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Abstract. We consider arithmetic progressions consisting of integers which
are y-components of solutions of an equation of the form x2 − dy2 = m. We show
that for almost all four-term arithmetic progressions such an equation exists. We
construct a seven-term arithmetic progression with the given property, and also
several �ve-term arithmetic progressions which satisfy two di�erent equations of
the given form. These results are obtained by studying the properties of a para-
metric family of elliptic curves.

1. Introduction

In [8] it was shown that for the four-term arithmetic progression 1, 3, 5, 7
there exists a Pellian equation x2 − dy2 = m, where d is not a square, such
that 1, 3, 5, 7 are y-components of solutions of this equation. On the other
hand, it was shown that for the arithmetic progression 0, 1, 2, 3 such an equa-
tion does not exist.

In this paper, we will show that the progression 0, 1, 2, 3 (and its com-
panion progression −3,−2,−1, 0) is unique with this property. Namely, for
any other four-term arithmetic progression consisting of integers there exist
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in�nitely many equations of the form x2 − dy2 = m, where d is not a square
(if d is a square and m = 0, the problem is trivial) and gcd (d,m) is square-
free (so that the equations are essentially distinct) for which the elements of
the given progression form y-components of solutions.

We will also construct longer arithmetic progressions with the same prop-
erty, namely, progressions with �ve, six and seven elements.

2. Four-term arithmetic progressions

Let Y1 = a, Y2 = a+k, Y3 = a+2k, Y4 = a+3k, with a, k ∈ Z, be a given
four-term arithmetic progression. We may assume that gcd (a, k) = 1 and
k > 0. If there are d,m ∈ Z such that Y1, Y2, Y3, Y4 are solutions of the
Diophantine equation x2 − dy2 = m, then the system

X2
1 − da2 = m, X2

2 − d(a + k)2 = m,

X2
3 − d(a + 2k)2 = m, X2

4 − d(a + 3k)2 = m

of Diophantine equations has a solution. This system de�nes a curve of
genus 1. In [8, Section 6], it was shown that with the transformations

X1 = k(−10uv + 5v2 + 16u− 8) + a(−4uv + 2v2 + 8u− 4),

X2 = −(2a + 5k)v2 + 8(a + 2k)v − 4(a + 2k),

X3 = (2a + 5k)v2 − 2(2a + 5k)v + 4(a + 2k),

X4 = (2a + 5k)v2 − 4(a + 2k)

the above system leads to the cubic curve (in variables u and v):

(1) uv(u− v)(2a + 5k) + 4u(1− u)(a + 2k) + 3v(v − 1)(2a + 3k) = 0.

Each rational point on (1) induces a pair (d,m) by the formulas

d =
4(v − u)((2a + 5k)v − 4(a + 2k))((2a + 5k)uv − 4(a + 2k)(u + v) + 4(a + 2k))

k(2a + k)
,(2)

m = X2
1 − da2.(3)

Finally, the substitutions

u = (−28800xk4 − 56640xk3a− 41088xk2a2 − 340x2k2 − 13056xa3k + 2xyk
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− 336x2ak − x3 + 4xya− 1536xa4 − 80x2a2)/

(98304a6 + 5529600k6 + 1179648ka5 + 5849088k2a4 + 15335424k3a3

+ 17326080k5a + 22419456k4a2 + 36096xa3k + 104832xk2a2 + 133824xk3a

+ 192x2ak + 180x2k2 + 4608xa4 + 63360xk4 + 48x2a2 − 4xya− 10xyk

− 1920k3y − 256a3y − 1536a2ky − 3008ak2y),

v = (−x2 − 160xk2 − 144xak − 32a2x)/

(28800k4 + 56640k3a + 41088k2a2 + 180xk2 − 10yk + 13056a3k + 192xak

− 4ya + 48a2x + 1536a4)

(obtained by APECS [2] command Gcub) give the elliptic curve

y2 = x3 + (176a2 + 672ak + 628k2)x2 + (9216a4 + 72192a3k + 209664a2k2
(4)

+ 267648ak3 + 126720k4)x + 147456a6 + 1769472a5k + 8773632a4k2

+ 23003136a3k3 + 33629184a2k4 + 25989120ak5 + 8294400k6.

The discriminant of (4) is

D = 150994944(5k + 2a)2(2k + a)2(k + 2a)2(k + a)2(2a + 3k)4.

Hence, the curve is singular exactly when (a, k) = (−5, 2), (−2, 1), (−1, 2),
(−1, 1), (−3, 2). We give the images of the obvious rational points on (1):

[1, 0] 7→ T1 := [−160k2 − 144ak − 32a2, 0],

[0, 1] 7→ T2 := [−180k2 − 192ak − 48a2, 0],

[1, 1] 7→ P := [−64a2 − 256ak − 240k2, 128a3 + 640a2k + 992ak2 + 480k3],
[
3(2a + 3k)/(2a + 5k), 4(a + 2k)/(2a + 5k)

]

7→ T3 := [−288k2 − 336ak − 96a2, 0].
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It is clear that T1, T2, T3 are torsion points on (4) of order 2, and we will
show that, in general, the point P is of in�nite order. Indeed, we have

3P =
[−16(2a + 3k)(2a + 5k)(3k2 + 3ak + a2)

(a + 2k)2
,

−32a(2a + 3k)(2a + 5k)(a + 3k)(k + a)2

(a + 2k)3

]
,

4P =
[
16(a + 3k)(−3k3 + 3a2k + a3)

k2
,

32(3k2 + 6ak + 2a2)(3k2 + 3ak + a2)(k2 + 3ak + a2)
k3

]
.

If P has �nite order then, by Lutz�Nagell theorem, the points 3P and 4P
have integer coordinates. This implies (a + 2k) | 4 and k | 4, which gives only
six (nonsingular) possible values for (a, k). Testing the coordinates of 5P
for these six points, we �nd that the only possible values are (a, k) = (−3, 1)
and (a, k) = (0, 1). In both cases we obtain that the point P is of order 6.
Using mwrank [3], we checked that for (a, k) = (−3, 1), (0, 1) the rank of (4)
is equal to 0. So, it is easy to compute all values for (d,m) in these cases,
and it follows that we always have a trivial situation: d = 0 or m = 0.

If a, k are such that P has in�nite order, then there exist in�nitely many
rational points [x, y] on (4). Each such (non-torsion) point (assuming that
(4) is nonsingular) induces the rational point [u, v] on (1). By formulas (2)
and (3) we obtain in�nitely many (rational) pairs (d,m). Only �nitely many
rational points induce the pair (d,m) such that d is a square. Also, for any
given d0, there are only �nitely many rational points which induce the pairs
(d,m) such that d = d0 × square (both conditions lead to curves with genus
> 1). Hence, after multiplying by a suitable square, we obtain in�nitely many
distinct pairs of integers (d,m), such that d is not a square and gcd (d,m) is
square-free.

Let us consider the singular cases. They correspond to the sequences
−5,−3,−1, 1; −2,−1, 0, 1; −1, 1, 3, 5; −1, 0, 1, 2; −3,−1, 1, 3. Thus, it suf-
�ces to consider the three-term sequences 1, 3, 5 and 0, 1, 2. Both cases, of
course, correspond to curves of genus 0, and it is easy to �nd in�nitely many
solutions, i.e. pairs (d,m):

1, 3, 5 → d = βα(α + 2β)(α− β)/2,

m = (−4β + α)(−2β + α)(β + 2α)(β + α)/2,

0, 1, 2 → d = 4βα(α + 3β)(α− β), m = (β + α)2(α− 3β)2.

Therefore, we proved
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Proposition 1. All four-term arithmetic progressions, except 0, 1, 2, 3
and −3,−2,−1, 0, are y-components of in�nitely many equations of the form
x2 − dy2 = m, where d is not a square and gcd (d, m) is square-free.

3. An elliptic surface

In the previous section, we have seen that the problem of determining the
generic rank of the family of elliptic curves (4) is relevant to our problem. In
this section, we will compute this rank.

We consider the elliptic curve E over Q(T ):

E : y2 = x3 + (176T 2 + 672T + 628)x2 + (9216T 4 + 72192T 3 + 209664T 2

+ 267648T + 126720)x + 147456T 6 + 1769472T 5 + 8773632T 4

+ 23003136T 3 + 33629184T 2 + 25989120T + 8294400.

The short Weierstrass form of E is
E∗ : y2 = x3 + A(T )x + B(T ),

A(T ) = −5616T 4 − 33696T 3 − 73656T 2 − 69336T − 24003,

B(T ) = 120960T 6 + 1088640T 5 + 4077216T 4 + 8133696T 3 + 9089496T 2

+ 5363496T + 1296702

= 54(4T 2 + 12T + 11)(20T 2 + 60T + 37)(28T 2 + 84T + 59).

The discriminant of E is

D = 150994944(T + 1)2(T + 2)2(2T + 1)2(2T + 5)2(2T + 3)4.

We will compute rangC(T ) E using Shioda's formula [9, Corollary 5.3]:

rangC(T ) E = rang NS(E ,C)− 2−
∑

s

(ms − 1).

Here NS(E ,C) is the Néron-Severi group of E over C, and the sum ranges
over all singular �bres of the pencil Et, with ms the number of irreducible
components of the �bre. Since deg A = 4 and deg B = 6, we conclude that
E is a rational surface. Hence, by [9, Lemma 10.1], we have rang NS(E ,C)
= 10. The numbers ms can be easily determined from Kodaira types of sin-
gular �bres (see [6, Section 4]), which are given in the following table (with
the notation: α = ordT=t A(T ), β = ordT=t B(T ), δ = ordT=t D(T )):
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coe�cients

t α β δ Kodaira type ms − 1

−1 0 0 2 I2 1

−2 0 0 2 I2 1

−1
2 0 0 2 I2 1

−5
2 0 0 2 I2 1

−3
2 0 0 4 I4 3

Therefore, we have

rangC(T ) E = 10− 2− 4 · 1− 1 · 3 = 1.

We claim that also rangQ(T ) E = 1.
A result of Shioda [9, Theorem 10.10] suggests that the generators of

E∗(Q(T )
)
can be found among the points of the form [α1T

2 +β1T +γ1, α2T
3

+ β2T
2 + γ2T + δ2], αi, βi, γi, δi ∈ Q. It is not hard to �nd all such points

since the conditions on α1 and γ1 both lead to elliptic curves of rank = 0:

α3
1 − 5616α1 + 120960 = ¤, γ3

1 − 24003γ1 + 1296702 = ¤.

Here we list all such points (±):

P := [−12T 2 − 72T − 69, 432T 3 + 2160T 2 + 3348T + 1620],

T1 := [60T 2 + 180T + 111, 0], T2 := [24T 2 + 72T + 66, 0],

T3 := [−84T 2 − 252T − 177, 0],

[−12T 2 + 39,−432T 3 − 1728T 2 − 2052T − 648] = P + T1,

[132T 2 + 288T + 147, 1296T 3 + 3888T 2 + 3564T + 972] = P + T2,

[132T 2 + 504T + 471,−1296T 3 − 7776T 2 − 15228T − 9720] = P + T3,

[60T 2 + 180T + 147,−432T 2 − 1296T − 972] = 2P,

[−84T 2 − 252T − 69,−1296T 2 − 3888T − 1620] = 2P + T2,

[24T 2 + 72T + 39, 324T 2 + 972T + 648] = 2P + T3
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(the points P , T1, T2, T3 correspond to the points with the same names in
the previous section). This list suggests that the point P is the generator of
E∗(Q(T )

)
. In order to prove this statement it su�ces to �nd a specialization

T 7→ t for which the point P (t) is the generator of E∗t (Q).
We took the specialization t = 1, and both mwrank [3] and APECS [2]

con�rmed that the rank for this specialization

y2 = x3 − 206307x + 29170206

is equal to 1, with the generator P (1) = [−153, 7560] (it is the curve 630E2
in Cremona's tables).

Proposition 2. rangQ(T ) E = 1.

4. Five-term arithmetic progressions for two di�erent equations

By [8, Theorem 5], for each �ve-term arithmetic progression (with dif-
ferent absolute values) there are at most �nitely many d, m ∈ Z such that
d is not a square, m 6= 0 and gcd (d,m) is square-free and such that these
�ve numbers are y-components of solutions to x2 − dy2 = m. However, there
are many �ve-term arithmetic progressions for which there exists at least one
such pair (d,m). Moreover, we found several examples of �ve-term arithmetic
progressions for which two such pairs exist. They are listed in the following
table:

a k equations rank

−36 41 x2 − 87945y2 = 160389376 3

x2 + 615y2 = 10506496

−174 277 x2 − 1008280y2 = 55523430369 4

x2 + 831y2 = 887286400

−157 97 x2 − 208065y2 = 848087296 2

x2 − 81480y2 = −111536711

−453 218 x2 + 545y2 = 111945834 2

x2 − 2289y2 = 59230600

−471 362 x2 − 41811y2 = 1406035150 3

x2 − 1810y2 = 143643591
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a k equations rank

−337 144 x2 − 195y2 = 3195201 2

x2 + 51y2 = 5796375

−240 139 x2 − 27105y2 = 4156531456 3

x2 − 5560y2 = 63864801

−174 277 x2 − 1008280y2 = 55523430369 4

x2 + 831y2 = 887286400

Note that all the above examples correspond to curves with rank > 1.
This is not surprising since we checked that small multiples of P do not lead
to �ve-term progressions with max

( |a|, |k|) < 106. Therefore we considered
only curves with rank = 2 (the rank and the generator are computed by
mwrank) and, using a program written in PARI/GP [1], we checked whether
the pairs (d,m) induced by small linear combinations of the generator sat-
isfy the additional condition that the �fth term in the arithmetic progression
satis�es the same Pellian equation.

Standard conjectures imply that (at least) 50% of curves in the studied
family should have rank = 2. Indeed, we have found many curves with rank
= 2, but also some with higher rank. The largest rank found in the range
max

( |a|, |k|) < 7000 is 7, and it is obtained for a/k = 619/6089, −973/5545,
1015/5416, −1867/7268, −2155/7618, 4640/6397, 4744/5097, 5864/1971,
5945/5706, 6029/1024, 7075/4457, 7342/6627, 8878/2927, 9232/2791. These
high-rank curves were found using the sieving procedure similar to that used
in [5]. The ranks were computed by mwrank. We give here some details only
for the curve corresponding to a/k = 619/6089. Its minimal equation is

y2 + xy = x3 − x2 − 33780966884736864x + 2124517418723079049609520,

and the seven independent points of in�nite order are:

[40037861, 914409675367], [71401901, 276578796412],

[28598884, 1087096726324], [−62156636,−1995987404696],

[52021816, 712683760852], [8142580, 1360140428200],

[304582516, 4482224368552].

Remark 1. The above examples also suggest (somewhat surprisingly)
that a long arithmetic progression appears almost with the same frequency in
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the equations x2 − dy2 = m with d positive as with d negative. We give here
some support to this observation (similar arguments were used e.g. in [4]).
Let us consider the case (a, k) = (1,2), treated in [8], where the corresponding
elliptic curve is

y2 = x3 − 63x + 162.

Then, the points with

y > 0 and (−3 < x < 3 or x > 9),

y < 0 and (−9 < x < 1 or 6 < x < 21)

induce positive d (only �nitely many of them will give d = square). These con-
ditions can be transformed in conditions for periods z, of parametrization by
the Weierstrass function ℘(z). We have noted that for a point Q, the points
Q + T1, Q + T2, Q + T3, −Q + P induce the same pair (d,m) as the point Q.
So, in this particular case, it su�ces to consider the points kP , k > 0. We
obtain (e.g. using PARI) the periods w1 ≈ 1.1656168, w2 ≈ 0.8570259, and
w(P ) := δ + w2/2 · i ≈ 0.22122488 + w2/2 · i. The condition of positivity of
d now becomes

k · (δ/w1) mod 1/2 ∈ 〈δ/w1, 0.5〉,
which is certainly satis�ed for in�nitely many k's (by the Bohl�Sierpi«ski�
Weyl theorem [7, pp. 24�27]); the smallest are: k = 2,4,5,7,9,10 (k = 2 gives
d = square). Hence, the smallest solutions correspond to points 4P , 5P , 7P .
The �rst two appeared in [8]; the third gives d = 603638196016911937479885,
m = −475682124977406960077036. But the same argument shows that there
are in�nitely many k's for which d is negative (the smallest are: k = 3, 6, 8).

5. A seven-term arithmetic progression

For (a, k) = (−461, 166) we obtain the elliptic curve

y2 = x3 + 3283392x2 + 1816362270720x + 233361525187805184

of rank 2, with generators

P1 = [2025472, 5068743680], P2 = [−183168, 68382720].

Using the point P2, the above construction gives the equation

x2 + 1245y2 = 375701326
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with the property that the seven numbers a, a + k, a + 2k, a + 3k, a + 4k,
a + 5k, a + 6k, i.e. y = −461,−295,−129,37,203,369,535 are solutions of this
equation. This is the longest known arithmetic progression (with distinct ab-
solute values) on curves of the form x2 − dy2 = m.

We also found several six-term arithmetic progressions:

a k equation rank

−67 24 x2 + 10y2 = 46046 2

−318 83 x2 − 2905y2 = 45752256 3

−309 262 x2 − 587535y2 = 14550679066 3

−295 166 x2 + 1245y2 = 375701326 3

−271 158 x2 − 2370y2 = 12731719 2

−237 71 x2 − 1065y2 = 4548544 3
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