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Abstract. In this paper we consider biquadratic number fields, whose maxi-
mal orders have power integral bases consisting of units. We prove an effective
and efficient criteria to decide whether the maximal order of a biquadratic
field has a unit power integral bases or not. In particular we can determine
all trivial, biquadratic fields, whose maximal orders have a unit power integral
bases.

1. Introduction

In general it is a hard problem to decide which number fields K admit power
integral bases, PIB for short. In general to decide whether a number field K admits
a PIB or not leads to so called index form equations. These index form equations
have been treated by several authors and in particular by Győry (see e.g. [17, 16]).
Therefore it was possible to develop for concrete types of fields algorithms which
find PIB. For instance the problem was solved for cubic [14] and quartic [13] and
also for fields of higher degree of special form (see e.g. [10, 12]). For a detailed
overview one may have a look into Gaál‘s book [11] on this topic.

More recently Narkiewicz and Jarden [18] raised the following problem. Which
number fields have the property that their maximal orders are generated by units.
This problem was considered for several kinds of fields, e.g. for quadratic [3, 1],
cubic [21], pure quartic [9] and biquadratic fields [24].

These two topics in mind the following question arises

Problem 1. For which number fields does there exist a power integral basis con-
sisting of units?

The idea to solve this problem is quite simple. Let K be a number field of degree
n and ZK be the maximal order of K, furthermore assume B = {1, β2, . . . , βn} is
an integral base of ZK and let η = x1 + x2β2 + · · ·+ xnβn ∈ ZK. Then we consider
the equation

(1) I(η) = [ZK : Z[θ]] = F (x2, . . . , xn) = ±1
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2 A. PETHŐ AND V. ZIEGLER

which is solvable if and only if {1, θ, . . . , θn−1} is a PIB of K. Now assume θ ∈ Z∗K is
a solution to index equation (1). Then also θ−1 is a solution to (1). Beside “trivial“
cases the solutions corresponding to θ and θ−1 should be distinct. Recently this
idea has been successfully applied by the second author [23] in the case of pure
quartic fields K = Q[ 4

√
m]. He characterized all orders Z[ 4

√
m], which admit UPIB.

In this case the corresponding index form equation can be transformed into the well
studied Diophantine equation

(2) X2 − 4mY 4 = ±1.

The aim of this paper is to apply this idea to biquadratic fields, i.e. quartic
fields that have a Galois group isomorphic to Z/2Z×Z/2Z. Therefore the following
convention will be useful.

Definition 1. We call the biquadratic field K = Q(
√

dn,
√

dm) given in canonic
form if:

(1) d,m, n are square-free integers, which are relatively prime such that m and
n are odd and dm 6= 1, dn 6= 1 and mn 6= 1;

(2) dm ≡ dn mod 4;
(3) d > 0, m > n and d ≤ min{|m|, |n|} if dm ≡ dn ≡ 1 mod 4. Moreover we

put δ ∈ {0, 1} according to mn ≡ (−1)δ mod 4.

We call the field K trivial if d = 2δ, |m| = 1 or |n| = 1.

With these conventions Gras and Tanoé [15] showed that K admits a PIB is
equivalent to the solubility of the system of Pell equations

z22δm− y22δn = 4s

z22−δd− x22δn = s

y22−δd− x22δm = s,

(3)

where s ∈ {±1}. Note that every solution of a single Pell equation in (3) can be
obtained in the form 2(y0

√
2δm + z0

√
2δn)k = 2εk or (y0

√
2−δd + x0

√
2δn)j = ηj

or (z0

√
2−δd + x0

√
2δm)l = ρl. We call a solution with |k| = 1 or |j| = 1 or |l| = 1

a fundamental solution (in the first case one should also ignore the factor 2). Using
the idea presented above we are able to show the following result.

Theorem 1. Let K be a biquadratic number field and let ε be the fundamental
solution of one of the Pell equations in (3) (cf. Lemma 2). If there exists no
solution to (3) that is implied by εk with 1 ≤ k ≤ 27, then K admits no UPIB or
there exists a ∈ Z such that Z[θ] = ZK with θ ∈ Z∗K and

θ = a + x
1− δ + 2δ

√
mn

2
+

y − z

2

√
dn + z

√
dn +

√
dm

2
,

where (x, y, z) is a solution to (3) with xyz = 0.

This theorem will help us to find all trivial biquadratic fields that provide a
UPIB. In particular, we are able to prove

Theorem 2. Let K = Q(
√

dm,
√

dn) be a trivial biquadratic field. Then K has a
UPIB if and only if one of the two cases holds:
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• d = 1, m = n+4, δ = 0 and n ≡ 3 mod 4, n and n+4 are square-free and

ZK = Z
[√

n +
√

n + 4
2

]
;

• d = 2, m = n + 2, δ = 1 and n odd, n and n + 2 are square-free and

ZK = Z

[√
2n +

√
2n + 4

2

]
.

In particular, we can show that the maximal orders of the family

K = Q

(
√

n,

√
n− 1

4

)

of trivial biquadratic fields do not have UPIBs:

Corollary 1. Let n ≡ 1 mod 4 and assume n and n−1
4 are square-free. Then the

field K = Q
(√

n,
√

n−1
4

)
admits no UPIB.

Note that for all classes of trivial biquadratic fields there exist infinitely many n
for which the assumptions of Theorem 2 as well as Corollary 1 hold (cf. [8]).

This corollary is representative for a whole class of examples of parameterized
families of biquadratic fields. In view of Theorem 1 we only have to find the
fundamental solution of one single Pell equation in (3). In the last section we will
treat a further example.

Our paper is organized as follows. In the next two sections we present useful
results on maximal orders and power integral bases of biquadratic fields (Section 2)
and results on the structure of solutions to Pell equations of the form ax2 − by2 =
±1,±4 (Section 3). Using ideas due to Bennett, Cipu, Mignotte and Okazaki
[4, 5, 7] we will show that the system of Pell equations (3) has at most two solutions
provided there exists no small solution to (3) (Sections 4 and 5). Moreover, we show
that these two solutions are closely connected by the following relation. Let the
first solution be induced by εk1 and the second solution be induced by εk2 , with
k1 < k2, then we have k1|k2. On the other hand if θ ∈ Z∗K induces a UPIB also
θ−1 induces a UPIB, hence in case of K admits a UPIB we have two solutions to
(3). In Section 6 we show that the two solutions coming from θ and θ−1 cannot
satisfy a relation of the form k1|k2, hence a contradiction to K admits a UPIB. In
the last two sections we apply Theorem 1 to two examples. In the first example we
classify all trivial biquadratic fields, i.e. d = 2δ or |m| = 1 or |n| = 1, that admit
a UPIB (see also Corollary 1). In the last section we consider the infinite family
K = Q(

√
18n2 + 17n + 4,

√
2n2 + n) of biquadratic fields and apply Theorem 1.

2. Maximal Orders and Power Integral Bases

This section is devoted to the results due to Gras and Tanoè [15]. We start with
a result due to Williams [22] on the integral basis of K. In view of our canonic form
of K we state William’s result in the following form:

Lemma 1. Let K = Q(
√

dm,
√

dn) be given in canonic form, then two cases may
occur:
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(1) Assume that dm ≡ dn ≡ 1 mod 4 and assume that we choose λ = ±1 such
that d ≡ m ≡ n ≡ λ mod 4. Then

BK =

{
1,

1 +
√

mn

2
,
1 +

√
dn

2
,
1 + λ

√
mn +

√
dn +

√
dm

4

}

is an integral basis and dK = (dmn)2 is the field discriminant.
(2) Assume that dm ≡ dn ≡ 2 or 3 mod 4. Then

BK =

{
1,

1− δ + 2δ
√

mn

2
,
√

dn,

√
dn +

√
dm

2

}

is an integral basis and dK = (2δ+2dmn)2 is the field discriminant.

With the notations of Lemma 1 we can state now the result due to Gras and
Tanoé [15].

Proposition 1. Let K = Q(
√

dm,
√

dn) be given in canonic form. If dm ≡ dn ≡ 1
mod 4, then K admits no PIB and hence no UPIB. In the other cases K admits a
PIB if and only if (3) has a solution, say (x, y, z). In this case {1, α, α2, α3} is a
PIB, where α has coordinates (x, y−z

2 , z) with respect to the integral basis BK. A
necessary condition for (3) to be solvable is that 2δm = 2δn + 22−δd.

By the linear relation of d,m, n in Proposition 1 we see that either n/m, 4δn/d
or 4δm/d lie in the open interval (1/8, 8). Therefore it is always possible to find for
a given Pell equation in (3) a second Pell equation in (3) such that the resulting
system of Pell equations is of the form

aX2 − bY 2 = ±4e1 , cX2 − dZ2 = ±4e2 ,

with 1/8 < a/c < 8, e1, e2 ∈ {0, 1} and fixed signs.

3. Pell Equations

Since (3) we are interested in Pell equations of the type

(4) ax2 − by2 = ±4e,

where e ∈ {0, 1} and 0 < a < b are integers such that ab is square-free. Note that
by Definition 1 we have d > 0. If n < 0 then (3) is very easily solvable, which
justifies our assumption. First, let us consider the structure of solutions of Pell
equations of type (4).

Lemma 2. There exist non-zero integers x0, y0 such that for each solution (x, y)
to (4) we have

x
√

a + y
√

b = 2e

(
x0
√

a + y0

√
b

2e

)k

= 2eαk.

Moreover, if a > 1, then k has to be odd.

Note that the algebraic integer α is a unit in K and will be called the fundamental
solution to (4). Although the lemma seems to be known, we have not found an
adequate reference. Therefore we give here a short proof.
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Proof. If a = 1, then we have nothing to prove because (4) turns into a usual Pell
equation. Thus we assume in the sequel a > 1. We multiply (4) by a and obtain

(5) (ax)2 − aby2 = ±4ea.

We distinguish now the three cases 1) e = 0, 2) e = 1 and ab 6≡ 1 mod 4 and 3)
e = 1 and ab ≡ 1 mod 4.

Let us consider the first case. Since every prime p with p|a, also divides the
discriminant of Q(

√
ab) we know by a theorem of Dirichlet that (p) = p2 for some

prime ideal p thus (a) = a2, for some ideal a. If a is not a principal ideal (5) is not
solvable. Otherwise there exist x̃0 and y0 such that every solution (ax, y) to (5) can
be written in the form ax+y

√
ab = (x̃0 +y0

√
ab)εk, where ε > 1 is the fundamental

unit of Z[
√

ab]. Since every prime ideal dividing (a) also divides ax + y
√

ab, we
conclude x̃0 = ax0 hence dividing the solution by

√
a we obtain that every solution

(x, y) to (4) is of the form

x
√

a + y
√

b = (x0

√
a + y0

√
b)εk.

Obviously η = x0
√

a + y0

√
b is also a unit (of Q(

√
a,
√

b)) such that η2 ∈ Z[
√

ab]
and hence η2 = εl. In the case of l is even we can take square roots and find
η = ±εl/2 ∈ Q(

√
ab) a contradiction. Therefore we have η2 = ε2kε, i.e.

η̃2 =
( η

εk

)2

= ε.

It is easy to see that η̃ is of the form x̄0
√

a + ȳ0

√
b and we have

x
√

a + y
√

b = (x̄0

√
a + ȳ0

√
b)εk̄ = η̃2k̄+1.

In the second case the proof runs analogously with the only exception that we
have to consider the ideal (4a) instead of (a). Since 2 is ramified in Q(

√
ab) no new

arguments have to be included, we only have to keep track of the factor 2.
In the third case we note that all solutions (x, y) of the equation

x2 − aby2 = ±4

are of the form x + y
√

ab = 2εk, where ε = x0+y0
√

ab
2 is the fundamental unit of

Q(
√

ab). ¤

Next we want to estimate the growth of solutions.

Lemma 3. Assume that a > 4 and k ≥ 28 in Lemma 2. Then the inequalities

(6) x >
xk

0a(k−1)/2

2k
and x >

yk
0 b(k−1)/2

2k
.

hold. In any case (but still assuming k ≥ 28) we have

(7) x >
( 1+

√
5

2 )k − 1√
5

> 1.572k.

Proof. Using the notation of Lemma 2 we write α = x0
√

a+y0
√

b
2e . Assume that

x0a > 1, then we obtain for a solution

x =
2e−1

√
a
· (αk ± α−k) >

(x0
√

a+1
2 )k − 1√

a
≥ xk

0a(k−1)/2

2k
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The validity of the second inequality can be seen by considering the cases e = 0
and e = 1 separately. Of course the first statement of the lemma is still true for
x0a = 1. Moreover, the second inequality can be established analogously.

On the other hand we know α ≥ 1+
√

5
2 in which case e = 1, hence

x ≥ αk ± α−k

√
5

>

(
1+
√

5
2

)k

− 1
√

5
> 1.572k.

¤
The next lemma is due to Nagell [20]

Lemma 4. Let 1 < a < b be integers such that ab is square-free. Then at most one
of the two equations

ax2 − by2 = ±1
has a solution.

Proof. The lemma is an immediate consequence of Nagell’s result [20, Theorem 3,
Part 1] ¤

4. Hypergeometric Method

Suppose that the system of Pell equations (3) has two solutions corresponding
to the exponents (k1, j1, l1) and (k2, j2, l2). In view of Theorem 1 we show that the
second solution stays small with respect to the first solution. For this purpose we
use the hypergeometric method and adept Bennett’s method [4] to our case. We
use the following effective irrationality measure (see [4]):

Theorem 3. If ai, pi, q and N are integers for 0 ≤ i ≤ 2, with a0 < a1 < a2,
aj = 0 for some 0 ≤ j ≤ 2, q nonzero and 0 < M9 < N , where

M = max
0≤i≤2

{|ai|},
then we have

max
0≤i≤2

{∣∣∣∣
√

1 +
ai

N
− pi

q

∣∣∣∣
}

> (130NΥ)−1q−λ,

where

λ = 1 +
log(33NΥ)

log
(
1.7N2

∏
0≤i<j≤2(ai − aj)−2

)

and

Υ =





(a2 − a0)2(a2 − a1)2

2a2 − a0 − a1
if a2 − a1 ≥ a1 − a0,

(a2 − a0)2(a1 − a1)2

a1 + a2 − 2a0
if a2 − a1 < a1 − a0.

We consider in more generality the system of Pell equations

(8) ax2 − by2 = δ1, cx2 − dz2 = δ2,

with δi = ±4ei with ei ∈ {0, 1} and the fixed signs for i = 1, 2 such that aδ2 6= cδ1.
Then all solutions (see Lemma 2) of the first equation are of the form

x
√

a + y
√

b = 2e1

(
x0
√

a + y0

√
b

2e1

)k

= 2e1αk
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and all solutions of the second equation are of the form

x
√

c + z
√

d = 2e2

(
x′0
√

c + z0

√
b

2e2

)j

= 2e2βj

for some integers j, k. In view of Theorem 1 we may assume j, k ≥ 28.

Proposition 2. Assume that α < β, a/8 < c < 8a and k1 ≥ 28. Then we have

k2

k1
<

7k3
1 + 114.35k2

1 − 1228.1k1 + 656.97
k1(k1 − 1)(k1 − 27.11)

· 1
1 + 10−12

.

In particular if we assume that k1 ≥ 28 we find k2 < 311.492k1.

Proof. Now let us assume that the system (8) has two positive solutions (xi, yi, zi)
with exponents ki and ji for i = 1, 2. We want to apply Theorem 3 and we choose
therefore N = acx2

1, a1 = ∓4e1c, a2 = ∓4e2a, p1 = bcy1y2, p2 = adz1z2 and
q = acx1x2.

First, we have to show that with this choice the assumption N > M9 is satisfied.
Let us assume that a > c. Then we have M ≤ 4a and we obtain by Lemma 2

N >
a2

8
x2

1 >
a2

8
x56

0 a27

256
> 49a9 ≥ M9,

provided a > 14. Similarly in the case a ≤ c we obtain

N >
c2

8
x2

1 >
c2

8
x56

0 c27

256
> 49c9 ≥ M9,

provided c > 14. If b or d is larger than max{a, c} we obtain even larger lower
bounds for N by using the second inequality in Lemma 2. Therefore we may assume
14 ≥ max{a, b, c, d}, i.e. we are left to finitely many systems of Pell equations. For
each sextuple (a, b, c, d, δ1, δ2) with aδ2 6= cδ1 we show that there exists no solution
such that x > 1.57228 and

acx2 ≤ (max{|δ2|a, |δ1|c})9.
This can be done by a simple computer search. Since we did not find any such x
we may assume that indeed N > M9.

With the choice made above we obtain√
1 +

a1

N
− p1

q
=

by1

ax1

(√
a

b
− y2

x2

)

and √
1 +

a2

N
− p1

q
=

dz1

cx1

(√
c

d
− z2

x2

)
.

Next, we estimate by1
ax1

:
(

by1

ax1

)2

=
b

a

(
1 +

±4e1

ax2
1

)
≤ 1.001

b

a
,

hence
by1

ax1
≤ 1.01

√
b

a
.

Moreover, we have
∣∣∣∣
√

a

b
− y2

x2

∣∣∣∣ =

∣∣∣∣∣
x2
√

a− y2

√
b

x2

√
b

∣∣∣∣∣ =
∣∣∣∣

4e1

√
bx1

· 1
x2
√

a− y2

√
b

∣∣∣∣ ≤
4

x2
2

√
ab

.
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Similar considerations for the second Pell equation of (8) yield

(9) max
0≤i≤2

{∣∣∣∣
√

1 +
ai

N
− pi

q

∣∣∣∣
}

<
4.04
x2

2

max{1/a, 1/c} ≤ 4.04
x2

2

.

Our next aim is to find a lower bound for the maximum. Therefore we use
Theorem 3. Let us estimate the necessary quantities. We start with Υ. Let us note
that Υ is maximal if a2 and a1 have opposite signs and are maximal, without loss
of generality we may assume that a2 = 4c < 32a and a1 = −4a, i.e. Υ < 214a3

9 .
Next, we consider λ. Let us assume that ax0 > 1, then we obtain

λ ≤1 +
log

(
11·217

3 a5x2
1

)

log
(

x4
1

215·34a4

)

≤1 +
2k1(log x0 + log a

2 ) + 4 log a + 13 log 2 + log(11/3)

4k1(log x0 + log a
2 )− 6 log a− 23 log 2− log 81

≤1 +
2k1 + 17 + log(11/3)

log 2

4k1 − 29− log(81)
log 2

=
3k1 − 8.23
2k1 − 17.67

.

The second equation is true since the function 2 log x+A
4 log x−B is decreasing provided A

and B are positive. This is obvious in our case, and therefore we can insert the lower
bounds for x1 in order to get the stated upper bound. In the case of ax0 = 1 we
obtain the same expression for λ but log a = 0 and using the estimate x1 > 1.572k1

we receive

λ ≤ 1 +
log

(
11·217

3 x2
1

)

log
(

x4
1

215·34

) ≤ 1 +
2k1 + log(217·11)−log 3

log 1.572

4k1 − log(215·34)
log 1.572

≤ 3k1 − 1.88
2k1 − 16.35

which yields a smaller upper bound for λ provided k1 ≥ 9, i.e. we may assume that

(10) λ ≤ 3k1 − 8.23
2k1 − 17.67

.

Putting everything together Theorem 3 yields the lower bound

(11)
9x−2

1

65 · 218a5
· (23a2x1x2)

− 3k1−8.23
2k1−17.67 .

Now comparing the lower (11) and the upper bound (9) for

max
0≤i≤2

{∣∣∣∣
√

1 +
ai

N
− pi

q

∣∣∣∣
}

yields
9x−2

1

65 · 218a5
· (23a2x1x2)

− 3k1−8.23
2k1−17.67 <

4.04
x2

2

.

Rearranging the above inequality we obtain

xk1−27.11
2 < 29.182k1−17.67245k1−342.75a16k1−104.81x7k1−43.57

1 .
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Taking logarithms and using (7) and (6) yields

log(x2) < log(x1)
(

14.92k1 − 131.77
k1(k1 − 27.11)

+
68.96k1 − 525.2
k1(k1 − 27.11)

+
81.04k1 − 530.82

(k1 − 1)(k1 − 27.11)
+

7k1 − 43.57
k1 − 27.11

)

=
7k3

1 + 114.35k2
1 − 1228.1k1 + 656.97

k1(k1 − 1)(k1 − 27.11)
.

(12)

Note this bound is still true for a = 1 as well. Indeed in this case we would obtain
even a sharper bound.

Now let us assume that k2 = σk1 for some σ > 1. This yields

log x2 − σ log x1 = log(2e1−1)− σ log(2e1−1) + k2 log α− σk1 log α

+ log(1 + α−2k2)− σ log(1 + α−2k1) > − 2σ

α2k1
.

Since we assume that k1 ≥ 28 we obtain

log x2 > log(x1)
k2

k1

(
1− 2

α2k1 log x1

)
> log(x1)

k2

k1
· 1
1 + 10−12

.

Together with (12) this yields the proposition. ¤

5. Gap principle

The main purpose of this section is to prove the following proposition

Proposition 3. Assume that (8) has no solution for 1 ≤ k ≤ 27, then (8) has at
most two solutions and the corresponding exponents satisfy k2 = qk1 with q ≤ 311.

The key point of the the proof of Proposition 3 is to show that a possible third
solution is large with respect to the other two solutions, i.e. we establish a gap
principle similar to the gap principles in [5, 7].

Before we establish the gap principle we prove a divisibility property for expo-
nents.

Lemma 5. Let (k1, j1) be the exponents of the smallest positive solution of system
(8) and let (k, j) be the exponents of a further positive solution to (8). Then we
have k1|k and j1|j.

The proof of the lemma can be found in [7] (one has to combine there the first
part of Lemma 5 and part (2) of Lemma 6) in the case of e1 = e2 = 0 in (8). In
case of e1 = 1 or e2 = 1 the proof [7, Lemma 5] works as well.

Now let us turn to the gap principle

Lemma 6. Assume (8) has three positive solutions with exponents (ki, ji) and
1 ≤ i ≤ 3 with 28 ≤ j1 < j2 < j3. Further, we assume that 1

8 < a
c < 8. Then we

have
j3 − j2 > 337j1k1 ≥ 337j1.

Proof. The idea of the proof is similar to the idea used in the proof of [5, Lemma
2.2]. First, we note that we have (in the notation of Section 3)

x = 2e1−1 αk ± α−k

√
a

= 2e2−1 βj ± β−j

√
c

,
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where the signs depend on the norm of the fundamental solutions. Therefore we
have to consider all four possibilities. Now let us write αk = eu and βj = et,
where e denotes the base of the natural logarithm. Then the points (ui, ti) =
(ki log α, ji log β) for i = 1, 2, 3 lie on the curve

F (u, t) = (eu ± e−u)− (et ± e−t)

√
a4e2−e1

c
= 0.

Since we assume j ≥ 28 we have u, t ≥ 28 · log((1 +
√

5)/2) > 13.4. It is easy to
see that neither Fu = 0 nor Ft = 0 for u, t > 13.4. Therefore u is a differentiable
function of t on this domain and we may differentiate implicitly. We obtain

(13)
du

dt
= − Ft

Fu
=

et ∓ e−t

(eu ∓ e−u)
√

a4e2−e1

c

and

(14)
d2u

dt2
= −

(
du

dt

)2

Fuu + 2
du

dt
Fut − Ftt =

(
1−

(
du

dt

)2
)

eu ± e−u

eu ∓ e−u
.

Our aim is to estimate (14). Therefore we consider (13) first. Let us note that

et = (eu ∓ e−u)

√
a4e2−e1

c
± 2e−u

√
a4e2−e1

c
∓ e−t,

hence et = eu
√

a4e2−e1

c · (1 + θ10.001), where |θ1| < 1 and therefore we obtain

et =eu

√
a4e2−e1

c

(
1± e−2u

√
a4e2−e1

c
∓ e−t−u

)

=eu

√
a4e2−e1

c

(
1 +

5.85θ2

e2u

)
,

(15)

where |θ2| < 1. The last inequality is a consequence of the fact that a/c, c/a < 8.
Now we obtain

du

dt
=

(eu ∓ e−u)
√

a4e2−e1

c ± 2e−u
√

a4e2−e1

c ∓ 2e−t

(eu ∓ e−u)
√

a4e2−e1

c

=1 +
±2e−u

√
a4e2−e1

c ∓ 2e−u
√

c
a4e2−e1 · 1

1+
5.85θ2

e2u

(eu ∓ e−u)
√

a4e2−e1

c

=1 +
11.3 · θ3

e2u
,

with |θ3| < 1. This result inserted into (14) yields

(16)
∣∣∣∣
d2u

dt2

∣∣∣∣ <
eu ± e−u

eu ∓ e−u
· 22.65

e2u
<

22.7
e2u

.

Using now twice the mean value theorem we obtain by (16)
∣∣∣∣∣

u3−u2
t3−t2

− u2−u1
t2−t1

t3 − t1

∣∣∣∣∣ <
22.7
e2u1
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and therefore we obtain by recalling the definition of the t’s and u’s
∣∣∣∣
k3 − k2

j3 − j2
− k2 − k1

j2 − j1

∣∣∣∣ <
22.7(log β)2(j3 − j1)

e2u1 log α
.

Now similarly as in [5, page 410-1] we conclude

(17) j3 − j2 >
j1k1α

2k1 log α

22.7(j3 − j1)(j2 − j1)(log β)2
.

Now by Proposition 2 we have j3 − j1 < 312j1 and we also note that

j1 log(β) < log(αk1) + log(32) + 1 < 1.34 log(αk1),

hence we obtain

j3 − j2 > j1k1
α2k1

22.7 · 3122 · 1.342k2
1 log α

> 337j1k1.

¤

As an immediate consequence of the Lemmas 5 and 6 in combination with Propo-
sition 2 we obtain Proposition 3.

Remark 1. Since we assume that the smallest solution to (8) is large, i.e. k1 ≥ 28,
our proof that there exist only 2 solutions avoids the main problems of proving
that there are at most two solutions. Therefore the proof of Proposition 3 is rather
short, compared to the proof of the result due to Cipu and Mignotte [7].

6. Proof of Theorem 1

First, let us note an almost immediate consequence of Lemma 2:

Lemma 7. Assume that k ≥ 28 in the notation of Theorem 1. Then we have
z > 16m4.

Proof. The estimate (6) shows that if ε is the fundamental solution to the first
equation of (3), then we have

z >
m13.5

228
> 16m4,

provided m > 10.4.
Assume that ε is the fundamental solution to the second equation of (3). Then

we get by Lemma 2

z
√

2−δd + x
√

2δn =
(
z0

√
2−δd + x0

√
2δn

)k

with some k. A trivial estimate together with the remark at the end of Section 2
leads to the inequality

z >
max{n, 2−δd}13.5

2
>

(m/8)13.5

2
> 16m4,

provided m > 24.8.
In the case that ε is the fundamental solution to the third equation we note that

x, y > 16m4, provided m > 1.45. Considering now the third and second equation
of (3) we deduce z > y > 16m4. On the other hand we know m ≥ 3 and therefore
this equation is always fulfilled.
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Hence we are left with finitely many cases. For each case we can compute the
fundamental solution and therefore also a lower bound for z under the assumption
k ≥ 28. Indeed we obtain z > 16m4. ¤

Assume now there exists a UPIB, in particular assume ZK = Z[θ] with θ ∈ Z∗K
and let (x, y, z) and (xi, yi, zi) be the solutions to (3) that correspond to θ and θ−1

respectively. Without loss of generality we may assume that the exponents k and
ki corresponding to θ and θ−1 satisfy k ≤ ki and by Proposition 3 we have k|ki.
But this implies z|zi. On the other hand θ−1 is explicitly computable in terms of
a, x, y, z. In particular, for our purpose the quantity zi is interesting and we obtain

± 4zi = −4a2z − 4δmnx2z − ny(dzy + 21+δx2(δ − 1))+

4ax(2δny + z(δ − 1)) + z(dmz2 − x2(δ − 1)2).

In the following we will distinguish between the two cases, 1) δ = 1 and 2) δ = 0.

6.1. The case δ = 1. First, we note that in this case m = n + d and we have

0 ≡ zi ≡ ±2anxy mod z.

Note that we have excluded the case x = 0 or y = 0 by assuming positive solutions.
Also note that neither x nor y has a common divisor with z since otherwise the
second or the first Pell equation in (3) cannot be fulfilled. Also z and n can only
have a common divisor dividing 2. But z has to be odd, since otherwise both y
and z have to be even, which contradicts the first equation of (3). Therefore we
conclude z|a.

Now let us compute the norm of the unit θ with respect to the assumption δ = 1.
We obtain

± 1 = N(θ) =
1
16
× (16a4 + d2n2y4 + 32admnxyz + m2(−4nx2 + dz2)2

− 2dmny2(4nx2 + dz2)− 8a2(4mnx2 + dny2 + dmz2)).

Let us consider the equation for the norm modulo z. Then we obtain with z|a in
mind

±1 ≡ n2(dy2 − 4mx2)2

16
mod z.

Expressing x2 and y2 in terms of z2 by the second and third equation of (3) yields

±4 ≡ (d−m)2 mod z.

Since m ≥ 3 and Lemma 7 we have

(d−m)2 < m2 < 8m4 <
z

2

and therefore (d−m)2 = ±4. This is a contradiction unless m−d = n = 2. However
we assumed n to be odd, thus n = 2 is impossible.
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6.2. The case δ = 0. In this case we have m = n + 4d and we deduce

0 ≡ 2zi ≡ nx(2a + x)y mod z.

Since eventually z and y have greatest common divisor 2 and since z is relatively
prime to nx we obtain (z/2)|2a + x if z is even and z|2a + x otherwise. Again we
compute the norm of θ modulo z and obtain

±1 ≡ N(θ) =
n2(mx2 − dy2)2

16
mod z.

Again we use the second and the third equation of (3) to express y2 and x2 in terms
of z2 and obtain

±1 ≡ (m− 4d)2

16
≡ n2

16
mod z.

Assume z = 2p2z1 with z1 odd we obtain by multiplying the equation above by 16

±16 ≡ n2 mod
z

2min{p2,4} .

Since m ≥ 3 and Lemma 7 we have n2 < m2 < z/16 and the plus sign cannot hold,
unless n = 4 which contradicts the assumption that n is square-free. On the other
hand a square root of −16 modulo z

2min{p2,4} is at least
√

z

16
− 16 >

√
m4 − 16 > m2 − 8

m2
> m2 − 1 ≥ n2

which also yields a contradiction.
Hence in both cases we have shown that the solutions corresponding to θ and θ−1

cannot be related by k|ki and therefore Proposition 3 immediately yields Theorem 1.

7. Trivial Biquadratic Fields

By Definition 1 the biquadratic field Q(
√

dm,
√

dn) given in canonic form is
trivial, if either d = 2δ or |m| = 1 or |n| = 1. According to Gras and Tanoé [15,
Theorem 13] we know that the only trivial real biquadratic fields, whose maximal
orders have PIBs, are contained in the families

• K = Q
(√

n−1
4 ,

√
n
)
, i.e. d = n−1

4 , m = 1, δ = 0 and n ≡ 9, 13 mod 16, n

and (n− 1)/4 are square-free;
• K = Q

(√
n + 4,

√
n
)
, i.e. d = 1, m = n + 4, δ = 0 and n ≡ 3 mod 4, n

and n + 4 are square-free;
• K = Q

(√
2(n + 2),

√
2n

)
, i.e. d = 2, m = n + 2, δ = 1 and n odd, n and

n + 2 are square-free.

Let us treat the last two cases first. In this case trivial solutions to (3) exist.
Indeed (x, y, z) = (0, 1, 1) is in both cases a solution and we obtain ZK = Z[θ] with

θ =

√
dn +

√
dm

2
=





√
n +

√
n + 4

2
if d = 1,m = n + 4;

√
2n +

√
2n + 4

2
if d = 2,m = n + 2.

Obviously in both cases θ is a unit and therefore a UPIB exists.
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Now let us consider the first case, i.e. we have to consider the system

nz2 − y2 = −4,

n− 1
4

z2 − x2 = −1,

n− 1
4

y2 − nx2 = −1.

(18)

The last equation has the fundamental solution ε = 2
√

(n− 1)/4 +
√

n. Therefore
the system of Pell equations with opposite signs has no solution due to Lemma 4.
According to Theorem 1 we have to check whether there exist solutions to (18)
coming from εk for 1 ≤ k ≤ 27. By Lemma 2 we know that k has to be odd.

First let us assume k > 1. Then it is easy to compute z2 for the possible 13
cases. Computing z2 modulo 256 we see that in most cases, i.e. k 6= 7, 9, 23, 25, we
have either 32‖z2 (if k = 3, 5, 11, 13, 19, 21, 27) or 128‖z2 (if k = 15, 17), which is
impossible. Hence we are left with the cases k = 7, 9, 23, 25.

Now, we obtain the following expressions for z2.

k =7 : z2 =64(2n− 1)(4n− 3)(4n− 1)(8n2 − 8n + 1)

k =9 : z2 =64(2n− 1)(8n2 − 8n + 1)(16n2 − 20n + 5)(16n2 − 12n + 1)

k =23 : z2 =64(2n− 1)(4n− 3)(4n− 1)(8n2 − 8n + 1)×
(16n2 − 16n + 1)(256n4 − 512n3 + 320n2 − 64n + 1)×
(1024n5 − 2816n4 + 2816n3 − 1232n2 + 220n− 11)×
(1024n5 − 2304n4 + 1792n3 − 560n2 + 60n− 1)

k =25 : z2 =64(2n− 1)(4n− 3)(4n− 1)(8n2 − 8n + 1)×
(16n2 − 16n + 1)(256n4 − 512n3 + 320n2 − 64n + 1)×
(4096n6 − 13312n5 + 16640n4 − 9984n3 + 2912n2 − 364n + 13)×
(4096n6 − 11264n5 + 11520n4 − 5376n3 + 1120n2 − 84n + 1).

It is easy to show that in the cases k = 7, 23 and 25 the factor 4n−1 is prime to the
other factors, hence 4n− 1 has to be square, a contradiction. In the case of k = 9
we also see that the factors are coprime, hence 2n− 1 = ξ2 and 8n2 − 8n + 1 = η2,
hence we obtain the Diophantine equation

2ξ4 − η2 = 1.

This equation has been already considered by Ljunggren [19] (see also [6]) and the
only solutions are (1, 1) and (13, 239). But ξ = 1 yields n = 1 which is not an
admissible value. The case ξ = 13 yields n = 85, but this value does not yield an
integer for z.

Now let us consider the case k = 1. In this case there exists the non-negative
solution (x, y, z) = (1, 2, 0). Hence Theorem 1 is still applicable. We are left to
check whether

θ = a +
1 +

√
n

2
±

√
n− 1

4
is a unit for some a ∈ Z. Computing the norm of θ we obtain:

(1 + 2a + 2a2)2 − n(1 + 2a)2 = ±4.
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This is a linear equation in n and we obtain

n = a2 + a +
3
4

+
1± 16

4(2a + 1)2
.

Since ∣∣∣∣
1± 16

4(2a + 1)2

∣∣∣∣ ≤
1
4

unless −3 ≤ a ≤ 2 we deduce that n cannot be an integer for ”large“ a. We
compute for each of the remaining a’s in both cases n and obtain only the integer
solutions n = −3, 5. Since we assume n > 0 and n ≡ 9, 13 mod 16 these solutions
do not yield fields with UPIBs.

Therefore we have proved Theorem 2 and also Corollary 1.

8. The family Q(
√

18n2 + 17n + 4,
√

2n2 + n)

In this section we want to show, what will be the typical result if Theorem 1 is
applied to families of biquadratic fields. In particular we choose m = 9n + 4 and
d = 2n + 1. The aim of this section is to prove

Theorem 4. Assume that n is odd and 18n2 + 17n + 4 and 2n2 + n are square-
free. Then K = Q(

√
18n2 + 17n + 4,

√
2n2 + n) is a quartic field and there exists

an explicit computable constant C such that for n > C the field K admits no UPIB.

Remark 2. It is not obvious that 18n2 + 17n + 4 and 2n2 + n are simultaneously
square-free for infinitely many n. Erdős [8, pages 417-418] points out that f(n) =
h(n)g(n) is square-free for infinitely many n, provided the polynomials g(n) and
h(n) are coprime and both are square-free for infinitely many n. Applied to f(n) =
(18n2+17n+4)(2n2+n) we see that indeed for infinitely many n both 18n2+17n+4
and 2n2 + n are square-free simultaneously.

Proof. In view of Theorem 1 we have to consider the system of Pell equations

(9n + 4)z2 − y2n = ±4,

(2n + 1)z2 − nx2 = ±1,

(2n + 1)y2 − (9n + 4)x2 = ±1.

(19)

Note the first equation has the fundamental solution ε =
√

9n + 4 − 3
√

n and
therefore the ”+”-signs hold in (19). Therefore the ”−”-sign can be excluded due to
Lemma 4. Thus we have to consider potential solutions induced by εk for 1 ≤ k ≤ 27
and k odd. We compute for each k the value of y2. For the first k’s we obtain

k =1 y2 =2

k =3 y2 =(9n + 4)(18n + 5)

k =5 y2 =(81n2 + 54n + 7)(162n2 + 81n + 8)

and for 7 ≤ k ≤ 27 we get

y2 = (3k−1n(k−1)/2 + · · · )(2 · 3k−1n(k−1)/2 + · · · ) = pk(n)qk(n),

where the factors are irreducible polynomials, which take coprime values for all n.
This can be seen by computing the extended polynomial gcd

ak(n)pk(n) + bk(n)qk(n) = 1



16 A. PETHŐ AND V. ZIEGLER

over Q[n] and observing that ak(n), bk(n) ∈ 1
3Z[n], but 3|ak(n) nor 3|bk(n) for any

n. Hence for each k > 5 we have a hyperelliptic equation which can be solved in
theory explicitly (cf. [2]). In practice the degree and the coefficients of pk(n) are
too large to solve the corresponding hyperelliptic equations explicitly. However,
there are only finitely many n which yield solutions for any of these Diophantine
equations.

So we are left to the cases k = 1, 3, 5. The case k = 1 obviously yields no solution.
In the case k = 3 we write ξ2 = 9n + 4 and η2 = 18n + 5 which leads to the Pell
equation

η2 − 2ξ2 = −3,

which has no solution. Indeed consider the equation modulo 3, then in case of a
solution we would have

(
2
3

)
= 1 for the Legendre symbol, a contradiction. Now let

us consider the case k = 5. Since the factors 81n2 + 54n + 7 and 162n2 + 81n + 8
are coprime , the first factor has to be a square. But,

81n2 + 54n + 7 = (9n + 3)2 − 2 = 2
is again a contradiction, which finally proves Theorem 4. ¤
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