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1 Introduction and notations

Let Gn be a k-th (k ≥ 2) order linear recurrence sequence of integers defined

by initial terms G0, . . . , Gk−1 ∈ ZZ and by the relation

Gn+k = A1Gn+k−1 + . . . + AkGn

for n ≥ 0, where A1, . . . , Ak ∈ ZZ, Ak 6= 0. We give in this note a survey on

results concerning the mixed exponential-polynomial diophantine equation

Gn = P (x), (1)

where P (x) ∈ ZZ[x] denotes a polynomial of degree d ≥ 2. The ultimate goal is

to find all integers n, x for which (1) holds. It is often the case that, with the

currently available methods, we are unable to completely solve the problems,

though we are usually able to at least obtain an upper bound for the number

of solutions or to prove that the number of solutions is finite.
∗This paper was written when the author was a visiting professor at the Mathematical

Institute of the Technical University of Graz, Austria. Research partially supported by Hun-
garian National Foundation for Scientific Research Grant No 16741/95.
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In the case P (x) = 0 there were proven recently very important, general

finiteness theorems about (1) by Evertse [12] and by Schlickewei and van der

Poorten [44], moreover Schlickewei [43] was able to give an upper bound for

the number of solutions of (1). We mention also that Laurent [18, 19] and

Schlickewei and Schmidt [45] characterized completely in which cases two linear

recurrence sequences can have infinitely many common terms. As their method,

which is based on the subspace theorem of W.M. Schmidt [46] seems not ap-

plicable if the degree of P is at least two, we do not go into details, but refer to

the survey paper [13] and the book [47].

After this remark we introduce more notations. Let us denote CG(x) =

xk − A1x
k−1 − . . . − Ak the characteristic polynomial of Gn and α1, . . . , αh

the distinct zeros of CG with multiplicities m1, . . . , mh respectively. To exclude

discussions of special cases we assume in the sequel that Gn is non-degenerated,

i.e. if no quotients of distinct zeros of its characteristic polynomial are roots of

unity.

We will distinguish some sequences which occur frequently in the paper with

special notation. So Fn and Ln will denote the Fibonacci and Lucas sequences

respectively. They are defined by the parameters: k = 2, A1 = A2 = 1, F0 =

0, F1 = 1 and L0 = 2, L1 = 1.

In this part of the paper we first show mathematical problems, which lead to

equations of the form (1). Then the most frequently used elementary methods

are discussed. In the second part [29] we are dealing with methods based on

lower bounds for linear forms in logarithms of algebraic numbers.

2 Is (1) an organic problem?

In 1984 I gave a lecture in Cologne about perfect powers in second order linear

recurrences after which C. Meyer asked me: ’Is this a generic problem? Are

there mathematical problems which lead to this question?’ I was not able to

give him a satisfactory answer.
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There are of course diophantine equations which can be transformed more

or less directly to an equation of type (1). Consider for example

ax2q + bxqy + cy2 = d, (2)

with a, b, c, d ∈ ZZ and such that b2−4ac > 0 and not a square. Then we have to

deal with a generalized Pellian equation in unknowns xq and y. It is well-known

that the solutions of a Pellian equation can be given by terms of finitely many

second order linear recurrence sequences and we get equations of the form (1).

I will come back to (2) in [29]. I do not consider this example a generic one in

the sence of C. Meyer.

As far as I know the classical question: ’Are the only squares in the Fibonacci

sequence 0, 1 and 144?’ appeared at the first time in 1962 in the book of Ogilvy

[25]. Unfortunately, neither he nor A.P. Rollett, the proposer of problem 5080 in

the American Mathematical Monthly [42] write about its origin. J.H.E. Cohn1

does not know earlier references. He heard the problem in a lecture of Mordell,

but thinks that it was of considerable antiquity. The problem of Fibonacci

squares is a natural, but not a generic one.

In the following I will present examples, which show that (1) is indeed a

generic one. The first example is coming from the theory of elliptic curves. Let

IK denote an algebraic number field and consider the set E(IK) of those x, y ∈ IK

with y2 = x3+ax+b, where a, b ∈ IK together with the infinite point O. One can

define addition on E(IK), and we obtain by the Mordell-Weil’s theorem a finitely

generated Abelian group (see e.g. [49]). An often attacked problem in the theory

of elliptic curves is for a given class of number fields the characterization of the

possible torsion subgroups, i.e. for which integers n does there exist P ∈ E(IK)

such that [n]P = O. If IK is a cubic number field and the j-invariant of E(IK)

is an algebraic integer, then we proved with Weis and Zimmer [32, 28]

Theorem 2.1 Let IK be a cubic number field such that there exists over IK an
1e-mail from June 18, 1996
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elliptic curve with integer j-invariant and with torsion group isomorphic to ZZ5.

The field IK has this property if and only if there exist m, k ∈ ZZ, m ≥ 0, k ≥ −1

and ε2, ε3 ∈ {1,−1} such that IK = Q(η), where η is a zero of the polynomial

P3(z; k, m, ε2, ε3) = z3 + (−12 + ε25kGm)z2 + (10 + ε2ε35kGm−5ε3)z + 1,

and Gm = Fm or Lm, if k ≥ 0 and F5m, if k = −1.

From this theorem it follows that there exist infinitely many elliptic curves

over cubic number fields, which have a torsion group isomorphic to the cyclic

group of five elements. Restricting ourselves to cyclic cubic number fields the

situation changes. In this case the discriminant of P3(z) has to be a square and

we deal with the following diophantine equation:

D(ε25kGm, ε2ε35kGm−5ε3) = 2 (3)

where

D(u,w) = 15125 + 1464w − 3948u− 462uw + 24w2

−24uw2 + 244u2 + 20u2w + u2w2 − 4u3 − 4w3.

Thus, for fixed k, ε2, ε3, the left hand side of these equations are eighth order

linear recurrence sequences, which are of course related to the Fibonacci and

Lucas sequences. Using the methods of sections 3.1 and 3.2 we were able to

solve these equations completely and proved

Theorem 2.2 Let Gm be one of the sequences Fm, Lm, if k ≥ 0 or F5m, if

k = −1. Then the diophantine equation (3) has in the integers k ≥ −1,m, y ≥ 0

and ε2, ε3 ∈ {−1, 1} only the solutions

Fm : (1, 0, 65, 1, 1) (1, 4, 4075, 1,−1) (0, 3, 163,−1, 1)
Lm : (1, 1, 520,−1, 1) (0, 2, 63, 1, 1) (1, 2, 65, 1, 1)
F5m/5 : (−1, 0, 117, 1,−1) (−1, 5, 139,−1, 1).
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Remark that even the finiteness of the number of solutions of equations (3)

does not follow from general results about diophantine equations.

The second example is coming from algebraic number theory. Let IK be an

algebraic number field of degree d and let us denote by ZZIK its ring of integers. It

is well known that ZZIK admits always a ZZ basis ω1 = 1, ω2, . . . , ωd, but usually

the ω′s are not powers of a fixed element of ZZIK, i.e. ZZIK does not have a

power integer basis. For quartic number fields with Galois group D4 we proved

with Gaál and Pohst [15, 16] that in order to establish all power integer bases

it is enough to find quadratic polynomial values in some second order linear

recurrence sequences.

3 Elementary methods

From now on we shall concentrate on methods for the resolution of equation (1).

To solve a concrete equation, elementary methods are the most frequently used

ones. Relations between sequences, divisibility properties, etc. are often very

useful, but we restrict ourselves here to dealing with two sieving procedures,

which we consider the most powerful and specific elementary tools in this topic.

3.1 Wunderlich sieve

In order to prove that among the first one million Fibonacci numbers only 0, 1

and 144 are squares, Wunderlich [58] used a sieving procedure. We describe his

method in the more general situation, for equation (1).

We start with a common trick of the theory of diophantine equation: if

n, x ∈ ZZ is a solution of (1) then

Gn ≡ P (x) (mod m)

holds for all m ∈ ZZ. For the integer m let us fix a complete residue system. This

consists usually of the absolute smallest or of the smallest positive residues. It

is well known that the sequence Gn mod m is periodic and if (m,Ak) = 1 then
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it is purely periodic. Let rG(m) denote the length of the minimal period of

Gn mod m.

Choose integers m1, . . . ,mt > 0 with (mi, Ak) = 1, i = 1, . . . , t and initialize

an array A[i, j] := 0, i = 1, . . . , t; j = 0, . . . , rG(mi)− 1. Compute now for any

i = 1, . . . , t the numbers Gn mod mi for n = 1, . . . , rG(mi)−1 and P (x) mod mi

for x = 0, . . . , mi − 1 and put A[i, j] := 1 if there exists a 0 ≤ x < mi such that

Gj ≡ P (x) (mod mi). The pair of integers n, x is a solution of (1) only if

A[i, n mod mi] = 1

holds for all i = 1, . . . , t. By this simple procedure we are able to localize the pos-

sible solutions in n modulo the least common multiple R of rG(m1), . . . rG(mt).

One can considerably increase the performance of the sieving procedure by

computing first the period lengths for the elements of a large set of integers

and choosing only those as sieving moduli for which the least common multiple

of their period length is small compared to the individual period length. This

method was implemented by Nemes [24].

If equation (1) has no solution, then one can prove this quickly by using the

Wunderlich sieve. In [16] we reported about an extensive computation, where

13267 equations of type (1) were considered with Gn second order linear recur-

rence sequence and P (x) quadratic polynomials. We got these by transforming

index form equations of quartic number fields with Galois group D4 and discrim-

inants up to 106. The Wunderlich sieve found 6595 cases in which the equations

were not solvable.

A typical application of the Wunderlich sieve is to prove, with an appropriate

choice of the set M = {m1, . . . , mt}, that all solutions of (1) in n belong to some

residue classes mod R. Enlarging the set M we can prove the same result with

respect to a larger range. But this process never yields a complete solution

of (1) in the case when it admits a solution n ∈ ZZ, because the elements of

the residue class of n mod R always solve (1). To completely solve (1) in such

cases one needs either an upper bound for the possible solutions or one has to
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combine this method with Cohn’s sieve. By combining the Wunderlich sieve

with an upper bound for the possible solution, which was proved by using a

lower bound for linear forms in logarithms of algebraic numbers I proved that

only 0, 1 and 8 are cubes [26] and only 0 and 1 are fifth power Fibonacci numbers

[27]. You may find examples for the combination of the sieves Wunderlich and

Cohn in [16] and [28, 33].

I finish this section with a problem:

Problem: The sequence of tribonacci numbers is defined by T0 = T1 =

0, T2 = 1 and Tn+3 = Tn+2 + Tn+1 + Tn for n ≥ 0. Are the only squares

T0 = T1 = 0, T2 = T3 = 1, T5 = 4, T10 = 81, T16 = 3136 = 562 and T18 =

10609 = 1032 in Tn?

By using the sieving moduli 3, 7, 11, 13, 29, 41, 43, 53, 79, 101, 103, 131, 239,

397, 421, 911, 1021 and 1123 one can show that this is true for n ≤ 2 · 106, but

no known method seem to be applicable for the solution of this problem.

3.2 Cohn sieve

In this section 2 will denote a square of an integer. The essential tools of J.E.H.

Cohn [3] in solving the equations Fn = 2, 22 and Ln = 2, 22 were the following

identities:

Fn+` ≡ −F` (mod L2t−1m),

Ln+` ≡ −L` (mod L2t−1m),

provided that n = 2tm with t ≥ 2 and m 6≡ 0 (mod 3). Several different

generalizations were presented by himself [6, 7], by Ribenboim and McDaniel

[34, 35, 36], by Gaál, Pethő and Pohst [16] and by Pethő and Zimmer [33]. We

cite here a combination of Lemma 1 of [36] and Theorem 3.2 of [16].

In the rest of this section, Un = Un(A1, A2), Vn = Vn(A1, A2) and Gn =

Gn(A1, A2) denote second order linear recurrence sequences satisfying the same
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recurrence relation with coefficients A1, A2 and with initial terms U0 = 0, U1 =

1, V0 = 2, V1 = A1 and G0, G1 ∈ ZZ respectively. We assume further that

(A1, A2) = 1 and A2
1 + 4A2 > 0. We will denote by (a|m) the Jacobi symbol.

The core of Cohn’s sieve is the following theorem

Theorem 3.1 Let A1 be odd, n = 2tm with t ≥ 1 and m ≥ 1, odd. Then

G2n+` ≡ −(A2)nG` (mod Vn) (4)

for all ` ≥ 0.

This is a combination of Lemma 1 of [36] and Theorem 3.2 of [16]. Extending

Cohn’s idea Ribenboim and McDaniel used this theorem in the following way:

If, for example, for given parameters A1 and A2, Un = 2, then the residue class

Un modulo M is a square and therefore (Un|M) = 1 for any odd M coprime to

Un. They were able to find, for most n, appropriate moduli M1, . . . , Mt such that

the product (Un|M1) · · · (Un|Mt) = −1, leading to contradiction. The remaining

values of n were treated by using divisibility properties of Un. They proved [36]

Theorem 3.2 Let A1 and A2 be odd integers, then

(a) If Vn = 2, then n = 1, 3 or 5.

(b) If Vn = 22, then n = 0, 3 or 6.

(c) If Un = 2, then n = 0, 1, 2, 3, 6 or 12.

(d) If Un = 22, then n = 0, 3 or 6.

Remark that in [36] the exceptional cases are completely described. Special

cases of this theorem were proved in [3, 6, 7, 8, 59]. By using A. Baker’s method

Mignotte and Pethő [21] proved that if Un(A1,−1) = d2, with d = 1, 2, 3, 6 then

n ≤ 4, moreover U4(A1,−1) = d2 only if A1 = 338, U4(338,−1) = (2 ·13 ·239)2.

In this case A1 is arbitrary. Another general result of this sort was found by

Chen and Voutier [2]. By using hypergeometric polynomials they proved: Let
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d ≥ 3 and (u, v) be the fundamental solution of the Pell equation X2 +1 = dY 2.

Then the equation X2 + 1 = dY 4 has got at most one solution in positive

integers. If this solution (x, y) exists, we have v = y2. This result implies that

if U2t+1(A1, 1) = 2 then t = 0, whenever A1 > 2.

You can find several applications of variations of Theorem 3.1 in the lit-

erature. Williams [55] determined the Fibonacci numbers of the form 2 + 1,

Robbins [39] solved the equations Fn, Ln = w2−1, w3±1; Wall [52] determined

the triangular Fibonacci numbers and Ribenboim and McDaniel [37, 34] the

square classes in the Fibonacci and Lucas sequences and in their generaliza-

tions. I remark here that using linear forms in logarithms of algebraic numbers

Kiss [17] generalized the latest mentioned result.

Theorem 3.1 can be used successfully to find quadratic polynomial values in

second order linear recurrence sequences, and more generaly in polynomials of

second order linear recurrence sequences as well. For this purpose the following

theorem [33] is useful

Theorem 3.3 Let H(x) ∈ ZZ[x], Gn an linear recurrence sequence with |A2| =
1, m0 ∈ ZZ and P = {p1, . . . , pt} a set of primes with pi ≥ 5, 1 ≤ i ≤ t.

Suppose that there exist positive integers a, b1, . . . , bt such that there exist for

any α ≥ a− 1 integers β1, . . . , βt with 0 ≤ βi ≤ bi (i = 1, . . . , t) for which

(
H(−Gm0)|V2αp

β1
1 ···pβt

t

)
= −1

holds. Then equation

H(Gn) = 2 (5)

has at most one solution n satisfying

n ≡ m0 (mod 2a+1pb1
1 · pbt

t ),

namely n = m0.
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This theorem implies the following process which we call Cohn’s sieve. Put

M ′ = H(−Gm0) and let M be the square free part of M ′. For simplicity we

assume M to be odd. Let h be a positive odd integer, then

(M |V2ah) = ±(V2ah|M)

holds by the reciprocity law of the Jacobi symbol.

Let now a run through the set of positive integers, then the sequence {V2ah mod

M} is periodic, thus {(V2ah|M)} is periodic, too. Let denote e(h,M) the

length of its preperiod and r(h, M) its period respectively. It is easy to see

that e(h,M) ≤ e(1,M) holds for all odd h.

The sieving process is now the following: Choose primes p1, . . . , pt ≥ 5 and

set

A[i, j] := (M |V2jpi
) i = 1, . . . , t, j = 1, . . . , e(1,M) + r(pi,M).

If there exists for any j > e(1,M) an integer 1 ≤ i ≤ t such that A[i, j] = −1

then Theorem 3.3 can be applied and we conclude that the only solution of

(5) with n ≡ m0 (mod 2e(1,M)+1p1 · · · pt) is m0. If, on the other hand, we are

able to prove, for example by using the Wunderlich sieve, that (5) holds only if

n ≡ m0 (mod 2e(1,M)+1p1 · · · pt), then the equation is completely solved.

We illustrate the method by a simple example. Consider the equation

Gn = y2 + 30,

where Gn denotes the sequence defined by G0 = 70, G1 = 55, Gn+2 = 3Gn+1 −
Gn for n ≥ 0. It is clear that (n, y) = (1, 5) is a solution, hence we have m0 = 1

and H(x) = x − 30. Thus taking M ′ = −G1 − 30 = −85, which is square-free

and odd M = M ′.

It is easy to see that the Lucas sequence {Vn(3,−1)} associated to Gn has

the property: Vt ≡ −1 (mod 4) for every t, which is not divisible by 3. Let t

be such an integer. Then

(M |Vt) = (−5 · 17|Vt) = −(Vt|5)(Vt|17) = (Vt|17),
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because (Vt|5) = −1 for all t. We also have

j = 0 1 2 3 4
(V2j |17) = -1 -1 1 -1 -1
(V5·2j |17) = 1 -1 -1 1 -1

.

The period length of both sequences is three and by Theorem 3.3 we obtain

n = 1 whenever n ≡ 1 (mod 20). On the other hand, {Gn − 30 mod 3} =

(1, 1, 2, 2)∞ and {Gn − 30 mod 7} = (5, 4, 2, 4)∞, thus both sequences have

period length 4 and as (2|3) = (5|7) = −1 we obtain n ≡ 1 (mod 4), hence our

equation has got the only solution n = 1.

Cohn’s sieve was implemented at the Lajos Kossuth University by J. Sajtos.

By using it we were able to solve 5919 of 7850 equations of type Gn = 2 + D,

coming from index form equations over quartic number fields [16]. This was

also the essential tool, using which we proved Theorem 2.2, see [33, 28].

Remark that Cohn’s sieve does not work always; an example is presented in

section 4, but the cases when it fails to work can be characterized. In [16] it is

proved namely, that if there exist integers e(1,M) < m1,m2 ≤ e(1,M)+r(1,M)

such that (V2m1 |M)(V2m2 |M) = −1, then there exists an integer a ≤ e(1, M) +

r(1,M) + 1 and primes p1, . . . , pt > 3 such that equation (5) has got at most

one solution n ≡ m0 (mod 2ap1 · · · pt), namely n = m0.

4 Tools from algebraic number theory

Elementary methods often fail in solving equation of type (1). In such cases we

have to use much involved methods. Tools of the theory of algebraic numbers

are often helpful to transform equations to more simple or more treatable ones.

We illustrate this by an example, which is taken from de Weger [54].

Ray Steiner observed that the eleventh Fibonacci number 89 has the property

1
89

=
∞∑

k=0

Ft

10t+1
.
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He asked de Weger, whether a similar phenomenon occurs for expansions in the

base y number system of reciprocals of Fibonacci numbers for values of y other

than 10. This is equivalent with the question: for which positive integers n, y

does the identity
1

Fn
=

∞∑

k=0

Ft

yt+1

hold? One can easily check, that it happens also for (n, y) = (1, 2), (2, 2), (5, 3)

and (10, 8) and de Weger [54] was able to prove that these are the only solutions.

What does this problem have to do with diophantine equations? By observ-

ing that
∞∑

k=0

Ft

yt+1
=

1
y2 − y − 1

we see that to solve Steiner’s problem it is enough to solve the equation

Fn = y2 − y − 1. (6)

Before continuing de Weger’s argument we shall point out that for this equa-

tion Cohn’s sieve fails to work because not only (1, 2) but also (−1, 1) is a

solution of (6), hence we can not rule out (1, 2) by the sieving procedure.

Using the well-known identity L2
n − 5F 2

n = ±4 we transform (6) to the pair

of equations

x2 − 5(y2 − y − 1)2 = ±4. (7)

Both of the equations (7) are quartic elliptic equations. It is well-known (see

Mordell [23]) that all integer solutions can be obtained from integer solutions

of finitely many quartic Thue equations. To find these Thue equations we have

to work in algebraic number fields. De Weger followed essentially Mordell’s

argument, but made use of the special nature of the number fields appearing in

the transformation.

After this remark consider first the case of minus sign in (7) and observe

that

4− 5(y2 − y − 1)2 = (2− (y2 − y − 1)
√

5)(2 + (y2 − y − 1)
√

5) = −x2,
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thus we have to work in the algebraic number field Q(
√

5). It has got class

number 1, a fundamental unit is (1 +
√

5)/2, and 2 remains prime. A common

prime divisor of (2 + (y2 − y − 1)
√

5) and (2 − (y2 − y − 1)
√

5) can only be 2.

Thus we obtain

2 + (y2 − y − 1)
√

5 = (−1)a2b

(
1 +

√
5

2

)c

α2,

where a, b, c ∈ {0, 1}, and α is an integer in Q(
√

5). Assuming y ≥ 2 and since x

has to be odd, this implies a = b = 0. Finally, since the norm of 2+(y2−y−1)
√

5

is (−1)cN(α)2 = −x2, we have c = 1. Writing α = (A + B
√

5)/2, where the

integers A,B have the same parity we obtain

A2 + 10AB + 5B2 = 16 (8)

A2 + 2AB + 5B2 = 8(y2 − y − 1).

Now five times the first equation plus eight times the second equation yields

13A2 + 66AB + 65B2 = 16(2y − 1)2.

Observe that the polynomial staying on the left hand side factors over

Q(
√

61)

(13A + 33B + 2B
√

61)(13A + 33B − 2B
√

61) = 13 · 16(2y − 1)2.

The field Q(
√

61) has got again class number 1, a fundamental unit is (39 +

5
√

61)/2, the prime 2 remains prime, and 13 splits: 13 = −((3 +
√

61)/2)(3 −
√

61)/2)). As a common prime divisor of the two factors of the left hand side of

the last equation divides 2 · 13 · 61, we obtain

13A+33B+2B
√

61 = ±2a

(
3 +

√
61

2

)b (
3−√61

2

)c

(
√

61)d

(
39 + 5

√
61

2

)e

α2,

where a, b, c, d, |e| ∈ {0, 1}, and α is an integer in Q(
√

61). Taking again norm

we conclude that the only possibilities are a = d = 0, (b, c) = (0, 1) or (1, 0) and
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e = ±1. Thus, letting α = (u + v
√

61) with integers u, v, we find

13A + 33B + 2B
√

61 = (47± 6
√

61)(u + v
√

61). (9)

Comparing the coefficients of 1 and
√

61 we can express A and B as quadratic

forms in u, v. The negative sign in (9) which corresponds to the case (b, c, e) =

(0, 1, 1) leads to contradiction modulo 13. The positive sign can not be ruled

out so easily. In that case we insert the expressions for A and B into (8) and

using the transformation E = v, F = (u + 7v)/2 we find the Thue equation

E4 + 2E3F − 41E2F 2 − 102EF 3 − 59F 4 = 1.

Similarly, considering the plus sign in (7) and working first in the field

Q(
√−5) and then in the field Q(

√
21) we obtain one more non trivial quar-

tic Thue equation to solve, namely

9E4 + 18E3F + 31E2F 2 + 2EF 3 − 11F 4 = 9.

De Weger finished the solution of Steiner’s problem by solving these Thue

equations.

Remark that for the solution of Thue equations there are very efficient meth-

ods available. We will not present them here, but refer to the papers [30, 50, 1].

We also mention that the method of [1] is implemented in the computational

number theory package KANT, which was developed at the TU Berlin by M.

Pohst and by his collaborators.
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