
ON THE k-GENERALIZED FIBONACCI NUMBERS WITH

NEGATIVE INDICES

ATTILA PETHŐ

Abstract. In these notes we study the k-generalizes Fibonacci sequences -

(F
(k)
n )n∈Z - with positive and negative indices. Denote Tk(x) its characteristic

polynomial. Our most interesting finding is that if k is even then the absolute
value of the second real root of Tk(x) is minimal among the roots. Combining

this with a deep result we prove that there are only finitely many perfect

powers in (F
(k)
n )n∈Z, provided k is even. Another consequence is that, if k

and l denote even integers then the equation F
(k)
m = ±F (l)

n has only finitely

many effectively computable solutions in (n,m) ∈ Z2. In the case k = l = 4

we establish all solutions of this equation.

1. Introduction

The Fibonacci sequence, which is defined by the initial terms F0 = 0, F1 = 1
and by the recursion Fn+2 = Fn+1 + Fn is one of the most investigated sequences
of integers. There are 36 books in the MathSciNet with the word ”Fibonacci” in
their title. The Fibonacci numbers have the analytic expression

Fn =
αn − βn

α− β
with α =

1 +
√

5

2
, and β =

1−
√

5

2
,

which is called Binét formula.
The Fibonacci sequence can be computed not only forward, but backward, too

by using the recursion Fn = −Fn+1 + Fn+2. Replacing here n by −n we get
F−n = −F−(n−1) + F−(n−2), which can be written in the more familiar form Fm =
−Fm−1+Fm−2. The numbers α and β are the roots of the characteristic polynomial
x2 − x − 1 of the Fibonacci sequence. Thus they satisfy αβ = −1, i.e, β = −α−1

and α = −β−1. Inserting this in the Binét formula we get

F−n =
α−n − β−n

α− β
= (−1)n

αn − βn

α− β
= (−1)nFn,

which shows strong relation between positive and negative indices Fibonacci num-
bers.

Among the many generalizations of the Fibonacci sequence we concentrate here

to the k-generalized Fibonacci sequence1. Let k ≥ 2, and define the sequence (F
(k)
n )
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by the initial values F
(k)
n = 0 for n = −k + 2, . . . , 0, F

(k)
1 = 1 and by the kth order

recursion F
(k)
n+k = F

(k)
n+k−1 + · · ·+ F

(k)
n , n ≥ −k + 2. Of course for k = 2 we get the

Fibonacci sequence.

Denote by Tk(x) the characteristic polynomial of (F
(k)
n ), i.e., set Tk(x) = xk −

xk−1 − . . . − 1. Denote α1, . . . , αk the zeroes of Tk(x). Miles [20] and later Miller
[21] proved that Tk(x) has simple roots. Wolfram [28] seems to be the first who
dealt with the location of the roots. He proved that Tk(x) is a Pisot polynomial, i.e.
all but one roots lie inside the unit disc. More precisely he shoved [28, Lemma 3.6]
that α1 > 2(1−2−k), Tk(x) ”has one negative real root in the interval (−1, 0) when
k is even. This root and each complex root r has modulus 3−k < |r| < 1.” It is

well-known that the terms of linear recurrences can be expressed in the form F
(k)
n =

c1α
n
1 + · · ·+ ckα

n
k with c1, . . . , ck suitable constants. Let gk(x) = x−1

2+(k+1)(x−2) . In

the actual case Dresden [10] proved that cl = 1
αl
gk(αl). Moreover he proved the

very sharp inequality

(1.1) |F (k)
n − gk(α1)αn−1

1 | < 1

2
.

For simplicity we will take Cl = gk(αl), l = 1, . . . , k and notice Cl 6= 0. Indeed,
Cl = 0 if and only iff αl = 1, which is impossible. With this notation we get

(1.2) F (k)
n = C1α

n−1
1 + · · ·+ Ckα

n−1
k .

Dresden, following Wolfram, proved this formula for n ≥ 0.
Like the Fibonacci sequence, the k-generalized Fibonacci sequence too, can be

continued to negative indices such that the terms are rational integers. This hap-

pens because the coefficient of F
(k)
n in the recursion is one. Of course we have

F
(k)
n = −F (k)

n+1 − · · · − F
(k)
n+k−1 + F

(k)
n+k. Replacing here n by −n we get

F
(k)
−n = −F (k)

−(n−1) − · · · − F
(k)
−(n−k+1) + F

(k)
−(n−k).

Notice that Dresden’s formula (1.2) remains true for negative n’s too. To apply

it, for example, to study diophantine properties of F
(k)
−n we need more precise in-

formation on the roots of Tk(x). We present some of them in these notes. After
the elementary proof I searched the literature for similar results, but my attempts
failed. It seems that nobody was interested for the more accurate description.

Our most interesting finding is that if k is even then the second real root of Tk(x)
has the least absolute value among the roots. Combining this with a deep result of
Bugeaud and Kaneko [6] we prove (Theorem 3.2) that there are only finitely many

perfect powers in (F
(k)
n )n∈Z, provided k is even. Another consequence is that, if

k and l denote even integers then the equation F
(k)
m = ±F (l)

n has only finitely
many effectively computable solutions in (n,m) ∈ Z2 (Theorem 4.2). In the case
k = l = 4 we establish all solutions of this equation (Theorem 5.1).

2. On the zeroes of Tk(x)

Our first result is that the roots of Tk(x) are not only simple, but two roots may
have same absolute value only if they are conjugate complex numbers.

Theorem 2.1. Let z1, z2 be different roots of Tk(x) such that |z1| = |z2|. Then
z2 = z̄1.



ON k-GENERALIZED FIBONACCI NUMBERS 3

Proof. Following Dresden [10] set fk(x) = Tk(x)(x − 1) = xk+1 − 2xk + 1. Beside
1, the roots of fk(x) are the same as of Tk(x). The roots of Tk(x) are simple.

If z1, z2 are both real then |z1| = |z2| implies z2 = −z1. Assuming z1 > 0 we
have

zk+1
1 − 2zk1 + 1 = (−1)k+1zk+1

1 − 2(−1)kzk1 + 1 = 0,

and after simple transformations we get

z1 − 2 = (−1)k+1(z1 + 2).

This is impossible if k is odd. If k is even, then z1 = 2, which is never a root of
Tk(x).

In the sequel we assume that z1, z2 are non-real complex numbers. Denote r
their common absolute value, and ω1, ω2 their arguments, i.e., let z1 = r(cosω1 +
i sinω1), z2 = r(cosω2 + i sinω2). The equation fk(z1) = fk(z2) = 0 implies

rk+1u1 − 2rkv1 + 1 = 0 = rk+1u2 − 2rkv2 + 1.

with

u1 = cos(k + 1)ω1 + i sin(k + 1)ω1, u2 = cos(k + 1)ω2 + i sin(k + 1)ω2,
v1 = cos kω1 + i sin kω1, v2 = cos kω2 + i sin kω2.

After some elementary manipulation we obtain

(2.1) r(u1 − u2) = 2(v1 − v2).

The argument of the complex number u1 − u2 is π
2 + (k+1)ω1+(k+1)ω2

2 . Denote its

absolute value by s. Similarly, the argument of v1 − v2 is π
2 + kω1+kω2

2 . Denote
its absolute value by t. We have s = 0 if and only if u1 = u2 and t = 0. Then
v1 = v2 holds as well. These identities imply eiω1 = eiω2 by using Euler’s identity
cosα+ i sinα = eiα. Hence ω1 = ω2, i.e., z1 = z2.

In the sequel we may assume st 6= 0. Now (2.1) implies

rs · e−i(k+1)
ω1+ω2

2 = 2t · e−ik
ω1+ω2

2 ↔ rs · e−i
ω1+ω2

2 = 2t.

Hence ω2 = −ω1, i.e. z2 = z̄1, as stated. �

Remark 2.2. By our first theorem, except the conjugate complex pairs, the absolute
values of the roots of Tk(x) are different. If k 6= l, then the polynomials Tk(x) and
Tl(x) have no common roots. We conjecture the stronger statement, that if k 6= l,
then the absolute values of the roots of Tk(x) and Tl(x) are different.

Let k be odd. Then Tk(x) has one real root α1 and k−1
2 pairs of conjugate

complex roots, which modulus are by Theorem 2.1 different. What happens, if k
is even, when Tk(x) has two real roots. The second real root lie by Wolfram [28]
in the interval (−1,−3−k), but what is its comparison to the complex roots? Our
next result shows that the smallest in modulus root is the second real root. To
prove this we use Rouché’s theorem in the following form, see e.g. Filaseta [13].

Theorem 2.3. Let f(z) and g(z) be polynomials with complex coefficients and
C = {z : |z| = 1. If the strict inequality

|f(z) + g(z)| < |f(z)|+ |g(z)|

holds at each point on the circle C, then f(z) and g(z) must have the same total
number of zeros (counting multiplicity) strictly inside C.
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In the sequel αk1, . . . , αkk will denote the zeroes of Tk(x), and we assume that
they are ordered as |αk1| ≥ . . . ,≥ |αkk|. If, however, k is in some sense fixed, for
example we are dealing with one Tk(x), then the first index will be omitted.

Theorem 2.4. Let α1, . . . , α2k be the roots of T2k(x). Then α2k is real and |α2k| <
|αj | for j = 1, . . . , 2k.

Proof. Let

g2k(x) = x2k+1f2k

(
− 1

x

)
= x2k+1 − 2x− 1,

where fk(x) denotes the polynomial introduced in the proof of Theorem 2.1. As
g2k(1) = −2 and g2k(2) ≥ 3 the polynomial g2k(x) has a real zero in (1, 2), which
we denote by λ. As g2k(x) is monotone increasing on (1,∞) the number λ is its
only real zero in this interval. Let µ > λ then g2k(µ) > 0. Let z ∈ C be such that
|z| = µ, then

|2z + 1| ≤ 2|z|+ 1 = 2µ+ 1 < µ2k+1.

Since x2k+1 has 2k + 1 zeros inside the disc |z| < µ, it follows from Theorem 2.3,
that g2k(x) has the same number of zeros inside this disc, i.e., the absolute value
of all zeros of g2k(x) is at most µ. As µ > λ is arbitrary all zeros lie in the closed
disc |z| ≤ λ. By Theorem 2.1 λ is the only zero of g2k(x) with absolute value λ,
thus the absolute value all other zeros must be smaller, i.e. λ = −1/α2k.

�

Theorem 2.5. Let αk1, . . . , αkk be the zeros of Tk(x) ordered as |αk1| ≥ · · · ≥ |αkk|.
Then

(1) if 0 < k < l then α2l,2l < α2k,2k,
(2) if 0 < k < l then αl,1 > αk,1,
(3) if l ≥ 1 and k ≥ 2, then αk1 ≥ − 1

α2l,2l
, and equality holds if and only if

l = 1, k = 2.

Proof. (1) Set ξl = −1/α2l,2l, and ξk = −1/α2k,2k. Then ξk, ξl > 1 are zeros of
g2l(x), and g2k(x) respectively, where g2k(x) denotes the polynomial introduced in
the proof of Theorem 2.4. The identities g2k(ξk) = g2l(ξl) = 0 imply

ξ2k+1
k − ξ2l+1

l = 2(ξk − ξl),
which we can rearrange as

ξ2k+1
k − ξ2k+1

l − 2(ξk − ξl) = ξ2k+1
l (ξ

2(l−k)
l − 1).

After division by ξk − ξl, which is non-zero by Theorem 2.1 we obtain

2k∑
j=1

ξjkξ
2k−j
l − 2 =

ξ2k+1
l (ξ

2(l−k)
l − 1)

ξk − ξl
.

As ξk, ξl > 1 the left hand side and the numerator of the right hand side are positive,
hence the equality is only possible if ξk > ξl, i.e., if α2l,2l < α2k,2k.

(2) Using that αk1 > 1 is a zero of fk(x) we can prove this statement by the
same argument as (1).

(3) By (1), as a function in k, ξk = −1/α2k,2k is strongly monotone decreasing,
while by (2) αk1 is strongly monotone increasing. We finish the proof with the

equality ξ2 = 1+
√

5
2 = α21.

�
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3. Ineffective results

3.1. Perfect powers. In this section we start the investigation of the diophantine
properties of the k-generalized Fibonacci sequences. We pay special attention their
members with negative indices. We start with perfect powers, which is one of my
favourite topics. In a recent paper Bugeaud and Kaneko [6] proved

Theorem 3.1. Let (un)n≥0 be a linear recurrence sequence of integers of order at
least two and such that its characteristic polynomial is irreducible and has a domi-
nant root. Then there are only finitely many perfect powers in (un)n≥0. Moreover,
their number can be bounded by an effectively computable constant.

A consequence of it is

Theorem 3.2. If k > 0 is even then there are only finitely many perfect powers in

the (two sided) sequence (F
(k)
n )n∈Z. Moreover, their number can be bounded by an

effectively computable number.

Proof. We spit (F
(k)
n )n∈Z into the union of two sequences (F

(k)
n )n≥0 and (F

(k)
−n )n>0.

Their characteristic polynomials are Tk(x) and xkTk(1/x). Wolfram [28] proved
that Tk(x) is irreducible, thus xkTk(1/x) is irreducible too. Again by Wolfram [28]
α1 is the dominating root of Tk(x). If k is even then by Theorem 2.5 1/αk is the
dominating root of xkTk(1/x). Hence the assumptions of Theorem 3.1 hold for

both sequences (F
(k)
n )n≥0 and (F

(k)
−n )n>0. Thus there are only finitely many perfect

powers in both sequences and in their union too, �

Bugeaud, Mignotte and Siksek [7] established all perfect powers in the Fibonacci

sequence, i.e. we know all solutions of the equation F
(2)
n = xq, n, x, q ∈ Z, q ≥ 2.

For k > 2 already the ineffective Theorem 3.1 of Bugeaud and Kaneko is a big

breakthrough. If k is odd then (F
(k)
n )n≥0 satisfies the assumptions of Theorem

3.1, but the irreducible polynomial xkTk(1/x) has two, conjugate complex roots
with maximal absolute value, hence this theorem is not applicable. By our opinion

(F
(k)
−n )n>0 has for k odd too finitely many perfect powers.

3.2. Common terms. In the sequel we concentrate on common terms of the k-
generalized Fibonacci sequences. First we prove ineffective results, where the basic
tool is the theory of S-unit equations. We define them here and cite the fundamental
theorem on such equations. For an algebraic number field K denote MK its set of
places. Let S ⊂ MK be finite including all archimedean places, let OS denote the
set of S-integers of K, i.e., the set of those elements α ∈ K with |α|v ≤ 1 for all
v ∈MK \ S.

Consider the weighted S-unit equation

(3.1) α1X1 + · · ·+ αsXs = 1,

where s ≥ 2, α1, . . . , αs are non-zero elements of K and the solutions x1, . . . , xs
belong to OS . A solution x1, . . . , xs of (3.1) is called degenerate if there exists
a proper subset I of {1, . . . , s} such that

∑
i∈I αixi = 0. The next theorem was

proved by Evertse [11] and independently by van der Poorten and Schlickewei [23],
see also [12].

Theorem 3.3. Equation (3.1) has only finitely many non-degenerate solutions in
x1, . . . , xs ∈ OS.
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Consider the diophantine equation

(3.2) F (k)
m = F (l)

n

in integers k, l > 0 and n,m. If k and l are fixed then (3.2) has only finitely
many effectively computable solutions in n,m ≥ 0, see Mignotte [19] and also Kiss
[15, 16].

Marques [17] proved that if l > k ≥ 2, n > l + 1 and m > k + 1 then (3.2) has
only the solutions

(m,n, l, k) = (7, 6, 3, 2) and (12, 11, 7, 3).

This result describes completely the intersection of two sets of k-generalized Fi-

bonacci numbers with non-negative indexes because F
(k)
1 = 1, and F

(k)
m = 2k−1 for

k ≥ 2, 1 ≤ m ≤ k. Much less is known if n or m is negative. In this direction the
first step was done by Bravo, Gómez and Luca [4], see also Bravo et al. [5], who

solved completely the equation F
(3)
m = F

(3)
n in integers m,n. Their proof depend

basically on the relation |α3,2| = |α3,3| =
√
α3,1. It seems, unfortunately, that there

is no similar simple algebraic relation between the roots of Tk(x), provided k > 3.
However our investigations on the zeros of Tk(x) allows us to extend the results
of Bravo et al. for k > 3, although in a weaker ineffective form. Combining our
Theorem 2.1 with Theorem 3.3 we prove

Theorem 3.4. Let l, k ≥ 2 be fixed. Then the diophantine equation (3.2) has only
finitely many solutions (m,n) ∈ Z2.

Our Theorem 3.4 is much weaker than Marques’s above cited result. The reason
is that for negative indices the dominating root is not large enough, and all but one
roots are lying outside the unit circle.

Proof. Set Cks = gk(αks), s = 1, . . . , k. With this notation, using (1.2), equation
(3.2) can be written in the form

Ck1α
m−1
k1 + . . .+ Ckkα

m−1
kk = Cl1α

n−1
l1 + . . .+ Cllα

n−1
ll .

Let K = Q(αk1, . . . , αkk, αl1, . . . , αll) and O the ring of integers of K, finally S = ∅.
Dividing the last equation by Cl1α

n−1
l1 , which is obviously non-zero we get the

relation

a1
αm−1
k1

αn−1
l1

+ · · ·+ ak
αm−1
kk

αn−1
l1

+ ak+1

(
αl2
αl1

)n−1

+ · · ·+ ak+l−1

(
αll
αl1

)n−1

= 1,

where

as =

{
Cks

Cl1
, s = 1, . . . , k

−Cl,s−k+1

Cl1
, s = k + 1, . . . , k + l − 1.

The elements as, s = 1, . . . , k+ l− 1 are non-zero and belong to K. Further, as the

zeros of Tk(x), Tl(x) are units in K, the same do the elements
αm−1

ks

αn−1
l1

, s = 1, . . . , k

and
(
αls

αl1

)n−1

, s = 2, . . . , l.

If our equation (3.2) has infinitely many solutions m,n ∈ Z then the equation

(3.3) a1x1 + · · ·+ ak+l−1xk+l−1 = 1

has infinitely many S-unit solutions belonging to O. As S = ∅ the S-units of O
are the same as its units. By Theorem 3.3 all but finitely many solutions of our
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equation are degenerate, i.e., satisfy an equation
∑
j∈J ajxj = 0 with ∅ 6= J ⊂

{1, . . . , k + l − 1}.
Case I. If ∅ 6= J̄ ⊆ {k + 1, . . . , k + l − 1} then after repeated application of

Theorem 3.3 we get that there are 1 ≤ j < h ≤ l such that αlj/αlh is a root of
unity. Let π be a Galois conjugation of K, which maps αlj to αl1. Then π(αlh) = αlt
with some 2 ≤ t ≤ l and π(αlj/αlh) = αl1/αlt is a root of unity. However this is
impossible by Wolfram’s result [28].

Case II. If ∅ 6= J̄ ⊆ {1, . . . , k} then after repeated application of Theorem 3.3
we get that there are 1 ≤ j < h ≤ k such that αkj/αkh is a root of unity. From
here on repeat the argument of Case I.

If neither Case I nor Case II appears then the equation∑
j∈J̄

ajxj = 1

has infinitely many solutions among the units of O. This equation has the same
shape than (3.3), hence repeating the argument we arrive after some stages either
at Case I or at Case II, which completes the proof. �

4. Effective results

Our first lemma provides a similar lower bound as (1.1) for the growth of (F
(k)
n ) if

k is even and n < 0. Although it is much weaker, but still good enough not only to
prove effective finiteness results, but solve completely diophantine equations related
to such sequences.

Lemma 4.1. If k > 2 be even and n < 0 then

(4.1) |F (k)
n − gk(αkk)αn−1

kk | ≤ c1|α
δn
kk|,

where c1 = |gk(αk1)|+
∑k−1
j=2

|gk(αkj)|
|αkj | and δ =

log |αk,k−1|
log |αkk| < 1.

Proof. The formula of Dresden (1.2) implies

F (k)
n − gk(αkk)αn−1

kk =

k−1∑
j=1

gk(αkj)α
n−1
kj .

By the definition of δ we have |αk,k−1| = |αkk|δ, thus

|αkk|nδ = |αk,k−1|n = |αk,k−2|n > |αkj |n, j = 1, . . . , k − 3.

This estimate together with the formula of Dresden proves the statement. �

The following theorem is a simple consequence of Theorem 2.4 and the Théorème
of Mignotte [19].

Theorem 4.2. Let the integers k, l ≥ 2 be given. If (n,m) ∈ Z2 is a solution of
the equation

(4.2) F (k)
m = ±F (l)

n ,

then there exists an effectively computable constant C depending only on k, l and
the roots of Tk(x), Tl(x) such that

(1) |n|, |m| < C provided k and l are even,
(2) 0 ≤ n, |m| < C provided k is odd and l is even.
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A consequence of Lemma 4.1 is that for even k and small enough n the consecu-

tive terms of (F
(k)
−n )∞n=0 have opposite signs. Hence allowing k-generalized Fibonacci

numbers with negative indices it is more natural (and general) to consider (4.2) in-
stead of (3.2).

Proof. We detail only the proof of (1), because the proof of (2) is similar, even
simpler. We distinguish three cases according the signs of n and m.

Case i: m,n ≥ 0. For k 6= l the statement, even in much stronger form, was

proved by Marques [17]. If k = l then as F
(k)
1 , F

(k)
2 = 1 and (F

(k)
n )∞n=2 is strict

monotone increasing, the assertion is obviously true.
Case ii: m ≥ 0, n < 0. Let αk1, . . . , αkk, and αl1, . . . , αll be the roots of Tk(x)

and Tl(x) respectively. Order them as in Theorem 2.5. Then both (F
(k)
m )∞m=0 and

(±F (l)
−n)∞n=1 are linear recursive sequences with the dominating terms gk(αk1)αm−1

k1

and ±gl(αll)αn−1
ll . A simple adaptation of the argument of Marques [17], p.460

shows that αk1 and αll are multiplicatively independent. Thus by the Théorème
of Mignotte [19] the equation (3.2) has only finitely many effectively computable
solutions.

Case iii: m,n ≤ 0. Using the notation of Case ii we see that the sequences

(F
(k)
−m)∞m=1 and (±F (l)

−n)∞n=1 are linear recursive sequences with the dominating terms

gk(αkk)αm−1
kk and ±gl(αll)αn−1

ll . The numbers αkk and αll are again multiplica-
tively independent, which allows us to use Mignotte’s result. �

Gómez and Luca [4] established all solutions of T
(3)
m = 0,m ∈ Z, i.e., all zero

terms in the Tribonacci sequence. Bravo et al. [5] proved that there are only eight
integers, which appear at least twice in the Tribonacci sequence, and computed all

solutions of T
(3)
m = c in the remaining eight cases. Here we prove

Theorem 4.3. Let k ≥ 2 and c ∈ Z. Then the equation

(4.3) F (k)
m = c

has only finitely many effectively computable solutions m ∈ Z. If c is large enough
then (4.3) has at most one solution.

Proof. For m ≥ 0 the assertion follows immediately from (1.1). In the sequel we
assume m < 0, and distinguish two cases according the parity of k. We order the
zeros of Tk(x) as α1 > |α2| ≥ · · · ≥ |αk|.

Case I: k even. Then, by Theorem 2.4 |αk| < |αj |, j = 1, . . . , k − 1, i.e.,
|αk|−1 > |αj |−1, j = 1, . . . , k − 1. Hence by Lemma 4.1 we have

|gk(αk)αmk | − c1|αδmk | ≤ |F (k)
m | ≤ |gk(αk)αmk |+ c1|αδmk |

with simply computable constants c1 > 0, and δ = log |αk−1|
log |αk| < 1. The assertions

follow.
Case II: k odd. In this case αk is a non-real complex number, i.e., αk−1 = ᾱk

but by Theorem 2.1 |αk| < |αj |, j = 1, . . . , k − 2. As we proved above αk−1/αk is
not a root of unity, hence by Corollary 3.7 of Shorey and Tijdeman [25] we have

|gk(αk)αmk + gk(αk−1)αmk−1| ≥ |αk|m exp(−c2 log |m|),

provided |m| ≥ c3 with effectively computable constants c2, c3 > 0. This together
with (1.2) implies the assertion. �
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5. On the 4-generalized Fibonacci numbers

In the former sections we proved non-effective and effective results on k-generalized
Fibonacci numbers extending their definition to negative indices. Our results are far
from the exactness of the above cited Theorems of Marques [17] or Bravo, Gómez
and Luca [4]. The reason is that inequality (4.1) is much weaker than (1.1). The
aim of this section is to show that already this weaker inequality allows us to solve
completely diophantine equations related to 4-generalized Fibonacci numbers.

Theorem 5.1. If (n,m) ∈ Z2 is a solution of the equation

(5.1) F (4)
m = ±F (4)

n

then max{|n|, |m|} ≤ 22. The exact values are given in Tables 1. and 2.

To prove this result we need a deep tool of transcendental number theory, a lower
bound for linear forms in logarithms of algebraic numbers. The first such bound
was proved by A. Baker [2], but we use here a recent variant of Matveev [18], which
is more convenient for the numerical investigations.

For an algebraic number α denotes akx
k + ak−1x

k−1 + · · · + a0 ∈ Z[x], ak > 0
its minimal polynomial and by α = α(1), . . . , α(k) its conjugates. The absolute
logarithmic or Weil height of α is

h(α) =
1

k

(
log ak +

k∑
i=1

log(max{|α(i)|, 1}

)
.

With this notation Matveev [18] proved

Theorem 5.2. Let K be a number field of degree k over Q, γ1, . . . , γt be positive
real numbers of K, and b1, . . . , bt rational integers. Put

B ≥ max{|b1|, . . . , |bt|}

and

Λ = γb11 · . . . · γ
bt
t − 1.

Let A1, . . . , At be real numbers such that

Ai ≥ max{Dh(γi), | log γi|, 0.16} i = 1, . . . , t.

Then, assuming that Λ 6= 0, we have

|Λ| > exp(−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At).

Proof of Theorem 5.1 Until the proof of the upper bound for |n| in Case iii.
we follow the proof of Theorem 4.2 with k = l = 4. We again distinguish three cases
according the signs of n and m, but investigate them in different order depending
on the difficulty of the proof. In the sequel α1, . . . , α4 will denote the roots of T4(x)
ordered such that α1 > 1 > |α2| = |α3| > |α4|. Notice that α2 and α3 are conjugate
comlex numbers and α4 < 0 is real.

Case i: m,n ≥ 0 was handled in Theorem 4.2.

Case ii: m,n < 0. This case needs only elementary consideration. As F
(4)
0 =

F
(4)
−1 = F

(4)
−2 = 0 we may assume n < m < −1 without loss of generality. Hence
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|α4|m > |αj |m and similarly |α4|m > |αj |m for j = 1, 2, 3. Using the Binet’ formula
(1.2) we rewrite (5.1) in the form

g4(α4)αm−1
4 ± g4(α4)αn−1

4 =

3∑
i=1

(
g4(αi)α

m−1
i ± g4(αi)α

n−1
i

)
g4(α4)αm−1

4

(
1± αn−m4

)
=

3∑
i=1

g4(αi)α
m−1
i

(
1± αn−mi

)
.

Dividing the last equation by g4(α4)αm−1
4 we get

(5.2) 1± αn−m4 =

3∑
i=1

g4(αi)

g4(α4)

(
αi
α4

)m−1 (
1± αn−mi

)
.

Now taking into account that m ≤ −2 thus |α2

α4
|m−1 = |α3

α4
|m−1 < 0.85, |α4| < α1,

and |αn−m2 | = |αn−m3 | > 1 > |αn−m1 | we get

|α4|n−m − 1 ≤ |1± αn−m4 | < 1.7

∣∣∣∣g4(α2)

g4(α4)

∣∣∣∣ (|α2|n−m + 1) + 2

∣∣∣∣g4(α1)

g4(α4)

∣∣∣∣ .
This implies after simply computation

|α4|n−m < 1.65 · |α2|n−m + 10.23,

which is impossible if n−m < −15.
Using that −15 ≤ n−m ≤ −1 equation (5.2) implies

0.29 · |α4|m−1 < |1± αn−m4 ||α4|m−1 =

∣∣∣∣∣
3∑
i=1

g4(αi)

g4(α4)
αm−1
i

(
1± αn−mi

)∣∣∣∣∣
< 41.2 · |α2|m−1 + 7.6,

which is impossible if m − 1 < −90. Thus m ≥ −89 and n ≥ −15 + m ≥ −104.

Computing F 4
n ,−1 ≥ n ≥ −104 we obtain that F

(4)
n = ±c has more than one

solutions only for the values given in Table 1.

c 0 1 8
-n 1,2,3,5,7,11 4,5,10,15 13,16

Table 1

Case iii: m ≥ 0, n < 0. Now F
(4)
m =

∑4
j=1 g4(αj)α

m
j , which is, by (1.1) asymp-

totically equal to its dominating term g4(α1)αm1 . For n < 0 the roles of α1 and α4

interchange, F
(4)
n =

∑4
j=1 g4(αj)α

n
j admits the dominating term g4(α4)αn4 , but its

dominance is disturbed by the fluctuation of g4(α2)αn2 + g4(α3)αn3 . Moreover α1

and α4 are multiplicatively independent, i.e, to solve (5.1) we have to use tools of
transcendental number theory.

First we actualize Lemma 4.1 and obtain δ = 0.786, c1 = 0.92, thus

|F (4)
n − g4(α4)αn−1

4 | < 0.92 · |α0.786n
4 |.

From this we easily conclude

|F (4)
n | > 0.193·|α4|n−0.92·|α4|0.786n = 0.193·|α4|0.786n(|α4|0.214n−4.767) > 0.096|α4|0.786n,

provided n ≥ −42. We proved in Case ii that apart the values of Table 1 all
integers appear at most once in the negative 4-generalized Fibonacci sequence. On



ON k-GENERALIZED FIBONACCI NUMBERS 11

the other hand the positive branch of the 4-generalized Fibonacci sequence is strict
monotone increasing thus it is a simple task to check that the only solutions of
(5.1) with n > −225 are given in Table 2.

c 1 2 4 8 56
m 0,1 2 3 5 8
-n 4,5,10,15 8 12 13,16 22

Table 2

Hence in the sequel we may assume n ≤ −225, thus |F (4)
n | > 0.096·|α4|0.786n. On

the other hand (1.1) with k = 4 implies |F (4)
m | < g4(α1)αm−1

1 + 1
2 < 0.567αm−1

1 + 1
2 .

Hence, if n,m ∈ Z, n ≤ −50,m > 0 is a solution of (5.1) then −n > m.
The equality (5.1) implies∣∣g4(α1)αm−1

1 ∓ g4(α4)αn−1
4

∣∣ =
∣∣∣F (4)
m − g4(α1)αm−1

1 ± F (4)
n ∓ g4(α4)αn−1

4

∣∣∣
< 0.92 · |α4|0.786n + 1/2 < |α4|0.786n.

We divide the last inequality by ±g4(α4)αn−1
4 and obtain

(5.3)

∣∣∣∣±g4(α1)

g4(α4)
αm−1

1 α−n+1
4 − 1

∣∣∣∣ < ∣∣∣∣ α4

g4(α4)

∣∣∣∣ |α4|−0.214n < exp(0.0546n+ 1.648).

We apply Theorem 5.2 with the choices t = 3, γ1 = ± g4(α1)
g4(α4) , γ2 = α1, γ3 =

α4, b1 = 1, b2 = m − 1, b3 = n − 1. Thus Λ = ± g4(α1)
g4(α4)α

m−1
1 α−n+1

4 , which is 6= 1

by Marques [17], pp. 460, 461. Plainly K = Q(α1, α4), hence D ≤ 12, and as
−n > m ≥ 0 we have B = |n| + 1. We still have to establish A1, A2, A3. Clearly
h(γ2) = h(γ3) = (log(α1) − log(−α4))/4 < 0.228, thus A2 = A3 = 2.736 is an
allowed choice. Again by Marques [17] (p. 460) we have h(γ1) ≤ 4 log 3, thus
A1 = 52.74 > 48 log 3 is a correct choice. Summarizing we get

(5.4) |Λ− 1| > −2.84 · 1016 log |n|.

Comparing (5.4) and (5.3) we get the inequality

0.0546|n| − 1.648 < 2.84 · 1016 log |n|,

which is equivalent to

|n| < 5.2015 · 1017 log |n|+ 30.1832.

A straightforward computation shows that this inequality is impossible, if |n| >
2.32 · 1019.

Reduction of the bound for |n|. The just proved upper bound for |n| is
huge, but, fortunately, the Baker-Davenport method [3] enables us to reduce it
considerable. Since its discovery fifty years ago it was used plenty of times and was
successful in all known cases. As n ≤ −225 we have |Λ− 1| < 0.338, thus∣∣∣∣(n− 1) log |α4| − (m− 1) logα1 − log

g4(α1)

g4(α4)

∣∣∣∣ = log |Λ| < 6.33 · |α4|−0.214n

by Lemma 2.2 of de Weger [29]. After division by logα1 we get

(5.5)

∣∣∣∣(n− 1)
log |α4|
logα1

− (m− 1)− log
g4(α1)

g4(α4)
/ logα1

∣∣∣∣ < 9.65 · |α4|−0.214n.
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We apply to this inequality the first assertion of Lemma 5 of Dujella and Pethő [9]
in slightly modified form

Lemma 5.3. Suppose that A,B,M > 0 and M ∈ Z. Let p/q be the convergent of
the continued fraction expansion of κ such that q > M and let ε = ‖µq‖−M · ‖κq‖,
where ‖.‖ denotes the distance from the nearest integer. If ε > 0, then there is no
solution of the inequality

|nκ−m+ µ| < AB−n

in integers m and n with
log(Aq/ε)

logB
≤ n ≤M.

Proof. The same as the proof of Lemma 5 of [9]. �

We apply Lemma 5.3 with the straightforward choices

κ = − log |α4|
logα1

, µ = − log
g4(α1)

g4(α4)
/ logα1,

M = 1020 > |n|+ 1, B = |α4|−0.214 = 1.056, A = 9.65/B = 9.14.

Notice that −n+ 1 = |n|+ 1 ≥ 226.
We have to compute the continued fraction expansion of κ so far that the de-

nominator of the last, say k0-th, convergent is larger than M . The denominator of

the k-th convergent of any continued fraction is bounded below by
(

1+
√

5
2

)k
, thus

we may take k0 = 95.
For safety we performed all computation with 100 decimal digits precision. Al-

ready the denominator of the 45th convergent - 66618036593827352256020 - was
larger than M . As the corresponding ε > 0.04 we conclude that (5.5) is impossible
if |n| > 1063. We repeat the above computation, but this time with M=1064. Now
already the denominator of the 8th convergent - 3336 - is larger than 1064, and as
the corresponding ε > 0.136 we obtain the new bound |n| ≤ 225. At the beginning
of the proof we tested that (5.1) has no solution below this bound, hence the proof
is complete. �

Acknowledgement I thank László Szalay for his valuable remarks, especially
pointing out an error, on an earlier version of this paper.

References

[1] J. Arkin, Convergence of the coefficients in the kth power of a power series, Fibonacci Quart,

11 (1973), 15-24.
[2] A. Baker, Linear forms in the logarithms of algebraic numbers. I. Mathematika 13 (1966),

204-216.
[3] A. Baker, and H. Davenport, The equations 3x2 − 2 = y2 and 8x2 − 7 = z2, Quart. J. Math.

Oxford Ser. 20 (1969), 129–137.
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