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ON THE DISTRIBUTION OF POLYNOMIALS WITH

BOUNDED ROOTS II. POLYNOMIALS WITH

INTEGER COEFFICIENTS
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ABSTRACT. In the present paper we give certain new type of statistical results

on the distribution of integral polynomial of given degree. The main feature of

our formula is that we can see clear distinction with respect to the signature of
polynomials. For e.g., we see that among certain polynomials in question, totally

real ones are very rare. Further we show that reducible polynomials are negligi-

ble in all formula. We derive asymptotic results of Pisot, Salem and expanding
polynomials which often appears as dilation constants of dynamical systems.
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1. Introduction

In the first part of this series of papers we investigated the distribution of
polynomials with real coefficients with zeroes inside the unit circle and with
given signature. In this second part, we show certain new type of statistical
results on the distribution of integral polynomial of given degree and signature,
as applications of part I [3].

We shall use several different counting methods in Z[X]. Their common fea-
ture is that the number of elements of Z[X] with given degree, d, and with some
parameter B, is finite. By abuse of terminology, we call B the ‘measure’ from
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ON THE DISTRIBUTION OF POLYNOMIALS WITH BOUNDED ROOTS II.

now on. The task is to estimate the finite number with respect to d,B as precise
as possible. We will consider in this paper solely monic polynomials.

Before explaining our results, we wish to review several known statistical
results on polynomials. There is a folklore belief that the irreducible polynomials
are the majority among Z[X]. Letting B the maximum of absolute values of
the coefficients, there are (2bBc + 1)d such polynomials. It was proved by B.L.
van der Waerden [21], that the proportion of reducible polynomials is small.
More precisely he proved that the frequency of reducible polynomials of degree
d = q + r, which split into factors of degrees q and r tends to B−q, if q < r and
to B−r logB, if q = r. Similar result is expected for all natural defined subsets
of Z[X].

The investigation of the distribution of Galois groups of integer polynomials
goes back to the beginning of the last century and has vast literature. It was
proved by K. Dörge [10] in 1925 that the natural density of polynomials with a
Galois group different from the symmetric group tends to zero. Later P.X. Gal-
lagher [13] proved that the number of the above polynomials is � Bd−1/2 logB.
We will not continue the history of this investigations, but refer to a recent paper
of D. Zywina [22].

Let P (X) ∈ Z[X] be a monic irreducible polynomial. Then the factor ring
Q[X]/(P (X)) is an algebraic number field of degree d. This correspondence is of
course not bijective, infinitely many polynomials generate an isomorphic number
field. A natural measure for a number field is its discriminant. The investigation
of the number of number fields with discriminant below a given bound has rich
history as well. The first non-trivial results in this direction were proved by H.
Davenport and H. Heilbronn [8, 9]. They were able to describe the distribution
of cubic number fields with discriminants at most B. Later their result was
generalized to higher degree fields with given signature and given Galois group
too. We do not go into details, but refer to the recent survey paper of H. Cohen
[5].

Similarly, the distribution of irreducible polynomials over finite fields with
given degree is well understood, see e.g. [18, 14].

Now we explain the results in the present paper. Firstly, we show asymptotic
results on the number of polynomials of given degree and signature with the
maximum of absolute value of the zeroes of P (X), denoted by |P |. This measure
is widely used, see again [18] or any other computer algebra book. Secondly we
will give similar type of asymptotic results for minimal polynomials of Pisot and
Salem numbers, but measured by its ‘trace’, the coefficient of the second highest
degree times −1. Since the other conjugates have modulus not greater than one,
the trace gives an alternative natural measure than |P | to see its asymptotic
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behavior. It is well known that Pisot and Salem number often appears as dilation
constants of self-inducing structures in dynamical systems. Thirdly we show
an asymptotic result for expanding polynomials measured by their ‘norm’, the
constant term of the polynomial. Note that the norm in this case coincides the
Mahler measure, the modulus of the product of the roots outside the unit circle.
Thus this choice of measure is again natural. Within the framework of Part I, we
can not only considerably generalize [1, 2, 17], but also making more precise our
earlier results by improving the error term of the asymptotic formula. Finally
we prove in all relevant cases that the number of reducible polynomials in the
classes is at most as large as the error term we derived. Thus our results justify
the above mentioned folklore expectation.

For a fixed measure the exponent of B in the main terms is the same for
the different signature classes. However the constants depend on the signature.
Thus the frequency of a signature depends essentially on the quotient of these
constants. It follows from Theorem 6.1 of Part I [3] that the frequency of the
totally real signature is very small, it is asymptotically 2−d2/2. If the polynomials
would distribute uniformly among the signature classes, then each would have
frequency 2/d.

2. Preliminary results

Let d be a positive integer. If P (X) ∈ R[X] is of degree d, then it has r
real and s pair of non-real zeros, hence d = r + 2s. The pair (r, s) is called the
signature of P . We have obviously 0 ≤ s ≤ bd/2c. As d and s uniquely determine
r we will omit this parameter and call simply s the signature of P . Each set of
polynomials can be divided into bd/2c + 1 disjoint classes according to their
signatures. Our results and proofs will be true not only for these classes but also
for their union, i.e., for the original set as well. To simplify the description, we
introduce the ”signature” −1, which means the union of the classes.

Let B > 0, which is typically a big integer or a real number. With the
above convention on the signatures denote E(s)

d (B), s = −1, . . . , bd/2c the set
of vectors (pd−1, . . . , p0) ∈ Rd such that the corresponding polynomial P (X) =
xd + pd−1x

d−1 + · · ·+ p0 satisfy the inequality |P | ≤ B. For B = 1 we set1E(s)
d .

The d-dimensional Lebesgue measure λd(E(s)
d ) will be denoted by v(s)

d . Although

1In Part I the sets E(−1)
d (B) and E(−1)

d were denoted by Ed(B) and Ed respectively. We apol-

ogize for this small difference, but we were not able to find a uniform notation.

2
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it is a’priori not clear, but these numbers exist. The first theorem was proved by
A.T. Fam [11].

Theorem 2.1. Let d ≥ 1 then

v
(−1)
d =


22m2

m∏
j=1

(j − 1)!4

(2j − 1)!2
, if d = 2m,

22m2+2m+1

m∏
j=1

j!2(j − 1)!2

(2j − 1)!(2j + 1)!
, if d = 2m+ 1.

(1)

For s ≥ 0 we do not have such an explicit form, but we proved in [3] that
they can be computed by multiple integrals:

Theorem 2.2. Let d ≥ 1, 0 ≤ s ≤ bd/2c and r = d − 2s. Then the set E(s)
d is

Riemann measurable. Let Rk(x) = x2 − yjx+ zj , j = 1, . . . , s and put

Dr,s = [−1, 1]r × [0, 1]× [−2
√
z1, 2

√
z1]× · · · × [0, 1]× [−2

√
zs, 2

√
zs].

Then we have

v
(s)
d = λd(E(s)

d ) =
1
r!s!

∫
Dr,s

|∆r|∆s∆r,s dX,

where

∆r =
∏

1≤j,k≤r

(xj − xk),

∆s =
∏

1≤j,k≤r

Resx(Rj(x), Rk(x)),

∆r,s =
r∏

j=1

s∏
k=1

Rk(xj)

and dX = dx1 . . . dxrdy1dz1 . . . dysdzs.

The next theorem was proved for s = −1 by I. Schur [20], see also A.T. Fam
and J.S. Meditsch [12], and for 0 ≤ s ≤ bd/2c by ourself [3].

Theorem 2.3. Let d ≥ 1 and −1 ≤ s ≤ bd/2c. Then the boundary of E(s)
d is

the union of finitely many algebraic surfaces.

Now we formulate an easy lemma, which connects E(s)
d and E(s)

d (B). It ap-
peared in a slightly different form as Lemma 4.2 in [2], but the present one is
more appropriate for our purposes.
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Lemma 2.1. Let d ≥ 1 and −1 ≤ s ≤ bd/2c. Then we have

E(s)
d (B) = diag(B, . . . , Bd)E(s)

d , (2)

where diag(v1, . . . , vd) denotes the d-dimensional diagonal matrix, whose entries
are v1, . . . , vd.

Moreover
λd(E(s)

d (B)) = Bd(d+1)/2λd(E(s)
d ). (3)

P r o o f. It is clear that the second assertion is an immediate consequence of the
first one. To prove the first assertion, remark that if the absolute value of the
roots of P (X) = Xd + pd−1X

d−1 + · · · + p0 are at most one, then the roots of
PB(X) = Xd + pd−1

B Xd−1 + · · ·+ p0
Bd are of absolute value at most B. Further, it

is obvious that the signature of P and PB is the same. Thus (pd−1, . . . , p0) ∈ E(s)
d

if and only if (pd−1
B , . . . , p0

Bd ) ∈ E(s)
d (B). �

Later we will estimate the number of elements of bounded subsets of Z[X]. We
will transform such problems into lattice point counting problems in bounded
regions. For our purpose the following result of H. Davenport was appropriate.

Lemma 2.2 ([7, Theorem]). Let R be a closed bounded region in the n dimen-
sional space Rn and let N(R) and V(R) denote the number of points with integral
coordinates in R and the volume of R, respectively. Suppose that:

• Any line parallel to one of the n coordinate axes intersects R in a set of
points which, if not empty, consists of at most h intervals.

• The same is true (with m in place of n) for any of the m dimensional
regions obtained by projecting R on one of the coordinate spaces defined by
equating a selection of n−m of the coordinates to zero; and this condition
is satisfied for all m from 1 to n− 1.

Then

|N(R)−V(R)| ≤
n−1∑
m=0

hn−mVm,

where Vm is the sum of the m dimensional volumes of the projections of R on
the various coordinate spaces obtained by equating any n−m coordinates to zero,
and V0 = 1 by convention.

The assumptions of Lemma 2.2 are satisfied, if for example the boundary of R
is the union of finitely many algebraic surfaces. We will apply this lemma in case
when R = E(s)

d (B) or some transformation of it. By Theorem 2.3 the boundary
of E(s)

d is the finite union of algebraic surfaces, then, by Lemma 2.1 the same
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holds for E(s)
d (B). We obtain the volume of E(s)

d (B) from Theorems 2.1, 2.2 and
Lemma 2.1. If we are able to estimate the remaining term precise enough, then
we obtain the desired result. In the next sections we perform this program.

3. The main distribution results

In this section we study the distribution of polynomials with integer coeffi-
cients and with bounded roots. For d ≥ 1 and 0 ≤ s ≤ bd/2c let N (s)

d (B) denote
the number of P (X) ∈ Z[X], which are monic, of degree d, with signature s and
with |P | < B. By our convention N

(−1)
d (B) =

∑bd/2c
s=0 N

(s)
d (B). Our aim is to

prove

Theorem 3.1. Let d ≥ 1, −1 ≤ s ≤ bd/2c and B > 0. Then there exists a
constant c1 depending only on s, d such that

|N (s)
d (B)− v

(s)
d Bd(d+1)/2| ≤ c1B

d(d+1)/2−1.

P r o o f. In the proof of Lemma 2.1 we introduced already the mapping ψB :
E(s)

d 7→ E(s)
d (B) defined as ψ(z1, . . . , zd) = (z1B, . . . , zdB

d). This is a continuous
and bijective mapping, which transforms algebraic relations into similar ones.
This implies together with Lemma 2.3 that the boundary of E(s)

d (B) is the union
of finitely many algebraic surfaces.

Let d, s and B be fixed. By Lemma 2.1 the volume of E(s)
d (B) is v(s)

d Bd(d+1)/2.
It is clear that P (X) ∈ Z[X] is monic, of degree d, with signature s and with
|P | < B if and only if the vector of its coefficients belongs to E(s)

d (B). Thus
N

(s)
d (B) = |E(s)

d (B) ∩ Zd|, i.e., the number of lattice points in E(s)
d (B).

As for this set the assumptions of Lemma 2.2 are satisfied we obtain

|N (s)
d (B)− v

(s)
d Bd(d+1)/2| ≤

d−1∑
m=0

hd−mVm,

where h denotes the maximal number of intervals, which cover the intersection
of E(s)

d (B) with any line parallel to one of the d coordinate axis. This number is
finite and is independent from B.

Further Vm is the sum of the m dimensional volumes of the projections of
E(s)

d (B) on the various coordinate spaces obtained by equating any d−m coor-
dinates to zero, and V0 = 1 by convention. Let v ∈ E(s)

d ⊆ E(−1)
d and Pv(X) the

corresponding polynomial to v. Then, as all roots of the Pv(X) belong to the
unit circle, we have the trivial bound |vm| < 2d,m = 1, . . . , d. Thus the above
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described projections of E(s)
d are bounded. After applying ψB to E(s)

d we see that
the length of the projection of E(s)

d (B) to any line parallel to the m-th coordinate
axis is covered by an interval of length at most O(Bm),m = 1, . . . , d− 1. Thus

Vm ≤ O(Bd(d+1)/2−(1+···+m)) ≤ O(Bd(d+1)/2−1).

The theorem is proved. �

The next theorem gives a similar asymptotic formula for the number of irre-
ducible polynomials P (X) ∈ Z[X] of degree d, signature s and with |P | ≤ B.
This number is denoted by I

(s)
d (B). The theorem is a quantitative version of

Corollary of [19] on p. 47.

Theorem 3.2. Let d ≥ 1, −1 ≤ s ≤ bd/2c and B > 0. Then there exists a
constant c2 depending only on s, d such that

|I(s)
d (B)− v

(s)
d Bd(d+1)/2| ≤ c2B

d(d+1)/2−1.

P r o o f. It is clear that we obtain the set of irreducible polynomials with the
required properties if we remove from all polynomials the reducible ones. If a
polynomial of degree d is reducible then it has a factor of degree in the interval
[dd/2e, d − 1]. Notice that the signature of the divisors may differ from the
dividend, which we have to take into account. Thus

I
(s)
d (B) ≥ N

(s)
d (B)−

 d−1∑
j=dd/2e

Nj(B)Nd−j(B)

 .

Using the result of Theorem 3.1 we obtain

I
(s)
d (B) ≥ v

(s)
d Bd(d+1)/2 −

 d−1∑
j=dd/2e

v
(−1)
j Bj(j+1)/2v

(−1)
d−j B

(d−j)(d−j+1)/2


+ O(Bd(d+1)/2−1).

Now
Bj(j+1)/2B(d−j)(d−j+1)/2 = Bj(j+1)/2+(d−j)(d−j+1)/2

and we have the estimation
(d− j)(d− j + 1)

2
+
j(j + 1)

2
=
d(d+ 1)− 2j(d− j)

2
≤ d(d+ 1)

2
− 1

for the exponents. Thus

I
(s)
d (B) ≥ v

(s)
d Bd(d+1)/2 − dO(Bd(d+1)/2−1) +O(Bd(d+1)/2−1)

= v
(s)
d Bd(d+1)/2 −O(Bd(d+1)/2−1).
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The lower bound

I
(s)
d (B) ≥ v

(s)
d Bd(d+1)/2 +O(Bd(d+1)/2−1)

is an immediate consequence of Theorem 3.1. Thus the assertion is completely
proved. �

The following corollary is an immediate consequence of Theorems 3.1 and 3.2.

Corollary 3.1. Let d ≥ 1, −1 ≤ s ≤ bd/2c and B > 0. Then the number
of reducible polynomials P (X) ∈ Z[X] of degree d, signature s and such that
|P | ≤ B is O(Bd(d+1)/2−1).

This means that there are much more irreducible polynomials as reducible
ones in each signature classes. Theorems 3.1 and 3.2 show that N (s)

d (B) and
I
(s)
d (B) have for each s the same growth rate in B. Hence the frequency of the

appearance of a signature s depends on the volume v(s)
d . We quantify this by the

next corollary.

Corollary 3.2. Let d ≥ 1, 0 ≤ s ≤ bd/2c and B > 0. Then

N
(s)
d (B)

N
(−1)
d (B)

=
v
(s)
d

v
(−1)
d

+O(B−1).

In Part I we studied the quotients v
(s)
d

v
(−1)
d

. We proved among others that they

are rational numbers, Theorem 5.1. In the case s = 0 we were able to show
that the size of this quotient is 2−d2/2, Theorem 6.1. This means that totally
real polynomials are extremely rare. On the other hand for even d, in the same

theorem, we obtained the conditional bound v
(d/2)
d

v
(−1)
d

∼ cd−3/8, i.e. totally com-

plex polynomials has much bigger frequency as the average. It is an interesting

problem to describe the asymptotic behavior v
(s)
d

v
(−1)
d

for other s’s.

4. Distribution of polynomials with a dominating root

Let d, s be as earlier, a ≥ 1 be fixed and B ∈ Z. Denote by B(s)
d,a(B) the set of

polynomials P (X) ∈ Z[X] with trace B, signature s and such that the absolute
value of all but one of its zeroes is at most a. The set containing the irreducible
elements of B(s)

d,a(B) will be denoted by B(s),irr
d,a (B). From the correspondence

P (X) with P (−X), we easily have |B(s)
d,a(B)| = |B(s)

d,a(−B)|, i.e., we may assume

7
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B > 0 without loss of generality. Taking a = 1 and s = −1 we obtain the eminent
example of this concept, the set of Pisot and Salem polynomials.

A Pisot number is a real algebraic number greater than one whose all other
conjugates have modulus less than one. A Salem number is a real number greater
than one whose other conjugates have modulus not greater than one and at least
one conjugate has modulus exactly one. A Pisot (resp. Salem) polynomial is the
minimal polynomial of a Pisot (resp. Salem) number.

In S. Akiyama et al. [2] it was proved∣∣∣|B(−1)
d,1 (B)| − v

(−1)
d−1 B

d−1
∣∣∣ = O(Bd−1−1/(d−1)).

A new embedding of B(s)
d,a(B) into a d − 1-dimensional lattice together with

Theorem 2.2, especially the case s = 0, allow us to estimate the number of
Salem polynomials, hence the Pisot polynomials as well. The main result of this
paragraph is

Theorem 4.1. Let d, s,B be integers, a ∈ R such that d,B ≥ 1, a > 0 and
−1 ≤ s ≤ bd/2c. Then∣∣∣|B(s)

d,a(B)| − v
(s)
d−1a

d(d+1)/2Bd−1
∣∣∣ = O(Bd−2),

where the constant in O depends only on d, s, a.

We obtain similar result for irreducible polynomials.

Theorem 4.2. Let d, s, aB as in Theorem 4.1. Then∣∣∣|B(s),irr
d,a (B)| − v

(s)
d−1a

d(d+1)/2Bd−1
∣∣∣ = O(Bd−2),

where the constant in O depends only on d, s, a.

Before proving these theorems we formulate their consequences for Pisot and
Salem polynomials. You find a good overview on these polynomials and their
applications in the book of M.J. Bertin et al. [4]. It is well known that a Salem
polynomial has to be reciprocal and its degree is even. Let d ≥ 1, B be inte-
gers. Denote S2d(B) the number of Salem polynomials P of degree 2d and with
Tr(P ) = B. By the explanation of the beginning of this section we may re-
strict ourselves to the case B > 0. Finally the number of irreducible polynomials
among the Salem polynomials will be denoted by Sirr

2d (B).

Corollary 4.1. With the above notations we have∣∣∣S2d(B)− v
(0)
d−12

d(d+1)/2Bd−1
∣∣∣ = O(Bd−2)

and ∣∣∣Sirr
2d (B)− v

(0)
d−12

d(d+1)/2Bd−1
∣∣∣ = O(Bd−2),
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where the constants in O depend only on the degree 2d.

Finally denote P (s)
d (B) the number of Pisot polynomials of degree d, with

signature s and with trace B. We may assume B > 0 again. As Pisot polynomials
always have real zeroes we had to modify the range of signature as follows: if d
is odd, then −1 ≤ s ≤ (d− 1)/2 and if d is even then −1 ≤ s ≤ d/2− 1. Notice
finally that Pisot polynomials are always irreducible, thus we do not need to
introduce extra counting functions for them.

Corollary 4.2. With the above notations we have∣∣∣P (s)
d (B)− v

(s)
d−1B

d−1
∣∣∣ = O(Bd−2),

where the O constant depends only on d.

Now we turn to the proof of the statements.

Proof of Theorem 4.1. Let M be a positive integer and A(s)
d,a(M) be the set

of vectors (b0, b1, . . . , bd−2) ∈ Rd−1 such that all but one roots of xd −Mxd−1 −
bd−2x

d−2 − · · · − b0 have modulus not greater than a. From the formula

(xd−1 + rd−2x
d−2 + · · ·+ r0)(x−M − rd−2) = xd−Mxd−1− bd−2x

d−2−· · ·− b0.

we define a map (r0, . . . , rd−2) 7→ (b0, . . . , bd−2). More explicitly, for a fixed
integers d, s,M and a ∈ R we define ψM : E(s)

d−1(a) 7→ A(s)
d,a(M) by

ψM (r0, . . . , rd−2) = (rd−2(M+rd−2)−rd−3, . . . , r1(M+rd−2)−r0, r0(M+rd−2)).

This is obviously a continuous surjective map. By the uniqueness of the poly-
nomial factorization, it is even injective when M > da, because the additional
root M + rd−2 has modulus larger than a. Thus for M > da we have

|B(s)
d,a(M)| = |ψM (E(s)

d−1(a)) ∩ Zd−1|.

As ψM is an algebraic mapping and the boundary of E(s)
d−1(a) is the union of

finitely many algebraic surfaces, the same is true for ψM (E(s)
d−1(a)).

To apply Lemma 2.2 we have to compute the volume of ψM (E(s)
d−1(a)). Jaco-

bian computation leads us to a formula:

λd−1(ψM (E(s)
d−1(a))) =

∫
E(s)

d−1(a)

|det(J1)| dr0 . . . drd−2

9
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with

J1 =


0 . . . 0 −1 M + 2rd−2

0 0 . . . −1 M + rd−2 rd−3

. . . . . .
−1 M + rd−2 0 . . . 0 r1

M + rd−2 0 0 . . . 0 r0

 .

Obviously det(J1) is a monic polynomial in M of degree d − 1 and such that
its other coefficients are polynomials in r0, . . . , rd−2, i.e. they are bounded in
absolute value by some polynomial in a. Thus

λd−1(ψM (E(s)
d−1(a))) = Md−1

∫
E(s)

d−1(a)

dr0 . . . drd−2

+ O

d−2∑
j=0

M j

∫
E(s)

d−1(a)

pj(r0, . . . , rd−2) dr0 . . . drd−2


= λd−1((E)(s)d−1(a))M

d−1 +O(Md−2)

= v
(s)
d−1a

d(d+1)/2Md−1 +O(Md−2).

In the last step we used Lemma 2.1. From here on we may repeat the proof
of Theorem 3.1 because the assumptions of Lemma 2.2 hold for ψB(E(s)

d−1(a)).
Finally we obtain

|B(s)
d,a(B)| = v

(s)
d−1a

d(d+1)/2Bd−1 +O(Bd−2).

2

Proof of Theorem 4.2. Like in the proof of Theorem 3.2 we count the
number of reducible polynomials in B(s)

d,a(B). We assume that B > ad. Let

P (X) ∈ B(s)
d,a(B) be reducible and denote β its dominating root, which exists

by the proof of the last theorem. There exist Q(X), R(X) ∈ Z[X] such that
d− 1 ≥ degQ ≥ degR ≥ 1 and P (X) = Q(X)R(X). It is clear that β can be a
zero only one of Q and R, the zeroes of the other factor are bounded in absolute
value by a. Using the estimates of Theorems 3.1 and 4.1 the number of reducible
elements in B(s)

d,a(B) is bounded by

d−1∑
m=bd/2c

v
(−1)
m−1a

m(m+1)/2Bm−1v
(−1)
d−ma

(d−m)(d−m+1)/2 +O(Bd−3)

= O(Bd−2),

10
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where the constant in O depends only on d and a. Combining this estimate with
the result of Theorem 4.1 we complete the proof. 2

Now we turn to the proof of the Corollaries.
Proof of Corollary 4.1 It is well known, see e.g. [4, 15], that the degree of a

Salem polynomial is even, it has two real roots one of which is larger, the other
is less then one and all others are non-real complex numbers, lying on the unit
circle. Moreover they are reciprocal polynomials, i.e., P (X) = XdP (1/X). Let
B be an integer and assume that P (X) is a Salem polynomial of degree 2d and
with trace B. Let β denote the dominating root of P (X).

Dividing P (X) byXd it is clear that the result is a polynomial in y = X+1/X
with integer coefficients of degree d. Denote it by Q(y). This has only real roots,
i.e. s = 0, and its trace is B. If γ denotes a zero of P (X) then γ + 1/γ is a zero
of Q(y). Moreover if γ 6= β, 1/β then |γ + 1/γ| ≤ 2. Thus

S2d(B) = |B(0)
d,2(B)| and Sirr

2d (B) = |B(0),irr
d,2 (B)|

and the statements follow immediately from Theorems 4.1 and 4.2. 2

Proof of Corollary 4.2 Let B be a fixed integer. It is clear that if P (X) =
xd −Bxd−1 + pd−2x

d−2 + · · ·+ p0 ∈ Z[X] is such that all but one of its roots lie
in the unit circle then it is a Pisot or Salem polynomial. Since the contribution
of Salem polynomial is by Corollary 4.1 much smaller we obtain the result.

5. Distribution of expanding polynomials

A polynomial is called expanding, if its zeroes lie outside the unit circle. There
are only finitely many expanding polynomials with integer coefficients of degree
d and with fixed constant term B. By the argument of the beginning of the last
section we may assume B > 0. Denoting this set by Cd(B) it was proved S.
Akiyama et al. [1] that

lim
B→∞

|Cd(B)|
Bd−1

= v
(−1)
d−1 .

Later M. Madritsch and A. Pethő2 [17] was able to prove a formula with the
error term:

|Cd(B)| − v
(−1)
d−1 B

d−1 = O(Bd−1−1/d).

Of course Cd(B) can also be split in disjoint union of subsets according the
signature of the occurring polynomials. In accordance of the earlier definitions

2In both cited papers slightly different notation was used.

11
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these subsets will be denoted by C(s)
d (B),−1 ≤ s ≤ bd/2c. Combining the method

of [17] with Theorem 3.1 it is easy to prove

Theorem 5.1. With the above notations we have

|C(s)
d (B)| − v

(s)
d−1B

d−1 = O(Bd−1−1/d).

As we are not able to improve the error term, we omit the details.

Through this paper we showed that the number of irreducible polynomials is
at least one magnitude larger, than the reducible ones in the investigated sets.
This was neither done in [1] nor in [17]. At the end of this paper we fill this
gap. Let C(s),irr

d (B) denote the subset of C(s)
d (B), which contains its irreducible

elements.

Theorem 5.2. With the above notations we have

|C(s),irr
d (B)| − v

(s)
d−1B

d−1 = O(Bd−1−1/d).

P r o o f. As in the earlier proofs we estimate again the number of reducible ele-
ments in C(s)

d (B). Assume that P (X) is such an element and P (X) = Q(X)R(X)
with R,Q ∈ Z[X],degR,degQ ≥ 1. Of course both have to be expansive and
one of them has to be of degree at least bd/2c. Moreover, if the constant term
of Q is q, then it is a divisor of B and the constant term of R is B/q. Thus the
number of reducible polynomials is at most∑

q|B

d−1∑
m=bd/2c

|C(−1)
m (q)||C(−1)

d−m(B/q)|.

Each term of the inner sum can be estimated by Theorem 5.2 by O(Bd−2),
which implies the same estimate for the whole inner sum. Hence the number of
reducible polynomials in C(s)

d (B) is at most

d(B)O(Bd−2),

where d(B) denotes the number of divisors of B, which is o(B), see e.g. [16]
�
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