+2j−1 ∈ C\R and α2,r+2j−1 ∈ R (αij denotes the j-t coordinate
of the vector αi). As v1 is a real vector and the corresponding polynomial
has a non-real root then its conjugate is a different root of the polynomial.
Thus ᾱ1,r+2j−1 is a root of Pv1(x) and because the ordering of the roots
ᾱ1,r+2j−1 = α1,r+2j . Notice that α2,r+2j ∈ R holds too. The roots are
continuous functions of the coefficients, thus for any ε > 0 there exist δ > 0
such that if for v1,v2 ∈ Rd the inequality (13) holds then

|α1,r+2j−1 − α2,r+2j−1|, |ᾱ1,r+2j−1 − α2,r+2j | < ε.

This can only happen, if α0,r+2j−1 = α0,r+2j , i.e., Pv0(X) has a multiple

real root. Thus the inner boundary points of E(s)
d are lying on the surface∏

1≤j<k≤r

(xj − xk)
r∏

j=1

s∏
k=1

(x2j − yr+2k−1xj + yr+2k) = 0,

where the y’s has to be chosen such that 0 < yr+2k < 1 and |yr+2k−1| <
2
√
yr+2k. These are obviously algebraic relations.
In the opposite direction we prove that polynomials with multiple real

roots lie on the inner boundary of different signature bodies. Indeed, assume
that P (X) has a multiple real root |α| < 1 and signature (r, s). Then we
can find for any ε > 0 real numbers 0 < δ1, δ2 < ε such that

α2 + δ22 < 1, |α+ δ1|, |α+ δ2| < 1.

Consider the polynomials

P1(X) = P (X)(X − (α+ δ1))(X − (α+ δ1))/(X − α)2

and

P2(X) = P (X)(X − (α+ iδ2))(X − (α− iδ2))/(X − α)2, i =
√
−1.

Obviously P1(X), P2(X) ∈ Ed, they have different signature and are arbi-
trary near to each other. This proofs the claim and finishes the proof of the
statement. �
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