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ON COMPOSITE RATIONAL FUNCTIONS HAVING A
BOUNDED NUMBER OF ZEROS AND POLES

CLEMENS FUCHS AND ATTILA PETHO!

ABSTRACT. In this paper we study composite rational functions which
have at most a given number of distinct zeros and poles. A complete
algorithmic characterization of all such functions and decompositions is
given. This can be seen as a multiplicative analog of a result due to
Zannier on polynomials that are lacunary in the sense that they have a
bounded number of non-constant terms.

1. INTRODUCTION AND RESULTS

Let k be an algebraically closed field of characteristic zero and let k(x)
be the rational function field in one variable over k; for f € k(x) we define
deg f = [k(x) : k(f(x))]. We are interested in rational functions f € k(z)
that are decomposable as rational functions, i.e. for which a relation of the
form f(z) = g(h(x)) with g, h € k(z),degg,degh > 2 holds. Observe that
such a decomposition is only unique up to a linear fractional transformation
A € PGLy(k) = Aut(P!(k)) since we may always replace g(x) by g(A(z)) and
h(z) by A~1(h(z)) without affecting the equation f(z) = g(h(z)). Especially
we are interested in such decompositions when f is a “lacunary” rational
function.

There are different possible notions of “lacunarity”. One way to define it,
is to think of the number of terms appearing in a given representation of
f(z) = P(x)/Q(z), P,Q € k[x] to be bounded. It was proved by Zannier in
[8] that if one starts with a positive integer [, then one can describe effectively
all decompositions of polynomials f € k[z] having at most [ non-constant
terms if one excludes the inner function h being of the exceptional shape
ax™ +b,a,b € k,n € N. Observe that for polynomials it is natural to focus
on the non-constant terms since one can always replace f by f — f(0) (and
simultaneously g by g — f(0) if f(z) = g(h(z))) which has the same non-
constant terms as f and is decomposable if and only if f is. We also remark
that it is enough to consider g, h € k[z| in this case and it is not hard to see
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that the exception is really needed. This description was “algorithmic” in
the sense that all possible polynomials and decompositions were described
by letting the possible coefficients vary in some effectively computable affine
algebraic varieties and the exponents in some computable integer lattices.
This gave a complete proof of a conjecture of Schinzel (saying that if for fixed
g the polynomial g(h(x)) has at most | non-constant terms, then the number
of terms of h is bounded only in terms of [) and more. The proof used as a
first step an upper bound for the degree of g given only in terms of [ that was
already obtained by Zannier in [7]. (We remark that this last result was later
generalized to Laurent-polynomials in [9] and then to rational functions in
[3].) The further proof was a complicated inductive argument that used in its
core an effective bound for the degrees of the solutions of S-unit equations
(over function fields) in several variables due to Brownawell and Masser [1];
in fact a variant of it by Zannier [6] was used.

There are also other possibilities to think of the “lacunarity”. In this
paper we will be interested in rational functions f with a bounded number
of zeros and poles (i.e. the number of distinct roots of P, @ in a reduced
expression of f is bounded). As above we think of the number of zeros and
poles as being fixed, whereas the actual values of the zeros and poles and
their multiplicities are considered as variables. We also shall give a complete
description of composite f’s in analogy to Zannier’s result in [6]; the proof
of our result contains an algorithm that for given n provides all the data for
rational functions f, g, h with f having at most n zeros and poles such that
f(x) = g(h(x)) holds. We remark that a related type of question came up
in [2] (see Proposition 2.4 therein).

Let us mention that we may assume (by changing g(z) into g(6x)) that the
rational function h is the quotient of two monic polynomials and by dividing
both sides of the equation f(z) = g(h(x)) by a suitable constant we may
even assume the same for f and g. (This is just to make the description below
more readable). There are many trivial such families e.g. if the multiplicities
of the zeros and poles of f all have a common divisor, say m € N, then
f(z) = (h(z))™ for some h € k(x); for this reason we say that if g(x) =
(A(x))™ for a suitable A € PGLy(k), then g is of exceptional shape (this has
to be compared with the exceptional shape for h in the case above). We give
a second example: Let A1, A2 be the roots of 22 — 2z —1in k = C (so \p is
the golden mean), then for g(z) = 2% (z — 1)*2, h(z) = z(z — 1) we have
f(z) = g(h(z)) = 2P (x — )" (2 — A\)*2 (z — \2)*2 for every ki, ko € Z. Thus
we have constructed infinitely many rational functions f with four distinct
zeros and poles altogether and which are decomposable.

The general situation is given in the following theorem, which is the main
result of this paper:

Main Theorem. Let n be a positive integer. Then there exists a positive
integer J and, for everyi € {1,...,J}, an affine algebraic variety V; defined
over Q and with V; C A"t for some 2 < t; < n, such that:
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(i) If f,g,h € k(x) with f(x) = g(h(x)) and with degg,degh > 2, g not
of the shape (A\(x))™,m € N, A € PGLa(k), and f has at most n zeros
and poles altogether, then there exists for somei € {1,...,J} a point
P = (a1,...,0n,01,...,0) € Vi(k), a vector (ki,..., k) € Z%
with k1 + ko + ... + ky;, = 0 or not depending on V;, a partition of
{1,...,n} in t; + 1 disjoint sets Soo,Sp,, - ., Sp,, with Seo = 0 if
ki+ko+---+k, =0, and a vector (Iy,...,1,) € {0,1,...,n—1}",
also both depending only on V;, such that

ti t;
j=1 j=1

and

. Bit oL (j=1,....t:), if ki + ko + -+ ky #0,
(@) =\ Buws—Bigwn (1 <j1 < ja2 <ti), otherwise,

Wiy —Wjy
where
Im _
wJ: H (x_am) ) .7_17 7tz
mGng
and

weo = [] (x— ).
MESso
Moreover, we have degh < (n — 1)/ max{t; — 2,1} <n — 1.

(ii) Conwversely for given data P € Vi(k), (k1,...,kt;), S0, S35, Sgy,»
(I1,...,1) as described in (1) one defines by the same equations ra-
tional functions f, g, h with f having at most n zeros and poles alto-
gether for which f(x) = g(h(z)) holds.

(iii) The integer J and equations defining the varieties V; are effectively
computable only in terms of n.

The example above is obtained by taking n = 4,t = 2,5, = 0,5y =
{1,2},55 = {3,4},[1 = l2 = 13 = l4 = 1and P = (0,1,/\1,)\2,1) =
(a1, a9, a3, a4, 3) € V(C), where the variety V C A® is defined as the zero
locus of the system of algebraic equations ajas — agay — 6 = 0,1 + ag —
az —ay = 0.

We mention that for g(z) = ¢i1(z)/92(x), 91,92 € k[x] coprime and
deg g1 = deg g2, then every pole of h will be cancelled in the decomposition
f(x) = g(h(x)) and so a priori h could have arbitrary poles; this explains
the difference between the two cases. We also mention that if additionally
the number of distinct zeros and poles of g is two, then g has exactly one
zero and one pole both with the same multiplicity and then we are in the
forbidden shape for g.

The theorem can be seen as a multiplicative analog compared to the
question studied by Zannier in the case that the number of non-constant
terms is fixed. This already suggests that the proof is much easier. The
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essential part of it is to show that the inner function A has its degree bounded
only in terms of n; for this we use a reduction to a system of two-dimensional
S-unit equations, now over the rational function field, to which variants of
the Brownawell-Masser inequality can be applied.

Before we state these crucial results (namely Zannier’s variant from [6]
and the Mason and Stothers theorem [4]), we briefly recall the theory of
valuations on k(z) (see [5]). For every 6 € k there is a valuation defined by
the order of vanishing of f at = #; moreover, for f(z) = P(z)/Q(zx), P,Q €
k[x] a non-archimedean valuation is defined by v (f) = deg @ — deg P. In
this way all valuations M of k(z) are obtained. Then we have

deg f = ) max{0,v(f)} =~ ) min{0,v(f)};

vEM vEM

in other words the degree is just the number of zeros respectively poles
of f (in P!(k)) counted by their multiplicities. The Mason-Stothers the-
orem now says that for every f,g € k(z), not both constant, we have
max{deg f,deg g} < |S| — 2, where S is any set of valuations of k(x) con-
taining all the zeros and poles in PY(k) of f and g. (We remark that the
upper bound is best possible). More generally by Zannier’s variant of the
Brownawell-Masser inequality, if g1, ..., gm € k(x) span a k-vector space of
dimension p < m and any p of the g; are linearly independent over k, then

- Z min{v(gl)7 Tt 71}(9771)} < 777,1—M<g>(’S| - 2)7

veEM

where S is any set of valuations of k(x) containing all the zeros and poles
in PY(k) of g1,...,gm- (This is [6, Theorem 2].) Now we are ready to give
the proof of the theorem; this will be done in the next section.

2. PROOF OF THE MAIN THEOREM

Let n be a positive integer. We start with (i), so let f,g,h €
k(x),degg,degh > 2,g not of the exceptional shape (A(z))™,m € N, A €
PGLy(k) and with f having at most n zeros and poles in Al(k) altogether
and such that f(x) = g(h(x)). Since k is algebraically closed we can write

f@) =TI~ ap?

with pairwise distinct a; € k and f; € Z for ¢ = 1,...,n. (Remember that
without loss of generality we are assuming that f is monic.) Similarly we
get,

(2.1) g(z) = [[(z - B))"

J=1
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with pairwise distinct 3; € k and k; € Z for j = 1,...,t and ¢t € N. Thus

we have
n t

[[(x—ai) = f(a) = g(h(z)) = [ (h(z) — B)".

i=1 Jj=1
We now distinguish two cases depending on k1 + ko + -+ - + k # 0 or not;
observe that this condition is equivalent to v (g) # 0 or not. We shall write
h(z) = p(z)/q(x) with p, q € k[z], p, ¢ coprime.

First assume that ve(g) # 0. It follows that the poles in A'(k) of h
are among the values a;: This is true because ¢(f) = 0 for § € k implies
h(0) = oo, where co = (0 : 1) is the unique point at infinity of P!(k), and
h(0) — B; = oo. Also the valuation vg of h and h(x) — §; is the same. Thus
vo(f) = vao(g)vg(h) # 0, ie. g(h(f)) € {0,00}, and hence 6 = «; for some
i € {1,...,n}. This implies that there is a subset Sy, of the set {1,...,n}
such that the a,, for m € S, are precisely the poles in Al(k) of h, i.e.

glx) = [ (z—am)™
mMESso

for some l,,, € N. Furthermore h and every function h(z)—f; have exactly the
same poles in P! (k) and again at a pole the multiplicities are equal; especially
this implies that h and h(z) — 3; have the same number of poles counted
by multiplicity, which means that their degrees are equal. Calculating the
valuations v,,, of both sides of the equation f(z) = g(h(x)) we infer that
(k1 4+ ko4 -+ k)l = v (9)Va,, (R) = va,, (f) = fm for m € Ss. We also
point out that for 8; # (; the factors h(x)—f3; and h(x)— ; do not have any
zeros (in A(k)) in common; therefore we have t < n. Now it follows that
there is a partition of the set {1,...,n}\Sx in ¢ disjoint subsets Sg,, ..., Sg,
such that

(2.2) h(z) = B; + 1 H (. — o),

where 1, € N satisfies l;,kj = fm, for m € Sg,, and this holds true for every
j=1,...,t. Since we assume that g is not of the shape (A(z))™ it follows
that ¢ > 2. Let 1 < ¢ < j < t be given. We have at least two different
representations of A and thus we get

1 1
5i+@H($—ar)lT:ﬁj+ﬁH(x-@s)ls
T‘ESgi q SGSBJ.
or equivalently B(u; — uj) = 1, where 5 = 1/(8; — ;) and
1 1 w;
U = —— (r—ap)" = ,
q(x) EI;IB Woo

where for the last equality we have used the definition from the theorem; this
is a non-constant rational function in k(x) (otherwise h would be constant,
but degh > 2 by assumption). Actually, the u; are S-units (and the same
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is true for f) for the set of valuations S = {v4,,...,Va,,Vec} C M corre-
sponding to aq,...,an € k and oo (recall that u € k(x) is called an S-unit
if v(u) = 0 for all v ¢ S). In fact u; and u; have also no zeros in Al(k) in
common and they have all exactly the same poles (also with multiplicities),
namely a,,, m € Sy and possibly co. The Mason-Stothers theorem implies
that

(2.3) Ilpm<n—1forallm=1,...,n.

Observe that an application to S(u; —u;) = 1 gives the bound only for those
m which are in SoUSs,USp, ; by using the relations from (2.2) for all possible
combinations of 1 < i < j <t we see that indeed (2.3) holds. More precisely,
it follows that LT, the sum over all [,,,m € Sa, plus max{0, v (u;)}, and
L™, the sum over all l,,,m € Sy plus —min{0, voo(u;)}, is bounded by
n — 1. This can be immediately improved by an application of [6, Theorem
2]: First let us define uy41 := 1. The k-vector space generated by the S-units
UL,y ..., U, U1 € k(x) has dimension 2 and any two of the w; are linearly
independent, because au; + fu; = 0 with «, 3 € k implies either u; € k, a
contradiction, or au; + B(u; — B + 5i) = (o + B)u; + B(B; — F;) = 0 and
thus a = 8 = 0. It follows that

-1
degu; =LT =L~ < — Z min{v(u1),...,v(ut),0} < Ttlil <n-1
veEM o

for all i = 1,...,t. Especially, the degree of h is therefore also bounded by
n — 1 since it is equal to the degree of w; for all ¢ = 1,...,¢, so altogether
degh =degu; < (n—1)/(t — 1) <n— 1. By comparing coefficients in (2.2)
after cancelling denominators for all combinations of the equations that
have to hold there, we get an affine algebraic variety V (possibly reducible)
defined over Q in the variables aq,...,a,, B31,...,3:; thus V C A", We
point out that the number of variables and the exponents depend only on
n. Since f(x) = g(h(zx)) is given at this point, there are k-rational points on
this algebraic variety and one of them corresponds to (a1, ..., an, 81, .., 5t)
coming from f and g.
Now we turn to the case v (g) = 0. Here we have

n

_.fi:t M_.kj:t _A. kj
H(w a;) H B; H(p($) ﬁJQ(l')) .

i=1 j=1 q() j=1

Observe that a priori we have no control on the poles of h. However, as the
factors on the right hand side of the last equation are again pairwise coprime,
there is a partition of the set {1,...,n} in t disjoint subsets Sg,, ..., Sg, such
that

(@) - Bia@) = [ (@ — am)™.

mEng
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Thus k; divides fy, for all m € Sg; and this is true for all j = 1,...,¢. On
putting by, = fi/k; for m € Sg, we obtain

(2.4) p(x) = Bigx) = [ (2 —am)™

mGng

for j =1,...,t. Note that the exponents l,, € N, because p(x) — f;q(z) are
polynomials and the a.;,’s are distinct. We have already pointed out above
that in this case we may assume that ¢t > 3, since ¢ is not of exceptional
shape. Let us choose 1 < j1 < jo < j3 < t. From the corresponding three
equations in (2.4) the so called Siegel identity vj, j, js + Vjs j1.jo T Vjojz.jn = 0
follows, where

Vj1,42,3 = (ﬁ]& - ﬁjg) H (93 — Oém)lm.

mesﬁjg

The quantities vj, j, j, are non-constant rational functions and they are S-
units. Observe that by taking j; = 1,j2 = 4,54 = j with 1 < i < j <t the
Siegel identity can be rewritten as

Bi=brwi  fr=biw

Bj —Biwr  Bj— Biwr
where we are using the definition of the w; from the theorem. Moreover, we
get from (2.4) that

=1,

1

pa) = —— |6 [] @G—an)™ =8 [[ (z—am)
ﬁz BJ mEng mGSgi
_ Biwj — Bjw;
(25) BB
and
20) ae)= 5= | I[ @-aw' = IT o' | = =5

mESg]. mESgi

Hence, the numerator of h is in any case given by f, g and the integer vector
(l1,...,1,). The Mason-Stothers theorem applied to the Siegel identity now
implies that l,,, < n—1form € Sp,USp,USs;; as we may choose e.g. 1 = 2 and
j=3,...,t we have actually l,, <n —1 for m € {1,...,n}. More precisely
it follows for every ¢ that the sum over all I,, with m € Sg, is bounded by
n — 1, hence by (2.5) and (2.6) it follows that the degrees of p, ¢ and hence,
since the degree of a rational function is the maximum of the degrees of
the numerator and denominator in a reduced representation, the degree of
h is bounded by n — 1. Again this can be improved: We take w41 := wj.
Then the S-units wy/wi,...,wi/wi, wer1/w; = 1 span a k-vector space
of dimension 2 and any two are linearly independent, because the w; are
pairwise coprime polynomials and a constant quotient w;/w; would imply
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that h is constant, a contradiction, and if cw;/w; + fw;/wy = 0 for 1 <
i < j <t then (a—B(8; — A1)/ (b1 — Bi))wi/wi + B(Bj — Bi) /(B — Bi) =0
and therefore 5(5; — 8;) = 0 which implies § = o = 0. Thus [6, Theorem 2]
gives that degw;/w; < (n —1)/(t — 2) and, again since the w; are coprime
polynomials, degw; < (n —1)/(t —2) for all i« = 1,...,¢t. The definition of
h now implies that degh < (n —1)/(t —2) < n — 1. By taking the Siegel
identities as defining equations we again get an algebraic variety V C A"t

and (aq,...,an,01,...,0:) is a k-rational point on this variety.
Finally we point out that we have h(z ) = fj + wj/ws if voo(g) # 0 and
Seo = 0 and h(z) = (Biw; — Bjw;)/(w;j — w;) otherwise. In conclusion we

have now proved (i).
Now we come to (ii) and (iii). The point is that we get all possible decom-
positions of rational functions with at most n zeros and poles altogether by

considering for every integer 2 < ¢t < n and for every partition of {1,...,n}
into t+1 disjoint sets S, S3,, . .., 93, (observe that their number is bounded
only in terms of n) and for every choice of (I1,...,0,) € {0,1,...,n —1}"

(here we use the crucial bound obtained in both cases; see e.g. (2.3)) the
variety defined by equating the coefficients given by (2.2) after cancelling de-
nominators and, if Soo = () and ¢ > 3, the variety given by the various Siegel
identities. If the first system has a k-rational solution, then (2.2) defines the
rational function h(x); afterwards for any choice of integers ki, ..., k; with
k1 4 ...+ k # 0 we define a rational function g(z) by (2.1). If the second
system has a k-rational solution, then we define h(x) = p(x)/q(x) by (2.5)
and (2.6) and then for any choice of integers ki, ...,k with k1 +---+k =0
we define a rational function g(x) again by (2.1). Finally, in both cases, we
use

1= I e-ont IT =0 ™) = [T/t

to define the rational function f, which then has at most n zeros and poles
altogether and for which f(z) = g(h(z)) holds. The number J of possi-
ble varieties is at most 2np(n)n™, where p(n) is the partition function and
since everything above is completely explicit, the defining equations of the
varieties can be found explicitly. This proves the remaining parts of the
statement. ([
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