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1. Introduction

For a subset A of Z we define the restricted sumset of A by

A+̂A := {a+ b : a ∈ A, b ∈ A, a 6= b}.

Answering a question of I.Z. Ruzsa, A. Bérczes [1] gave a complete de-

scription of the restricted sumset of geometric progressions having positive

real quotient. In this connection, it is natural to ask whether it is possible

to give a similar description of the restricted sumset of binary recurrence

sequences? The present paper answers the question for Lucas sequences.

Several results on sumsets of various kind of sets are available in the

literature. For such results we refer to [6], [4] and the references given there.

However, since the results of the present paper are not much connected to

those results, and the techniques of the proofs are also quite different, we

omit to mention them explicitly.

Recall that a Lucas sequence is a binary recurrence sequence given by

(1.1) Rn := A ·Rn−1 +B ·Rn−2, R0 := 0, R1 := 1,
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where A,B ∈ Z are non-zero numbers. Further, the two roots of the char-

acteristic polynomial x2 − Ax−B of the sequence are

(1.2) α :=
A+
√
A2 + 4B

2
, β :=

A−
√
A2 + 4B

2
,

and the elements of the sequence can be expressed by the so-called Binet

formula

(1.3) Rn :=
αn − βn

α− β
.

We say that the recurrence has a dominant root if |α| 6= |β|. Clearly, the

sequence given by (1.1) has a dominant root if and only if the discriminant

of the characteristic polynomial is positive, i.e. A2 + 4B > 0. For the above

definitions and well known facts see [5] and [2].

Throughout these notes we assume AB 6= 0 and α
β

is not a root of unity

and call Rn a non-degenerate Lucas sequence. Note that if the discriminant

of the characteristic polynomial is non-positive then the second assumption

implies that both of α and β are not roots of unity. These are natural

assumptions with respect to the investigated problem. Indeed, if B = 0

then Rn = An for n ≥ 1, i.e. Rn is a geometric progression with quotient A,

which was the topic of the paper of the first author [1]. If α
β

= η is a root

of unity of order k, which happens for example if A = 0, then there are two

subcases: η = 1 or k > 1, actually k = 2, 3, 4 or 6. If η = 1, i.e. α = β then

Rn = n, n ≥ 0. Otherwise

Rn = βn−1
ηn − 1

η − 1
.

ThusRn = 0 whenever k|n. Moreover, if β is a root of unity thenRn assumes

only finitely many different values. In all these cases the cardinality of the

restricted sumset depends heavily on the choice of the subset.

The situation is completely different under the assumptions above. Con-

cerning the cardinality of the restricted sumset of a Lucas sequence we split

our investigation depending on the sign of the discriminant of the char-

acteristic polynomial. For sequences without dominant root we prove the

following:
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Theorem 1.1. Let Rn be a non-degenerate Lucas sequence with A2 + 4B <

0, and put A := {Rn|n ∈ Z, 0 ≤ n ≤ N}, with N ≥ 3. Then we have

|A+̂A| = N(N + 1)

2
−O(1).

For Lucas sequences with a dominant root we can prove a more precise

result, which completely answers the question of the second author.

Theorem 1.2. Let Rn be a non-degenerate Lucas sequence with A2 + 4B >

0, and put A := {Rn|n ∈ Z, 0 ≤ n ≤ N}, with N ≥ 3. Then we have the

following statements:

• If (A,B) 6∈ {(1, 1), (−1, 1)}

|A+̂A| = N(N + 1)

2
.

• If (A,B) ∈ {(1, 1), (−1, 1)}

|A+̂A| = N(N + 1)

2
− (N − 2).

The above Theorem 1.2 is a trivial consequence of the following Proposi-

tion.

Proposition 1.1. Let Rn be a non-degenerate Lucas sequence with A2 +

4B > 0. Let a, b, c, d be distinct non-negative integers. Then

(1.4) Ra +Rd = Rb +Rc

can happen only in the following cases:

(i) A = 1, B = 1, b = a− 1, c = a− 2, d = 0,

(ii) A = −1, B = 1, b = a− 2, c = 0, d = a− 1.

Theorem 1.1 is just a simple consequence of Proposition 1.2 below.

Proposition 1.2. Let Rn be a non-degenerate Lucas sequence with A2 +

4B < 0. Then the number of 4-tuples (a, b, c, d) with max(a, b, c, d) = a and

b > c, for which (1.4) is fulfilled, is bounded by

2 · e4221·15.
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2. Auxiliary results

Let us consider the equation

(2.5) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ,

where Γ is a finitely generated subgroup of rank r > 0 of Q∗. A solution

(x1, . . . , xn) of (2.5) is called non-degenerate, if there is no vanishing subsum

of the sum
∑n

i=1 aixi.

Lemma 2.1. The number of non-degenerate solutions of equation (2.5) is

bounded by

e(6n)
3n(nr+1).

Proof. This is the result of Evertse, Schmidt and Schlickewei. See Theorem

1.1 of [3] and the first paragraph on page 810 of [3]. �

Lemma 2.2. Let a, b, c, d be distinct non-negative integers, such that a >

max{b, c, d}. Let f be the function defined by

f : R→ R, f(x) := xa − xb − xc + xd.

Then the following statements are true:

(a) f is strictly monotonic on the interval ]−∞,−2[. More precisely,

f is strictly monotonically increasing on ]−∞,−2[ if a is odd, and

strictly monotonically decreasing on ]−∞,−2[ if a is even.

(b) If x ≤ −4 then |f(x)| > 2a+1.

(c) If −2 ≤ x < 0 then |f(x)| ≤ 2a+1.

(d) If x ≤ −3 then |f(x)| > 12.

(e) If −1 ≤ x < 0 then |f(x)| ≤ 4.

(f) If x ≤ −2 and a ≥ 6 then |f(x)| ≥ 8.

(g) If x ≤ −3 and a ≥ 6 then |f(x)| ≥ 2a+2.

Proof. The derivative of f is f ′(x) = axa−1 − bxb−1 − cxc−1 + dxd−1.

First suppose that a is odd, and x < −2. Then axa−1 is positive, and we

have
f ′(x) ≥ 2a|x|a−2 − bxb−1 − cxc−1 + dxd−1

≥ a|x|a−2 + 2a|x|a−3 − bxb−1 − cxc−1 + dxd−1 > 0.
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Now suppose that a is even, and x < −2. Then axa−1 is negative, and

we have

f ′(x) ≤ −2a|x|a−2 − bxb−1 − cxc−1 + dxd−1

≤ −a|x|a−2 − 2a|x|a−3 − bxb−1 − cxc−1 + dxd−1 < 0.

This concludes the proof of statement (a) of Lemma 2.2.

If x ≤ −4 then

|f(x)| = |xa − xb − xc + xd| ≥ |x|a − |x|b − |x|c − |x|d

≥ 4|x|a−1 − |x|b − |x|c − |x|d > |x|a−1 ≥ 4a−1 = 22a−2 ≥ 2a+1,

which concludes the proof of statement (b) of Lemma 2.2.

If −2 ≤ x < 0 then

|f(x)| = |xa − xb − xc + xd| ≤ |x|a + |x|b + |x|c + |x|d

≤ 2a + 2b + 2c + 2d < 2a+1,

which concludes the proof of statement (c) of Lemma 2.2.

If x ≤ −3 then

|f(x)| = |xa − xb − xc + xd| ≥ |x|a − |x|b − |x|c − |x|d

≥ 3|x|a−1 − |x|b − |x|c − |x|d ≥ |x|a−1 + 6|x|a−2 − |x|b − |x|c − |x|d

> 4 · |x|a−2 ≥ 4 · 3a−2 ≥ 12,

which concludes the proof of statement (d) of Lemma 2.2.

If −1 ≤ x < 0 then

|f(x)| = |xa − xb − xc + xd| ≤ |x|a + |x|b + |x|c + |x|d ≤ 4,

which concludes the proof of statement (e) of Lemma 2.2.

If x ≤ −2 and a ≥ 6 then

|f(x)| = |xa − xb − xc + xd| ≥ |x|a − |x|b − |x|c − |x|d

≥ 2|x|a−1 − |x|b − |x|c − |x|d ≥ |x|a−1 + 2|x|a−2 − |x|b − |x|c − |x|d

≥ |x|a−1 + |x|a−2 + 2|x|a−3 − |x|b − |x|c − |x|d ≥ |x|a−3 ≥ 2a−3 ≥ 8,

which concludes the proof of statement (f) of Lemma 2.2.



6 A. BÉRCZES AND A. PETHŐ

If x ≤ −3 and a ≥ 6 then we have a > 2 log 3
log 3−log 2 , thus 3a−2 ≥ 2a, and we

get

|f(x)| = |xa − xb − xc + xd| ≥ |x|a − |x|b − |x|c − |x|d

≥ 3|x|a−1 − |x|b − |x|c − |x|d ≥ |x|a−1 + 6|x|a−2 − |x|b − |x|c − |x|d

≥ 4|x|a−2 ≥ 4 · 3a−2 ≥ 4 · 2a ≥ 2a+2,

which concludes the proof of statement (g) of Lemma 2.2.

�

3. Proof of Proposition 1.1

Recall that a non-degenerate Lucas sequence is given by (1.1) with AB 6=
0, and we also have the closed formula (1.3). The assumption A2 + 4B > 0

together with AB 6= 0 implies that α/β is not a root of unity.

We split the proof in several subcases:

Case I: A > 0, B > 0

In this case by (1.1) we have

(3.6) Ri > 0, Ri > Ri−1 for every i ≥ 1.

Without loss of generality, we may suppose that a > b > c > d, and thus

(3.7) Ra +Rd = ARa−1 +BRa−2 +Rd ≥ ARb +BRc +Rd ≥ Rb +Rc,

and the equality in (3.7) may hold if and only if A = B = 1, Rd = 0,

Rb = Ra−1 and Rc = Ra−2, i.e. Rn is the Fibonacci sequence, b = a − 1,

c = a− 2, and d = 0.

Case II: A < 0, B > 0

In this case we define the sequence Q0 = 0, Q1 = 1 and

(3.8) Qn := |A| ·Qn−1 +B ·Qn−2 for n ≥ 2,

and we have Qn := |Rn|. More precisely it is easily shown by induction that

(3.9) Ri = (−1)i+1Qi, Qi > 0, Qi > Qi−1 for every i ≥ 1.

These show that

(3.10) sgn(ARa−1) = sgn(BRa−2) for every a ≥ 2.
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Without loss of generality, we may suppose that a > max{b, c, d} and b > c.

Thus using (1.1), (3.9) and (3.10) we have

|Ra +Rd| ≥ |Ra| − |Rd| = |ARa−1 +BRa−2| − |Rd|

= |A| · |Ra−1|+ |B| · |Ra−2| − |Rd|

≥ |A| · |Rb|+ |B| · |Rc| − |Rd| > |Rb|+ |Rc| ≥ |Rb +Rc|,

whenever |AB| 6= 1.

So we have to check the case A = −1, B = 1. If d = a− 2 then

|Ra +Rd| = |Ra +Ra−2| = |Ra|+ |Ra−2| > |Rb|+ |Rc| ≥ |Rb +Rc|,

which is impossible. First suppose that d = a− 1 and b 6= a− 2. Then we

have

|Ra +Rd| = | −Ra−1 +Ra−2 +Ra−1| = |Ra−2| = | −Ra−3 +Ra−4|

= |Ra−3|+ |Ra−4| ≥ |Rb|+ |Rc| ≥ |Rb +Rc|,

and we have equality if and only if b = a−3, c = a−4 and sgn(Rb) = sgn(Rc),

however, these assumptions are contradictory, so we have

|Ra +Rd| > |Rb +Rc|.

Now suppose that d = a− 1 and b = a− 2. In this case

Ra +Rd = Ra +Ra−1 = −Ra−1 +Ra−2 +Ra−1 = Ra−2 = Rb

shows that

Ra +Rd = Rb +Rc

may be fulfilled if and only if Rc = 0, so we get the case A = −1, B = 1

and the identity Ra +Ra−1 = Ra−2 +R0.

Let us also consider the case b = a− 1. Then we have

|Ra −Rb| = |Ra −Ra−1| = |Ra|+ |Ra−1| > |Rc|+ |Rd| ≥ |Rc −Rd|,

so Ra −Rb = Rc −Rd cannot be fulfilled.
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Finally, suppose that d 6= a− 1, d 6= a− 2 and b 6= a− 1. Now using that

sgn(Ra−2) = sgn(−Ra−3) we have

|Ra +Rd| = | −Ra−1 +Ra−2 +Rd| ≥ | −Ra−1 +Ra−2| − |Rd|

≥ |2Ra−2 −Ra−3| − |Rd| ≥ 2|Ra−2|+ |Ra−3| − |Rd|

> |Ra−2|+ |Ra−3| ≥ |Rb|+ |Rc| ≥ |Rb +Rc|.

Case III: A < 0, B < 0

In this case by (1.2) we have β < α < 0. Further, by (1.3) equation (1.4)

may be written in the form

(3.11) αa − αb − αc + αd = βa − βb − βc + βd.

If α ≤ −2 then clearly β < −2 and by statement (a) of Lemma 2.2 the

equation (3.11) cannot be fulfilled. If α > −2 and β ≤ −4 then statements

(b) and (c) of Lemma 2.2 imply that (3.11) cannot be fulfilled.

So we have to check the cases when α > −2 and β > −4. However,

β > −4 may happen only if A ≥ −7. More precisely, combining these with

A2 + 4B > 0 we see that we must have

(A,B) ∈ {(−5,−5), (−5,−6), (−4,−1), (−4,−2), (−4,−3), (−3,−1), (−3,−2)} .

In the cases (A,B) ∈ {(−4,−1), (−4,−2), (−4,−3)} we have −1 ≤ α < 0

and β ≤ −3, so by statements (d) and (e) of Lemma 2.2 we have Ra+Rd 6=
Rb +Rc.

If (A,B) = (−5,−5) and (A,B) = (−5,−6) then −2 ≤ α < 0 and

β ≤ −3 yield by statements (c) and (g) of Lemma 2.2 thatRa+Rd 6= Rb+Rc,

provided that a ≥ 6.

If (A,B) = (−3,−1) and (A,B) = (−3,−2) then −1 ≤ α < 0 and

β ≤ −2 yield by statements (e) and (f) of Lemma 2.2 that Ra+Rd 6= Rb+Rc,

provided that a ≥ 6.

So we have to check the identity Ra +Rd = Rb +Rc for a < 6 if (A,B) ∈
{(−5,−5), (−5,−6), (−3,−1), (−3,−2)}. Using MAGMA we checked all

these possibilities and we saw that also in these cases we have Ra + Rd 6=
Rb +Rc. This concludes the prof of Case III.

Case IV: A > 0, B < 0
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In this case we obviously have A ≥ 3 and we prove that

(3.12)
Ri+1

Ri

>
A

2
, for i ≥ 1.

Clearly, this is true for i = 1, and we proceed by induction. Suppose that

for a fixed value of i (3.12) is true. Then we prove that

Ri+2

Ri+1

>
A

2
,

also holds. Indeed, using also A2 + 4B > 0 we get

(3.13)
Ri+2 = ARi+1 +BRi =

A

2
Ri+1 +

A

2
Ri+1 +BRi

>
A

2
Ri+1 +

A2

4
Ri +BRi >

A

2
Ri+1.

This proves (3.12), which means in addition, that the sequence Rn is strictly

monotonically increasing, with non-negative terms.

Without loss of generality, we may suppose that a > max{b, c, d} and

b > c.

Now suppose that A ≥ 4. Then

Ra +Rd >
A

2
Ra−1 +Rd > 2Ra−1 +Rd > Rb +Rc.

So we have to consider the remaining cases (A,B) = (3,−1) and (A,B) =

(3,−2). If b 6= a− 1 then by (3.12) we have

Ra +Rd >
3

2
Ra−1 +Rd >

9

4
Ra−2 +Rd > Rb +Rc.

If b = a− 1 then

Ra +Rd = 3Ra−1 +BRa−2 +Rd ≥ Rb + 2Ra−1 − 2Ra−2 +Rd

≥ Rb + 6Ra−2 − 4Ra−3 − 2Ra−2 +Rd ≥ Rb + 4Ra−2 − 4Ra−3

≥ Rb +Rc + 3Ra−2 − 4Ra−3

≥ Rb +Rc +

(
9

2
− 4

)
Ra−3 > Rb +Rc.

This concludes the proof of Proposition 1.1.



10 A. BÉRCZES AND A. PETHŐ

4. Proof of Proposition 1.2

Recall that a Lucas sequence is given by (1.1), and we also have the closed

formula (1.3). Since in Proposition 1.2 we assume that A2 + 4B < 0, and

since a Lucas sequence is supposed to be non-degenerate in the sequel we

may suppose that α and β are non-real complex numbers such that α/β is

not a root of unity, especially α is not a root of unity. Using (1.3) equation

(1.4) can be transformed to the equation

(4.14) αa − βa + αd − βd = αb − βb + αc − βc in a, b, c, d ∈ Z≥0.

However, dividing (4.14) by βc, we reduce it to an equation of the form

(4.15) x1−x2 +x3−x4−x5 +x6−x7 = 1 in x1, x2, x3, x4, x5, x6, x7 ∈ Γ,

where Γ is the multiplicative subgroup of Q∗ generated by α and β. If there

are no vanishing subsums in (4.14), then the same holds for (4.15) and then

by Lemma 2.1 (x1, x2, x3, x4, x5, x6, x7) comes from a set of cardinality at

most

(4.16) e42
21·15.

Further as α/β is not a root of unity, for any fixed tuple (x1, x2, x3, x4, x5, x6, x7)

there exists at most one tuple (a, b, c, d), so equation (1.4) has also at most

e42
21·15 solutions.

In the sequel we give an upper bound for the number of those solutions

of (4.14) in which there is a vanishing subsum. We split the argument into

parts, depending on the number of terms in a vanishing subsum.

First we deal with the case when in (4.14) there is a vanishing subsum of

two terms. This subsum may be classified in the following types:

• The base of the two terms is the same. Without loss of generality

we may suppose that this base is alpha, and we have

αu = ±αv,

which (since u 6= v) is impossible because α is not a root of unity.

• The base of the two terms is different, i.e.

αu = ±βv
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with u, v ∈ {a, b, c, d}. (Here we may have u = v or u 6= v.) Taking

conjugates we get

βu = ±αv

and multiplying these two latter equations we get(
α

β

)u+v
= 1,

which contradicts the fact that α
β

is not a root of unity.

Next we suppose that in (4.14) there is no vanishing subsum consisting

of two terms, but there is a vanishing subsum consisting of three terms, and

consequently another vanishing subsum of 5 terms. This subcase can be

split in the following subcases

• There are two terms in the vanishing subsum with the same expo-

nent, i.e.

αu − βu ± γw = 0, u, w ∈ {a, b, c, d}, γ ∈ {α, β}.

Taking conjugates this gives

βu − αu ± γw = 0,

and adding these two equations we get

γw + γw = 0

and thus

αw + βw = 0

which is again impossible, because α/β is not a root of unity.

• There are three different exponents in the vanishing subsum, i.e.

γu ± δv ± µw = 0, u, v, w ∈ {a, b, c, d}, γ, δ, µ ∈ {α, β},

where u, v, w are pairwise distinct. Taking conjugates and sub-

tracting the two equations we get a vanishing subsum of (4.14) of

six terms, which gives a vanishing subsum of two terms, which is

impossible, as shown above.
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The last case to be treated is when (4.14) has a solution with a vanishing

subsum of four terms, but no vanishing subsums of two or three terms. We

shall give an upper bound on the number of such solutions.

If all bases in the vanishing subsum are the same (e.g. α) then we have

αa + αd − αb − αc = 0,

and we know that α and β are roots of the polynomial xa + xd − xb − xc,
which means that x2+Ax+B divides xa+xd−xb−xc, however, this means

B = ±1 and by ∆ = A2 +4B < 0 we must have B = −1 and A = ±1 which

is impossible since in these cases α is a root of unity.

If there are different bases, we shall prove that for each such vanishing

subsum there are at most e18
9·7 solutions. Since we may choose the possible

vanishing subsum (where not all the bases are equal) in at most
(
8
4

)
−2 ways,

the number of possible solution tuples (a, b, c, d) of (1.4) which correspond

to a solution of (4.14) with a four term vanishing subsum is

68 · e189·7.

So it remains to prove that if in the four-term vanishing subsum there

are different bases, then there are at most e18
9·7 solutions.

The easier case is when there are two coinciding exponents, i.e. the

vanishing subsum looks like

(4.17) αu − βu ± γv ± δw = 0.

Dividing the above equation by βu and using Lemma 2.1 we get that the

tuple (u, v, w) comes from a set of cardinality at most e18
9·7. Then taking

the other four term vanishing subsum, if (u, v, w) is fixed, then the fourth

exponent is also fixed.

Now we consider the harder case, when all four exponents in the vanishing

subsum are distinct. In this case the vanishing subsum takes the form

(4.18) γa ± δb ± ηc ± µd = 0,

where γ, δ, η, µ ∈ {α, β}, and a > max{b, c, d}.
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If |α| = |β| ≥ 2 then

|γ|a ≥ 2|γ|a−1 ≥ |γ|a−1 + 2|γ|a−2

> |δ|b + |η|c + |µ|d ≥ | ± δb ± ηc ± µd|,

thus (4.18) cannot hold.

So we have to handle the cases |α| < 2, which leads to N(α) < 4, i.e.

|B| ≤ 3, which together with A2 + 4B < 0 leads to

(A,B) ∈ {(±1,−1), (±1,−2), (±2,−2), (±1,−3), (±2,−3), (±3,−3)}.

However, (A,B) = (±1,−1), (±2,−2), (±3,−3) is excluded since the corre-

sponding sequence is degenerate. In the remaining cases (A,B) = (±1,−2),

(±1,−3), (±2,−3) it is easy to check that the principal ideals generated by

α and by β, respectively, are prime ideals. The vanishing subsum of four

terms (which exists by assumption in the presently treated case) has the

form

γa ± δb ± ηc ± µd = 0,

and since {γ, δ, η, µ} ⊂ {α, β} has cardinality 2, we may suppose without

loss of generality that γ 6= δ. Dividing by δb we get the equation

γa

δb
± 1± ηc

δb
± µd

δb
= 0,

which has at most e18
9·3 solutions. For a fixed solution of this equation γa

δb

is fixed, so using that α and β both generate a prime ideal, and γ 6= δ,

γ, δ ∈ {α, β} we get that a, b are fixed, and using that ηc

δb
and µd

δb
are also

fixed, we see that c, d are fixed. This concludes the proof of Proposition 1.2.
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A. Bérczes

Institute of Mathematics, University of Debrecen

H-4010 Debrecen, P.O. Box 12, Hungary

E-mail address: berczesa@science.unideb.hu

A. Pethő
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