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Abstract. In this article we develop algorithms for solving the
dual problems of approximating linear forms and of simultaneous
approximation in number �elds F . Using earlier ideas for com-
puting independent units by Buchmann, Peth® and later Pohst we
construct sequences of suitable modules in F and special elements β
contained in them. The most important ingredient in our methods
is the application of the LLL-reduction procedure to the bases of
those modules. For LLL-reduced bases we derive improved bounds
on the sizes of the basis elements. From those bounds it is quite
straight-forward to show that the sequence of coe�cient vectors
(x1, ..., xn) of the presentation of β in the module basis becomes
periodic. We can show that the approximations which we obtain
are close to being optimal. Thus our algorithm can be considered
as such a generalization of the continued fraction algorithm which
is periodic on bases of real algebraic number �elds.

1. Introduction

Let τ1, ..., τn be non-zero real numbers. In 1846 Dirichlet proved [4]:
For all Q > 1 there exist x1, ..., xn ∈ Z, not all of them 0, such that

|xi| ≤ Q (2 ≤ i ≤ n),

∣∣∣∣∣
n∑
i=1

xiτi

∣∣∣∣∣ < |τ1|Q1−n .

Further, for all Q > 1 there exist x1, ..., xn ∈ Z, not all of them 0, such
that

|x1| ≤ Q,

∣∣∣∣x1 τiτ1 − xi
∣∣∣∣ < Q−1/(n−1) (2 ≤ i ≤ n) .

The �rst problem will be called approximation of linear forms, the
second one simultaneous approximation. For n = 2 these inequalities
are essentially identical which is not true for n > 2. However, by
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the transference principle of Khintchine, see [5], [10] and [14], an
approximation of a linear form can be transformed into a simultaneous
approximation of the coe�cients and vice versa.

For n = 2 the continued fraction algorithm - applied to τ2/τ1 -
computes very e�ciently solutions of Dirichlet's inequality. Moreover,
the continued fraction of a real number τ is by a classical theorem
of Lagrange [6] periodic if and only if τ is a quadratic algebraic number.

Since the early 19th century many attempts were made to �nd a
generalization of the continued fraction algorithm for n > 2 and for
the generalization of Lagrange's theorem for bases of algebraic number
�elds of degree n > 2. You �nd a good overview of these e�orts in the
book of Bernstein [1].

In 1902 H. Minkowski proved a generalization of Lagrange's theorem
[9]. As his result is based on his multidimensional linear approximation
process [8], which uses essentially the theory of successive minima, it
does not yield an e�cient method to �nd the periodic sequence. For
algebraic numbers of special forms the Jacobi-Perron algorithm solves
the problem, see again [1].

A.K. Lenstra, H.W. Lenstra Jr. and L. Lovász published in 1982
a lattice basis reduction algorithm [7]. For integral lattices it has
polynomial complexity in the size of the input vectors and of the
discriminant. This algorithm is called nowadays LLL-algorithm. In
that paper the authors showed that the LLL-algorithm solves a
slightly weaker form of the simultaneous approximation problem for
any given Q > 1, see Section 5. This method of solution is static in
the sense that knowing a result for a constant Q we cannot use this
information for calculating a solution for Q̃ > Q. Recently W. Bosma
and I. Smeets [2] published an iterated version of the LLL-algorithm
for the computation of a sequence of solutions of the multidimensional
diophantine approximation problem. Their algorithm handles several
linear forms but has the same bottleneck as the original LLL-algorithm
mentioned above.

J. Buchmann and A. Peth® [3] developed an algorithm for the
computation of a system of independent units of full rank in algebraic
number �elds. Their method is based on a dynamical use of the
LLL-algorithm and relies on successive computations of simultaneous
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approximations of integral bases. In this way they made algorithmic
the original proof of Dirichlet. M. Pohst [11] improved the e�ciency of
the method of Buchmann and Peth®.

In this paper we show that the method of Buchmann and Peth® is not
only capable to produce a system of independent units of full rank in
any algebraic number �eld, but also leads to an algorithmic general-
ization of Lagrange's theorem. Our algorithm for the approximation of
linear forms uses in each iteration the LLL-algorithm twice; at �rst it
is used to compute an approximation the result of which is an element
with one small conjugate and all others big. With this element we
divide the basis elements and compute a LLL-reduced basis of the
module generated by them. This step has twofold advantages. First,
as modules have only �nitely many LLL-reduced bases, we get the
periodicity. Usually the Jacobi-Perron-like algorithms do division by
coordinates of the vector to be approximated. We do the same with
a suitable linear combination of the coordinates. The absence of the
combination of the coordinates can be a reason that e�orts to prove
periodicity of Jacobi-Perron-like algorithms on bases of algebraic
number �elds failed in general.

The second advantage is of numerical nature. The implementation
of our algorithm works with rational approximations of algebraic
numbers. 1 Without this step the �rst coordinates of the basis vectors
would grow, while the other coordinates would decrease exponentially.
To �x stability we would need much higher precision as in the present
form.

The contents of the paper are ordered in the following way. In Section
2 we introduce our notations for number �elds F of degree n and - in
general - non-full modulesM . We give estimates on the size of the basis
vectors of LLL-reduced bases in terms of the degree n and the lattice
determinant d(M). The proof of those bounds is postponed to Section
6. Section 3 deals with approximation of linear forms the coe�cients
α1, ..., αn of which form a basis of F . By Algorithm 1 we construct se-
quences of modules and integral vectors (x1, ..., xn). In Subsection 3.1
the periodicity of that sequence ((xs,1, ..., xs,n))s∈N is proved. In Sub-
section 3.2 we discuss the quality of the approximations obtained in
Algorithm 1. It turns out to be close to the best possible. They play a

1A good challenge for further investigations is to �nd complete periods for para-
metric families of bases of modules.
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similar role as the partial quotients in continued fraction expansions.
An Algorithm 2 - similar to Algorithm 1 - is developed in Section 4
for simultaneous approximation of algebraic numbers α1, ..., αn of F .
Again, it is shown that the produced sequence of coe�cient vectors be-
comes periodic. In Section 5 we discuss the basics of both algorithms,
i.e. the fundamental estimates of Dirichlet and by which margin those
can be achieved by the corresponding approximations with the LLL-
algorithm. In Section 6 we develop improved bounds on the sizes of the
basis vectors of LLL-reduced bases of modules in number �elds thus
demonstrating Lemma 2. The �nal Section 7 contains various illustra-
tive examples of calculations by both algorithms in number �elds up
to degree 10.

2. Notations and auxiliary results

Let F be an algebraic number �eld of degree d with r1 real and 2r2
complex conjugates, i.e. d = r1 + 2r2. The conjugates F = F (1), ..., F (d)

are ordered as usual:

F (j) ⊂ R (1 ≤ j ≤ r1), F
(j) 6⊂ R (r1 + 1 ≤ j ≤ d),

F (r1+j) = F (r1+r2+j) (1 ≤ j ≤ r2) ,

where overlining means complex conjugation. Then we have the usual
scalar product in F :

(1) 〈 , 〉 : F × F → R : (x, y) 7→
d∑
j=1

x(j)y(j) .

We also put T2(x) = 〈x, x〉 implying ‖ x ‖ =
√
T2(x) for elements

x ∈ F .

Let τ1, ..., τn be Q-linearly independent elements of F . With them we
de�ne the free Z-module M = Zτ1 + ... + Zτn of rank n. Then M
is a lattice with determinant d(M) =

√
det(〈τi, τj〉)1≤i,j≤n). A basis

α1, . . . , αn ofM is called reduced if there exists a constant C depending
only on n such that

(2)
n∏
i=1

‖ αi ‖≤ Cd(M)

holds. A nice and for us very helpful byproduct of the LLL-algorithm
[7] is that applying it to any basis τ1, ..., τn of M it produces a
LLL-reduced basis LLL(τ1, . . . , τn) satisfying (2) with C = 2n(n−1)/4.
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Remark 1. This inequality implies that M has only �nitely many
LLL-reduced bases. (Detailed estimates are listed in Section 6.)

The next lemma is crucial in our investigations.

Lemma 2. Let M be a free Z-module of rank n with discriminant
d(M) in an algebraic number �eld F of degree d ≥ n. Let 0 6= β ∈
M,N = |N(β)| and M̃ = M/β. If β1, . . . , βn is a LLL-reduced basis

of M̃ then the absolute values of the conjugates β
(j)
i are bounded from

below and from above by constants depending on n, d,N, d(M̃). If M is
a full module, i.e. n = d, then the dependency of the constants from N
can be stated explicitely. We get

(3) C2iN
−1/n ≤ |β(j)

i | ≤ C3iN
−1/n

with constants

C3i =

(
Cd(M)

n(i−1)/2

)1/(n+1−i)

and C2i = C1−n
3i .

We put C3 = C3n = max{C3i|i = 1, . . . , n} and C2 = C1−n
3 .

We postpone the proof of this lemma to Section 6.

Unfortunately, for d > n we were not able to establish a quantitative
relation between d(M) and d(M/β) in general. In the next sections we
will therefore only study full modules in number �elds F .

There are two exceptions, however.

(1) Let M be a non-full module which is a full module in a proper
sub�eld E of F . We assume that the degree of E is (E : Q) = n
and that the relative degree (F : E) equals m. Hence, we have
d = mn. For elements α, β ∈ E we obtain

〈α, β〉F = m〈α, β〉E and NF/Q(α) = NE/Q(α)m .

Then we can considerM as a full module in E and as a non-full
module in F . Again, we denote by M̃ the moduleM/β for some
β ∈M . Accordingly, we immediately see that

d(M)F = mn/2d(M)E
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with the consequence

d(M̃)F = mn/2d(M̃)E = mn/2

(
1

NE/Q(β)
d(M)E

)
= |NF/Q(β)|−1/md(M)F .

This puts us into a situation similar to full modules of F again.

(2) Let E,F,m, n, d as before. Let M = Zα1 + ... + Zαm be a full
module in E and α ∈ F \E. Then αM is a non-full module in F
with Z-basis α̃i := ααi (1 ≤ i ≤ m). Such modules play an im-
portant role in the theory of norm form equations (see [13], [14],
for example). Without loss of generality we can assume that the
last basis is a LLL-reduced basis of the non-full module αM in
F . In the next section we develop an algorithm for determin-
ing a suitable element β in αM , i.e. β = x1α̃1 + ... + xnα̃n
with (x1, ..., xn) ∈ Zn \ {0}. Then we de�ne a new module
M̃ = αM/β. It has the basis αi/(x1α1 + ...+xnαn) (1 ≤ i ≤ n),
hence M̃ is contained in E. The further construction of a se-
quence of modules (see Algorithm 1) is therefore with full mod-
ules in E only.

3. Approximation of linear forms

Let α1, . . . , αn be a basis of a real algebraic number �eld of degree
d = n. In this section we present an algorithm for the computation
of a sequence of integer vectors xs = (xs,1, ..., xs,n) (s ∈ N) which is
ultimately periodic. The values of the linear form α1X1 + · · · + αnXn

evaluated at suitable combinations of the xs tend to zero with a speed
which is close to best possible, see Theorem 5. Thus our algorithm
has similar properties as the classical continued fraction algorithm
applied to real quadratic irrationalities. The output sequence of in-
teger vectors xs of Algorithm 1 plays the same role as partial quotients.

For an easier understanding of that algorithm we explain the con-
struction in some detail beforehand. The procedure incorporates
several sequences. The �rst one is a sequence of varying modules
Ms starting with M0 = M1 = Zα1 + ... + Zαn. The second one
consists of vectors (αs,1, ..., αs,n) representing LLL-reduced bases of
Ms. The third one incorporates special elements βs ∈ Ms, where the
presentation of βs = xs,1αs,1 + ...+ xs,nαs,n in a LLL-basis αs,1, ..., αs,n
of Ms incorporates the integer vectors xs introduced at the beginning
of this section. In each step s ∈ N we use a black box algorithm
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for the computation of βs. That algorithm contains an additional
positive constant D. In Section 5 we show that we can use the
LLL-algorithm also for solving that task by using the LLL-constant C
for D. Eventually, we can increase s by 1 after putting Ms+1 = Ms/βs
and (αs+1,1, ..., αs+1,n) = LLL(αs,1/βs, ..., αs,1/βs).

If we apply the algorithm below we encounter the phenomenon that
the new basis in Step 4. can coincide with the previous one, namely
for β = 1. This happens, for example, for α1 = 1 < α2 ≤ ... ≤ αn. In
that case we always get (x1, ..., xn) = (1, 0, ..., 0) in Step 3.. Obviously,
the algorithm has period lenghth 1. To avoid such trivial periods we
must enforce β 6= 1 in Step 3.. This can be achieved by choosing
Q > D1/(n−1), for example.

In order to detect periodicity of the sequences we make use of Pollard's
method [12]: For k = 2` (` = 1, 2, ...) we store the LLL-reduced basis
(αk,1, ..., αk,n) and check whether it coincides with any of the bases
±(αs,1, ..., αs,n) for s = k + 1, ..., 2k.

We still mention that for the computation of simultaneous approxima-
tions of algebraic numbers we calculate suitable vectors xs in a more
sophisticated way, see Section 4.

Algorithm 1 Approximation of linear forms

Require: α1, ..., αn a basis of a real algebraic number �eld of degree
n, and constants D > 1 and Q > D1/(n−1)

Ensure: an eventually periodic sequence of integer vectors (x1, ..., xn)

1: s← 1, `← 1, (α1, ..., αn)← LLL(α1, ..., αn)
2: `← 2`, (α̃1, ..., α̃n)← (α1, ..., αn)
3: Compute (x1, . . . , xn) ∈ Zn \ {0} such that

|xi| ≤ Q , i = 2, . . . , n ,
β ← x1α1 + · · ·+ xnαn satisfying |β| < D|α1|Q1−n ,

output s, (x1, . . . , xn)
4: (α1, ..., αn)← LLL(α1

β
, ..., αn

β
)

5: if (α̃1, ..., α̃n) = ±(α1, ..., αn) return period length s− `/2 + 1
6: s← s+ 1
7: if s < ` then goto 3. , else goto 2.
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3.1. Periodicity of Algorithm 1.

Theorem 3. For Q > D1/(n−1) Algorithm 1 terminates, i.e. the se-
quence of integer vectors (x1, . . . , xn) has a non-trivial period.

Proof. We will prove that (α1, . . . , αn) can assume only �nitely many
values, say from the �nite set S. Moreover Steps 3. to 6. de�ne a map-
ping S → S. Hence, the algorithm terminates after �nitely many steps.

For simplicity's sake we assume that the moduleM0 = M1 is contained
in the ring of integers oF of the algebraic number �eld F under
consideration. The general case can be easily deduced from this. We
recall that we generate sequences of modules (Ms)s∈N, LLL-reduced
bases (αs,1, ..., αs,n) for Ms and integer vectors xs = (xs,1, ..., xs,n). For
βs = xs,1αs,1 + ... + xs,nαs,n we set Ms+1 = Ms/βs and proceed with
a LLL-reduced basis (αs+1,1, ..., αs+1,n) of Ms+1. Additionally, we put
γs =

∏s
j=1 βj implying Ms+1 = M0/γs.

Now we �x s > 1 and set N = |N(γs−1)|. In Step 3. of the algorithm
the vector (xs,1, . . . , xs,n) satis�es the inequalities

(4) |xs,i| ≤ Q , i = 2, . . . , n

and the absolute value of the element βs = xs,1αs,1 + · · · + xs,nαs,n is
bounded by

(5) |βs| < D|αs,1|Q1−n .

We note that βs = β
(1)
s and that the absolute values of all α

(j)
s,i for

i, j = 1, ..., n are bounded from above by C3N
−1/n and from below

by C2N
−1/n according to Lemma 2. The element βs is the �rst basis

element of a LLL-reduced basis and therefore non-zero. Also, βs 6= 0
is tantamount to (xs,1, ..., xs,n) 6= 0.

An upper bound for |xs,1| is easily obtained from (4) and (5) via

|xs,1αs,1| < D|αs,1|Q1−n + (n− 1)QC3N
−1/n .

implying

(6) |xs,1| ≤ C4Q

where we set C4 = DQ−n + (n− 1)C3/C2.

From this upper bounds for the absolute values of all conjugates of βs,
hence also for |N(βs)|, are immediate. We calculate

(7) |β(j)
s | < (C4 + n− 1)C3QN

−1/n (2 ≤ j ≤ n)
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and

(8) N−1 ≤ |N(βs)| =
n∏
j=1

|β(j)
s | ≤ C5N

−1

with C5 = (C4 + n− 1)n−1DCn
3 . Finally, we have

(9) |N(γs)| = |N(γs−1)N(βs)| ≤ C5.

Because of βs ∈ Ms = M0/γs−1 all elements γs belong to the module
M0 ⊆ oF . Since oF contains only �nitely many pairwise non-associated
elements of bounded norm there exists a subsequence (Msi)i∈N such
that Ñ = |N(γsi)| for all i ∈ N. Clearly, we have γ−1si M0 ⊆ Ñ−1oF =:

M̃ . Since there exist only �nitely many elements of bounded T2-norm
in M̃ the set of all LLL-reduced bases of the modules (Msi)i∈N is �-
nite. This implies that there exist (smallest) indices µ < ν such that
the LLL-reduced bases of Msµ and of Msν coincide. From here on the
process is periodic. �

Remark 4. We note that for the proof of the �niteness of the set of
LLL-reduced bases produced by Algorithm 1 we do not need to apply
the same Q in Step 3. in each iteration. If the Q's form an arbitrary
sequence of numbers bigger than one, then the sequence (xs)s∈N will in
general not be periodic. The periodicity does not only depend on the
LLL-reduced bases of Ms, but also on the sequence of the Q's. However
if the sequence of the Q's is bounded then there exist only �nitely many
pairwise di�erent modules Ms.

3.2. Quality of the approximations. For a vector v =
(v1, . . . , vn) ∈ Rn the maximum norm will be denoted by

|v| = max{|vi| | i = 1, . . . , n}.

Also, we introduce a function ψ on R satisfying: for all a > 1 there exists
x0 > 0 such that for all x > x0 and m ∈ N we have ψ(xm)1/m > a.

Theorem 5. Let α1, . . . , αn be Q-linearly independent elements of a
real algebraic number �eld F of degree n. Let (βs)s∈N be the sequence
of elements of F computed by Algorithm 1. For m ∈ N we set γm =∏m

j=1 βj and write

γm = ym,1α1 + · · ·+ ym,nαn with ym = (ym,1, ..., ym,n) ∈ Zn \ {0} .
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There exists a constant Q0 depending only on n,D, α1, . . . , αn and ψ
such that Q > Q0 implies

|ym,1α1 + · · ·+ ym,nαn| ≤ |ym|1−nψ(|ym|1/m)m .

Remark 6. By a celebrated theorem of W. M. Schmidt [14] the in-
equality

|y1α1 + ...+ ynαn| ≤ |y|1−n−ε

with ε > 0 arbitrarily small has only �nitely many solutions y =
(y1, ..., yn) ∈ Zn. The choice ψ(x) = xδ with δ > 0 shows that our
algorithm produces an in�nite sequence of integer vectors y satisfying

|y1α1 + ...+ ynαn| ≤ |y|1−n+δ .

Therefore our algorithm is close to best possible.

Proof. We recall that we construct a sequence of full modules Ms =
Zαs,1 + ...+ Zαs,n for s ∈ Z≥0 in a number �eld F of degree n. In gen-
eral, the module M0 will be an order of F . The bases of the modules
are assumed to be LLL-reduced. The next element in that sequence is
obtained from the previous one via a LLL-version of Dirichlet approx-
imation (see Section 5). We construct 0 6= βs =

∑n
j=1 xs,jαs,j ∈ Ms

subject to

(10) 0 ≤ |xs,j| ≤ Q (2 ≤ j ≤ n) and |βs| ≤ D|αs,1|Q1−n

and set Ms+1 = Ms/βs.

Besides that sequence of modulesMs we obtain a sequence of algebraic
integers

(11) γs = β1 · · · βs

which are of bounded norm. By (9) we have |N(γs)| ≤ C5. Because of
Ms = M0/γs−1 we know that the absolute norms of non-zero elements
α ∈Ms satisfy |N(α)| ≥ 1/C5. We recall that from (6) we get an upper
bound for |xs,1| in the form

(12) |xs,1| ≤ C4Q .

Now we �x a positive integer m. We know that γm ∈M0, hence, there
exists a presentation γm = ym,1α1+...+ym,nαn with integral coe�cients
ym,j. From the product in (11), from (3) and the de�nition of N , i.e.
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N = |N(βs−1)| with N(β0) = 1, we derive an upper bound

|γm| =
m∏
j=1

|βj| ≤ (DC3)
mQm(1−n)

m∏
j=1

|N(βj−1)|−1/n

= (DC3Q
1−n)m|N(γm−1)|−1/n

≤ (DC3Q
1−n)m.(13)

Next we estimate the size of |ym,j|. As α1, . . . , αn is a Q-basis of F there
exist rsij ∈ Q with

αs,i = rsi1α1 + · · ·+ rsinαn.

By Theorem 3 there exist only �nitely many di�erent modules in the
sequene (Ms), moreover their LLL-reduced bases are e�ectively com-
putable. Thus the set {|rsij|, | 1 ≤, i, j ≤ n, s ∈ N} is bounded, say by
R. We obtain

βs =
n∑
j=1

xs,jαs,j

=
n∑
j=1

zs,jαj

with coe�cients zs,j ∈ Q, |zs,j| ≤ nRC4Q for 1 ≤ j ≤ n, s ∈ N. Using
this and the explicit presentations of the βs we get

γm = γm−1βm

= (ym−1,1α1 + · · ·+ ym−1,nαn)(zm,1α1 + · · ·+ zm,nαn) .

Because of αiαj ∈ F there exist constants r̃ijk ∈ Q, 1 ≤ i, j, k ≤ n,
satisfying

αiαj =
n∑
k=1

r̃ijkαk for 1 ≤ i, j ≤ n.

Let R1 = max{|r̃ijk| | 1 ≤ i, j, k ≤ n}. Then

ym,k =
n∑
i=1

n∑
j=1

r̃ijkym−1,izm,j

provides the upper bound

|ym| ≤ n2R1nRC4Q|ym−1| .

It implies

(14) |ym| ≤ (C6Q)m
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with C6 = n3R1RC4 depending only on n,D and α1, . . . , αn. From (14)
and (13) we conclude that the elements of the sequence (ym,1, . . . , ym,n)
satisfy the system of inequalities

|ym,k| ≤ (C6Q)m for 1 ≤ k ≤ n

|ym,1α1 + · · ·+ ym,nαn| ≤ (DC3C
n−1
6 (C6Q)1−n)m .

If Q0 is so large that ψ((C6Q0)
m) ≥ (DC3C

n−1
6 )m then we obtain for

Q > Q0

|ym,1α1 + · · ·+ ym,nαn| ≤ |ym|1−nψ(|ym|1/m)m

and the theorem is proved. �

4. Simultaneous approximation of algebraic numbers

In this section we turn to the classical problem to �nd a generalization
of the continued fraction algorithm for simultaneous approximation of
any dimension which is periodic for algebraic inputs. We give here a
partial answer by presenting an algorithm which is periodic for bases
of real algebraic number �elds. By Khintchine's transference principle,
see Khintchine [5], Perron [10] and Schmidt [14], the approximation of
linear forms and simultaneous approximation of the coe�cients of the
form are dual problems. The solution of one of them can be transformed
more or less easily to the solution of the other. Using this principle
minor modi�cations of Algorithm 1 lead to simultaneous approximation
of algebraic numbers.
In Steps 3. and 4. of Algorithm 2 we may use appropriate versions
of the LLL-algorithm, see Section 5. One can replace these by other
procedures which produce for all Q > 1 integer vectors satisfying the
given inequalities, maybe with a di�erent constant C. By Dirichlet's
approximation theorems (see e.g. [14]) one should be able to achieve
C = 1, but we do not know of any algorithm which computes e�ciently
approximation vectors of such a good quality in practice.

Theorem 7. If α1, ..., αn is a basis of a real algebraic number �eld F
of degree n, and Q is large enough then Algorithm 2 is correct, i.e. the
sequence of output vectors (k1, . . . , kn) ∈ Zn is periodic.

Proof. Our proof is based on the idea of the proof of Satz 1.
of Perron [10]. We set (αs,1, . . . , αs,n),Ms, s = 0, 1, 2, . . . and
(xs,1, . . . , xs,n), βs, s = 1, 2, . . . as in the proof of Theorem 3. Addition-
ally, we denote by (ks,1, . . . , ks,n) for s ∈ N the vectors computed in
Step 4. of Algorithm 2.
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Algorithm 2 Simultaneous approximation of algebraic numbers

Require: α1, ..., αn a basis of a real algebraic number �eld of degree
n, and Q > 1

Ensure: an eventually periodic sequence of integer vectors (x1, ..., xn)

1: s← 1, `← 1, (α1, ..., αn)← LLL(α1, ..., αn)
2: `← 2`, (α̃1, ..., α̃n)← (α1, ..., αn)
3: Compute (k1, . . . , kn) ∈ Zn \ {0}, k1 6= 0, such that

|k1| ≤ CQ and |kj − k1
αj
α1

| < Q−1/(n−1), j = 2, . . . , n

with the constant C = 2n(n−1)/4, output s, (k1, . . . , kn)
4: Compute a vector (x1, . . . , xn) ∈ Zn \ {0} such that

x1k1 −
n∑
j=2

xjkj = 0 and |xj| ≤ 2n/2|k1|1/(n−1), j = 2, . . . , n

5: β ← x1α1 + · · ·+ xnαn
6: (α1, ..., αn)← LLL(α1

β
, ..., αn

β
)

7: if (α̃1, ..., α̃n) = ±(α1, ..., αn) return period length is s− `/2 + 1
8: s← s+ 1
9: if s < ` then goto 3., else goto 2.

The vectors (ks,1, . . . , ks,n) ∈ Zn \ {0} can be computed by the
LLL-algorithm which we will show in Section 5. We note that ks,1 6= 0
for all s. Indeed, if ks,1 = 0 for an s ∈ N the second inequality in
Step 3., together with Q > 1 implies ks,j = 0 for j = 2, . . . , n, thus
(ks,1, . . . , ks,n) = 0, a contradiction.

Now we prove that the vectors (xs,1, . . . , xs,n) of Step 4., which also
can be computed by the LLL-algorithm, are suitable approximations
of the vectors (αs,1, . . . , αs,n). To simplify the notation we omit the
index s.

Indeed, setting Q1 = 2n/2|k1|1/(n−1) we can calculate (x1, . . . , xn) ∈
Zn\{0} which satis�es the actualized form of the system of inequalities
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(17)

|xi| ≤ 2n/2|k1|1/(n−1), i = 2, . . . , n

|x1k1 −
n∑
j=2

xjkj| < C|k1|(2n/2|k1|1/(n−1))1−n

= C−1 .

Thus the absolute value of the integer x1k1 −
∑n

j=2 xjkj is less than
one, hence it is zero, which justi�es Step 4.

We assume that (k1, . . . , kn), (x1, . . . , xn) ∈ Zn \ {0}, k1 6= 0, are com-
puted in Steps 3. and 4., respectively. Then we have

α1

(
x1 −

n∑
j=2

xj
αj
α1

)
= α1

(
x1 −

n∑
j=2

xj
αj
α1

− x1 +
n∑
j=2

xjkj
k1

)

= α1

(
n∑
j=2

xj
k1

(
k1αj
α1

− kj
))

.

This implies

|α1x1 −
n∑
j=2

αjxj| < |α1|2n/2|k1|1/(n−1)(n− 1)Q−1/(n−1)/|k1|

≤ |α1|2n/2(CQ)1/(n−1)(n− 1)Q−1/(n−1)/|k1|
= |α1|2n/2C1/(n−1)(n− 1)/|k1| .

Setting Q2 = 2n/2|k1|1/(n−1) we obtain that (x1, . . . , xn) ∈ Zn \ {0}
satis�es the system of inequalities

|xj| ≤ Q2 for j = 2, . . . , n and |α1x1 −
n∑
j=2

αjxj| < |α1|DQ1−n
2

with D = (n− 1)2n
2/2C1/(n−1) = (n− 1)2n(2n+1)/4. Hence, the require-

ments of Step 3. in Algorithm 1 are satis�ed. However, the direct ap-
plication of Theorem 3 is not possible because Q2 is not a constant, it
depends on the computed value of k1 and we know only that |k1| ≤ CQ.
Thus the sequence of the Q2's is bounded by 2n/2(CQ)1/(n−1) =
2n(2n+1)/4. Hence, by Remark 4 in the sequence of the LLL-reduced
bases in Step 4. of Algorithm 2 appear only �nitely many di�erent vec-
tors. Let us assume that we have (αs,1, . . . , αs,n) = (αt,1, . . . , αt,n) for
some s < t for the vectors computed in Step 6. of Algorithm 2. Then,
as Q is �xed, we have (ks+1,1, . . . , ks+1,n) = (kt+1,1, . . . , kt+1,n), i.e. from
here on the sequence (ks,1, . . . , ks,n) is periodic. �
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5. Dirichlet and LLL approximation

At the beginning of the introduction we already mentioned the follow-
ing results of Dirichlet:
Let τ1, ..., τn be non-zero real numbers.
For all Q > 1 there exist x1, ..., xn ∈ Z, not all of them 0, such that

(15) |xi| ≤ Q (2 ≤ i ≤ n),

∣∣∣∣∣
n∑
i=1

xiτi

∣∣∣∣∣ < |τ1|Q1−n .

Further, for all Q > 1 there exist x1, ..., xn ∈ Z, not all of them 0, such
that

(16) |x1| ≤ Q,

∣∣∣∣x1 τiτ1 − xi
∣∣∣∣ < Q−1/(n−1) (2 ≤ i ≤ n), .

In [7] the authors proved that one can obtain slightly weaker results by
LLL-reduction:

(17) |xi| ≤ Q (2 ≤ i ≤ n),

∣∣∣∣∣
n∑
i=1

xiτi

∣∣∣∣∣ < C|τ1|Q1−n =: BQ

as well as

(18) |x1| ≤ CQ,

∣∣∣∣x1 τiτ1 − xi
∣∣∣∣ < Q−1/(n−1) (2 ≤ i ≤ n) .

The constant C only depends on n. The LLL-property used in general
implies

(19) C = 2n(n−1)/4 .

With respect to the viewpoint of approximating we usually request that
the last upper bound in (17) is smaller than |τ1|. This is achieved by
requiring

(20) Q > C1/(n−1) .

We note that the last inequality is more restrictive than Q > 1 in
Dirichlet`s statement.
For completeness we recapitulate here how to compute the approxima-
tions (17) and (18) following essentially [7].

First we are dealing with the approximation of linear forms, i.e. with
(17). Let δ be a positive constant which will be speci�ed below. We
consider a lattice Λ which is generated by the columns of the following
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matrix

(21)


0 0 0 . . . 0 δ
0 0 0 . . . δ 0

. . . 0 0
δ . . . 0 0

0 δ 0 . . . 0 0
τ1 τ2 τ3 . . . τn−1 τn

 .

Obviously, the lattice determinant is d(Λ) = |τ1|δn−1. The �rst basis
vector, say a, of a LLL-reduced basis is of the form

a = (xnδ, ..., x2δ,
n∑
i=1

xiτi)
tr .

Its Euclidean length is bounded by Ba := (C|τ1|)1/nδ(n−1)/n. For 2 ≤
i ≤ n this yields

|xi| ≤ (C|τ1|)1/nδ−1/n

and the constant Q of (17) should be at least as large as the right-hand
side of the last inequality. We therefore set

(22) δ = Q−nC|τ1|
and �nd for the remaining coordinate of a:∣∣∣∣∣

n∑
i=1

xiτi

∣∣∣∣∣ ≤ Ba ≤ |τ1|Q1−nC = BQ .

We note that those inequalities for the absolute values of the coordi-
nates of a also lead to an upper bound for |x1|. We know that

−BQ ≤ |x1τ1| −

∣∣∣∣∣
n∑
i=2

xiτi

∣∣∣∣∣ ≤ BQ

and obtain

(23) |x1| ≤

(
BQ +Q

n∑
i=2

|τi|

)
/|τ1| .

This procedure can be iterated by increasing Q in each step appropri-
ately.

Our considerations above immediately lead to the following algorithm
in which we make use of the well-known Kronecker symbol δi,j The
value of δi,j is 1 for i = j and it is 0 for i 6= j.
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Algorithm 3 Dirichlet approximation

Require: an integer n ≥ 2 and real numbers τ1, ..., τn and Q >
C1/(n−1)

Ensure: integers x1, ..., xn such that (17) and (23) are satis�ed (with
BQ < 1)

1: C ← 2n(n−1)/4

2: δ ← Q−nC|τ1|
3: i← 1
4: while i ≤ n do
5: ai ← (δδn+1−i,1, ..., δδn+1−i,n−1, τi) ∈ R1×n

6: i← i+ 1
7: end while

8: (b1, ...,bn)← LLL(a1, ..., an) with b1 = x1a1 + ...+ xnan

9: return x1, ..., xn

Next we consider simultaneous approximations (18). In this case we
consider a lattice Λ which is generated by the columns of the following
matrix.

(24)



−τ2/τ1 1 0 . . . 0 0
−τ3/τ1 0 1 . . . 0 0
−τ4/τ1 0 0 . . . 0 0

. . . . . . . .

. . . . . . . .
−τn/τ1 0 0 . . . 0 1

2−n(n−1)/4Q−n/(n−1) 0 0 . . . 0 0


.

Obviously, the lattice determinant is d(Λ) = 2−n(n−1)/4Q−n/(n−1). The
�rst basis vector, say a, of a LLL-reduced basis is of the form

a =

(
x2 − x1

τ2
τ1
, ..., xn − x1

τn
τ1
, x12

−n(n−1)/4Q−n/(n−1)
)tr

.

Its Euclidean length is bounded by Ba = 2(n−1)/4d(Λ)1/n = Q−1/(n−1).
For 2 ≤ i ≤ n this yields∣∣∣∣xi − x1 τiτ1

∣∣∣∣ < Q−1/(n−1)

and
|x1| ≤ 2n(n−1)/4Qn/(n−1)Q−1/(n−1) = CQ.
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6. Proof of Lemma 2

Assume that M = Zα1 + ... + Zαn is a free Z-module of rank n in a
number �eld F of degree d. There exists an integer H > 0 such that
HM ⊆ oF . In the sequel we assume M ⊆ oF and, if necessary, we
adjust the result to the general case.

We choose 0 6= β ∈ M and set N = |N(β)|, M̃ = M/β. If β1, ..., βn is
a LLL-reduced basis for M̃ the new basis vectors satisfy

(25)
n∏
i=1

‖ βi ‖≤ Cd(M̃),

see (2). In order to produce upper and lower bounds for the absolute

values of the conjugates β
(j)
i we can proceed in analogy to Buchmann

and Peth® [3]. They observe that any non-zero element α̃ of M̃ has a
norm whose absolute value is bigger than or equal to 1/N . Using the
inequality between arithmetic and geometric means yields

1

N2
≤

∣∣∣∣∣
d∏
j=1

α̃(j)

∣∣∣∣∣
2

≤

(∑d
j=1 |α̃(j)|2

d

)d

hence, N−2/dd ≤ T2(α̃) implying

(26) ‖ α̃ ‖≥
√
dN−1/d .

From (25) we therefore obtain the upper bound

(27) ‖ βi ‖≤ Cd(M̃)(
√
dN−1/d)1−n =: B1

and each conjugate β
(j)
i also satis�es |β(j)

i | ≤ B1. Then a crude lower

bound for |β(j)
i | is obtained from

N−1 ≤ |N(βi)| ≤ |β(j)
i |Bd−1

1

via

(28) |β(j)
i | ≥ B1−d

1 N−1 .

If d = n, i.e. M is a full module in F then we have

d(M̃) = d(M)/|N(β)| = d(M)/N ,
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which does in general not hold for non-full modules. Using this relation
we obtain

B1 =
Cd(M)

N

( √
n

N1/n

)−(n−1)
=

Cd(M)

n(n−1)/2N
−1/n = C3N

−1/n,

which proves the upper bounds |β(j)
i | ≤ C3N

−1/n and |N(βi)| ≤
Cn

3N
−1. Combining the explicit form for B1 with (28) we get

|β(j)
i | ≥ (C3N

−1/n)1−nN−1 = C1−n
3 N−1/n.

For full modules M we therefore obtain the bounds

C2N
−1/n ≤ |β(j)

i | ≤ C3N
−1/n

with constants

C3 =
Cd(M)

n(n−1)/2 and C2 = C1−n
3 .

The bounds given above are rather crude and we can do much better,
especially if i is small compared to n.

If necessary we reorder the reduced basis such that the basis vectors
satisfy
‖ β1 ‖≤‖ β2 ‖≤ ... ≤‖ βn ‖. Then we obtain for the �rst basis vector
from (25):

(29) ‖ β1 ‖≤
(
Cd(M̃)

)1/n
.

This is certainly much better than the estimate given above and also
yields much better lower and upper bounds for the absolute values of
the conjugates of β1.

Analogously, for i = 1, .., n, we make use of (25) and of (26) to obtain
(30)

‖ βi ‖≤

(
Cd(M̃)∏i−1
j=1 ‖ βj ‖

)1/(n+1−i)

≤

(
Cd(M̃)

(
√
dN−1/d)i−1

)1/(n+1−i)

=: B2i .

The bounds B2i are easily seen to be much better than the bounds
B1. The quotients B2i/B1 are strictly increasing in i with B2i/B1 = 1
exactly for i = n. These new bounds immediately yield the better

estimates for |β(j)
i | stated in Lemma 2.

The following example demonstrates the quality of the new bounds.
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Example We choose an example from [11]. Let F = Q((−2)1/19).
Let M be the maximal order oF of F . It has a power integral basis.
The discriminant dF of F is −1919218. Consequently, we have d(M) =√
−dF . We arbitrarily choose N = 100. This results in

B1 = 9.58182 · 1028 .

The following table contains the values B2i and B2i/B1 for i from 1 to
19.

i 1 2 3 4 5
B2i 107.48 130.17 161.25 205.15 269.53

B2i/B1 1.12 · 10−27 1.36 · 10−27 1.68 · 10−27 2.14 · 10−27 2.81 · 10−27

i 6 7 8 9 10
B2i 368.19 527.68 803.02 1318.97 2392.47

B2i/B1 3.84 · 10−27 5.51 · 10−27 8.38 · 10−27 1.38 · 10−26 2.50 · 10−26

i0 11 12 13 14 15
B2i 4953.69 12303.55 39629.50 1.89 · 105 1.67 · 106

B2i/B1 5.17 · 10−26 1.28 · 10−25 4.14 · 10−25 1.97 · 10−24 1.75 · 10−23

i 16 17 18 19
B2i 4.43 · 107 1.04 · 1010 5.73 · 1014 9.58 · 1028

B2i/B1 4.62 · 10−22 1.08 · 10−19 5.98 · 10−15 1

We emphasize that the quotient B2i/B1 is independent of N .

7. Numerical Examples

We present several illustrative examples for the performance of our
algorithms in number �elds F up to degree 10. We note that the
calculations use �oating point numbers which make LLL-reduction
much more complicated in general. But using su�ciently good approx-
imations we can always check the LLL-property of the results. The
computations were made by using Magma and a database of Jürgen
Klüners and Gunter Malle:
http://www.math.uni-duesseldorf.de/∼klueners/groups2.html

First we present a worked-out example regarding the approximation of
linear forms. In the calculations we used �oating point numbers with
a suitable precision, but for the sake of readability the results will be
presented with a much lower precision.

http://www.math.uni-duesseldorf.de/~klueners/groups2.html
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Example Let ρ = −3.4137 be the smallest root of the polynomial
P (x) = x4 − x3 − 24x2 − 22x + 29, set αi = ρi−1, i = 1, 2, 3, 4 and
consider the moduleM = Zα1+ · · ·+Zα4. The transformations matrix
to the LLL-reduced basis is

1 0 0 0
0 1 0 0
−12 −3 1 0

6 −17 −3 1


Hence, the reduced basis of M becomes
(1.0000,−3.4137, 9.8940,−10.7063). From here on we perform
the steps of both Algorithm 1 and Algorithm 2. It turns out that the
length of the pre-period in both cases is 1 and the length of the period
is 6. In the next tables we use the following notations:

• x: the coe�cient vector of βi in the actual basis.
• β: the numerical value of βi.
• γ repr.: the coordinates of γ in the original basis for γ = β1 ·
β2 · . . . βi.
• γ: the numerical value of γ.
• N(γ): the norm of γ.

Algorithm 1:

Round x β γ repr. γ N(γ)
1 (−10, 0, 1, 0) −0.1060 (−22,−3, 1, 0) −1.0604 · 10−1 191
2 (−2, 0, 0, 1) 0.1308 (42,−13,−4, 1) −1.3870 · 10−2 −441
3 (11, 0, 1, 0) −0.0086 (370,−402,−71, 23) 1.1950 · 10−4 191
4 (−2, 0, 0, 1) 0.1308 (−1289, 1534, 263,−87) 1.5631 · 10−5 −441
5 (11, 0, 1, 0) −0.0086 (−20177, 25110, 4274,−1410) −1.3468 · 10−7 191
6 (2, 0, 0, 1) −0.1308 (−74427, 92915, 15800,−5216) 1.7615 · 10−8 −441
7 (−11, 0, 1, 0) 0.0086 (1197896,−1497591,−254764, 83998) 1.5177 · 10−10 191
8 (−2, 0, 0, 1) 0.1308 (−4427704, 5536031, 941737,−310506) 1.9852 · 10−11 −441

Algorithm 2:

Round x β γ repr. γ N(γ)

1 (−24, 1,−1, 1) −0.0139 (42,−13,−4, 1) −1.3870 · 10−2 −441

2 (−11, 0, 1, 0) 0.0086 (−370, 402, 71,−23) 1.1950 · 10−4 191

3 (2, 1,−1, 1) 0.0106 (−1712, 2136, 363,−120) −1.2700 · 10−6 1

4 (−25, 1, 1, 1) 0.0139 (74427,−92915,−15800, 5216) −1.7615 · 10−8 −441

5 (−11, 0, 1, 0) −0.0086 (1197896,−1497591,−254764, 83998) 1.5177 · 10−10 191

6 (−2,−1,−1, 1) −0.0106 (−6062683, 7580586, 1289640,−425145) −1.6130 · 10−12 1

7 (25, 1,−1, 1) −0.0139 (−263637360, 329643448, 56080993,−18487321) 2.2372 · 10−14 −441

8 (−11, 0, 1, 0) 0.0086 (4246685782,−5309914962,−903367628, 297791327) 1.9275 · 10−16 191
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In the next table we give the representation of the reduced bases. If
B = (ρ0, ρ1, ρ2, ρ3)T , and T is one of the transformation matrices from
the second column of the next tables, then T ·B equals the coordinates
of the reduced basis.

Algorithm 1:

Number of steps Trf. matrix (original→reduced) Reduced bases

0


1.0000 0.0000 0.0000 0.0000
0.0000 1.000 0.0000 0.0000
−12.0000 −3.0000 1.0000 0.0000

6.0000 −17.0000 −3.0000 1.0000




1.0000
−3.4137
9.8940
−10.7063


1 = 7


1.0000 0.0000 0.0000 0.0000
0.9372 −0.3037 −0.1518 0.0209
1.1100 1.0314 0.0157 −0.0367
−0.6545 1.6702 0.3351 −0.1152




1.0000
−0.6286
−0.7700
2.1308


2 = 8


0.7143 −0.8095 −0.1429 0.0476
−0.2857 −0.8095 −0.1429 0.0476
0.9524 −0.1429 −0.0476 0.0000
−1.8571 −0.5714 0.1429 0.0000



−0.0813
−1.0813
0.8851
1.7582


3


1.0000 0.0000 0.0000 0.0000
−0.9372 0.3037 0.1518 −0.0209
−1.1100 −1.0314 −0.0157 0.0367
−0.6545 1.6702 0.3351 −0.1152




1.0000
0.6286
0.7700
2.1308


4


0.7143 −0.8095 −0.1429 0.0476
0.2857 0.8095 0.1429 −0.0476
0.9524 −0.1429 −0.0476 0.0000
1.8571 0.5714 −0.1429 0.0000



−0.0813
1.0813
0.8851
−1.7582


5


1.0000 0.0000 0.0000 0.0000
−0.9372 0.3036 0.1518 −0.0209
1.1100 1.0314 0.0157 −0.0367
0.6545 −1.6702 −0.3351 0.1152




1.0000
0.6286
−0.7700
−2.1308


6


0.7143 −0.8095 −0.1429 0.0476
0.2857 0.8095 0.1429 −0.0476
−0.9524 0.1429 0.0476 0.0000
−1.8571 −0.5714 0.1429 0.0000



−0.0813
1.0813
−0.8851
1.7582


7


1.0000 0.0000 0.0000 0.0000
0.9372 −0.3036 −0.1518 0.0209
1.1100 1.0314 0.0157 −0.0367
−0.6545 1.6702 0.3351 −0.1152




1.0000
−0.6286
−0.7700
2.1308


8


0.7143 −0.8095 −0.1429 0.0476
−0.2857 −0.8095 −0.1429 0.0476
0.9524 −0.1429 −0.0476 0.0000
−1.8571 −0.5714 0.1429 0.0000



−0.0813
−1.0813
0.8851
1.7582
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In our last two tables we give some more numerical results for both
algorithms. For each polynomial the contents of the �rst line are
results from Algorithm 1 and the contents of the second line are
results from Algorithm 2. The detailed results can be viewed at:
http://www.inf.unideb.hu/∼pethoe/cikkek/PPB_examples.pdf. We
use the following notations:

• Polynomial: the coe�cient list of the polynomial, starting with
the highest power.
• Deg./Sig.: the degree/signature of the polynomial.
• Discriminant: the discriminant of the polynomial.
• Per., Pre.: the length of the period, pre-period respectively.
• γpre+1: the value of the �rst γ which is part of the �rst period.
• γpre+per+1: the value of the �rst γ which is part of the second
period.
• γpre+1 coordinates: the coordinates of γpre+1 in the original
bases, or if at least one of the coordinates are larger than 108,
then the value of the largest coordinate with high precision.
• γpre+per+1 coordinates: the coordinates of γpre+pre+1 in the orig-
inal bases, or if at least one of the coordinates are larger than
108, then the value of the largest coordinate with high precision.
If the period length is 1, then we write NA instead.

Polynomial Deg./Sig. Discriminant Per. Pre. γpre+1 γpre+per+1

[1,−1, 0,−1] 3/1 −31
1 0 0.1478990357 NA

1 0 0.2167565720 NA

[1, 0, 0,−2] 3/1 −108
1 1 −0.01031475882 NA

1 1 −0.01031475882 NA

[1,−1,−7, 8] 3/3 733
6 0 −0.03307320014 1.155078874 · 10−8

5 0 −0.03307320014 3.124881318 · 10−9

[1,−1,−10, 8] 3/3 961
12 0 −0.08387235944 −1.123134695 · 10−15

4 0 −0.08387235944 −3.537628806 · 10−5

[1, 0,−7,−4] 3/3 940
4 1 0.005970873050 1.155348006 · 10−8

16 0 −0.1600918016 −1.159829197 · 10−18

[1, 0, 1, 0,−1] 4/2 −400
4 2 0.0001547484757 1.771957548 · 10−9

1 1 −0.002660232816 NA

[1, 0, 2, 0,−1] 4/2 −1024
12 1 0.001850570582 3.770265157 · 10−21

2 4 −5.554604813 · 10−7 −1.856206457 · 10−9

[1,−1,−5, 2, 4] 4/4 2225
3 0 0.007333768640 −2.892736132 · 10−9

3 2 −0.0006280450653 3.944406040 · 10−7

[1,−1,−8, 1, 11] 4/4 5225
4 1 0.01368639756 −2.563701474 · 10−6

4 4 −5.908036252 · 10−9 −6.020523158 · 10−16

[1,−1,−24,−22, 29] 4/4 107653
6 1 −0.01387009227 1.985163973 · 10−11

6 1 −0.0001195040098 1.927547951 · 10−16

http://www.inf.unideb.hu/~pethoe/cikkek/PPB_examples.pdf
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Polynomial Deg./Sig. Discriminant Per. Pre. γpre+1 γpre+per+1

[1,−2, 2,−1, 0, 1] 5/1 2209
12 3 3.989638445 · 10−5 1.341840753 · 10−21

6 7 −3.404369835 · 10−14 −7.944164774 · 10−23

[1, 0,−1,−2, 0, 1] 5/3 −4511
4 1 −0.0009241499083 −1.875072548 · 10−9

5 2 4.302227915 · 10−6 1.760427599 · 10−15

[1,−2, 1, 2,−2,−1] 5/3 −5783
3 2 7.759473941 · 10−6 −6.020943583 · 10−11

2 3 1.223790015 · 10−6 1.353818232 · 10−9

[1,−1,−12, 21, 1,−5] 5/5 923521
4 2 −0.0001213389130 −7.288982377 · 10−10

12 0 0.01485732945 1.682649967 · 10−23

[1, 0,−6, 0, 5,−1] 5/5 347317
5 0 0.02155902683 1.004095262 · 10−10

5 0 0.02155902683 1.004095262 · 10−10

[1, 0, 0,−1, 0, 0,−1] 6/2 91125
6 8 −1.869645053 · 10−18 −5.494465810 · 10−28

6 5 1.939097227 · 10−15 −5.182320446 · 10−30

[1,−1,−1,−2, 2, 3,−1] 6/4 −103243
3 3 −1.951881582 · 10−5 1.152081869 · 10−8

4 51 −8.677663447 · 10−112 −8.826714968 · 10−121

[1,−2, 1,−4, 3, 3,−1] 6/4 −199283
4 0 −0.05763787641 −6.361211821 · 10−7

3 0 −0.008355381345 −4.873770833 · 10−9

[1, 0,−9, 0, 10, 0,−1] 6/6 7711729
1 0 −0.005525596300 NA

1 0 −0.005525596300 NA

[1, 0,−6, 0, 9, 0,−3] 6/6 1259712
6 2 2.805149578 · 10−5 −2.207334097 · 10−14

6 2 −8.632038957 · 10−10 6.431913202 · 10−28

[1,−1, 1, 0, 3,−1, 3, 1] 7/1 −3442951
28 2 −8.323974297 · 10−7 −1.950776012 · 10−67

14 2 2.092963881 · 10−11 2.309095421 · 10−64

[1,−1,−3, 1, 4,−1,−1, 1] 7/3 2007889
12 13 −1.647228687 · 10−24 −8.783348064 · 10−42

48 4 −9.491426072 · 10−16 −4.397976140 · 10−158

[1, 0,−3,−1, 1, 3, 1,−1] 7/5 −2306599
2 2 −6.406356475 · 10−5 −1.483358613 · 10−7

8 23 −3.766491584 · 10−73 −1.532005222 · 10−103

[1,−1,−7, 2, 12, 0,−5,−1] 7/7 55078981
6 2 1.382995230 · 10−5 2.645221517 · 10−15

20 7 −3.809798495 · 10−21 −8.553208776 · 10−68

[1,−3,−3, 11, 2,−8, 0, 1] 7/7 55311169
3 0 0.05342486988 8.146553091 · 10−6

12 0 7.073085862 · 10−5 1.108960536 · 10−54

[1,−1, 0, 1,−2,−1, 2, 2,−1] 8/2 −4286875
66 7 −2.101278837 · 10−14 −5.381763601 · 10−138

12 3 −2.371298164 · 10−15 −1.355721797 · 10−55

[1,−3,−2, 9, 0,−6,−2,−3, 1] 8/4 56953125
4 9 −3.385657963 · 10−19 −1.982906599 · 10−26

16 1 −1.667068964 · 10−10 9.944480428 · 10−89

[1,−3, 0, 2, 4, 3,−5,−2, 1] 8/6 −74671875
18 3 9.172490293 · 10−7 2.243982075 · 10−33

48 3 1.353104848 · 10−16 5.096932119 · 10−207

[1, 0,−8, 0, 20, 0,−16, 0, 1] 8/8 1358954496
8 3 8.570934720 · 10−8 −6.296287668 · 10−22

6 5 2.625876375 · 10−26 2.697703239 · 10−53

[1, 0,−8, 0, 20, 0,−16, 0, 2] 8/8 2147483648
3 14 −5.951895140 · 10−24 8.261802401 · 10−29

8 3 −5.856759036 · 10−18 −1.228450817 · 10−53

[1, 0, 0,−2, 0, 0, 4, 0, 0,−2] 9/1 3840162048
41 63 −1.818962454 · 10−117 −2.961164149 · 10−194

45 17 −5.483831446 · 10−108 −2.021298103 · 10−380

[1,−5,−1, 4, 2, 3,−1,−3, 0, 1] 9/3 −203297472
10 0 0.02475408815 2.138534516 · 10−18

59 63 −2.611546747 · 10−321 −8.096214101 · 10−618

[1,−3, 3, 4,−12, 9, 1,−9, 6,−1] 9/5 9829532736
32 1 −1.367859970 · 10−5 −9.290267386 · 10−93

4 2 8.707531739 · 10−18 1.559870294 · 10−40

[1,−2,−5, 12, 3,−19, 7, 7,−2,−1] 9/7 −6221161471
3 7 −8.536227087 · 10−12 −9.992046508 · 10−16

20 8 1.168090160 · 10−47 7.442304417 · 10−148

[1,−1,−8, 7, 21,−15,−20, 10, 5,−1] 9/9 16983563041
28 5 −1.204658028 · 10−11 −1.920188967 · 10−55

12 50 3.503498943 · 10−266 1.023410103 · 10−328

[1, 0, 0, 0, 0,−2, 0, 0, 0, 0,−1] 10/2 320000000000
18 23 −1.626833670 · 10−46 −5.056542887 · 10−87

30 31 −1.111234100 · 10−216 −2.113640737 · 10−425

[1,−1, 0, 4,−2,−2,−1, 1, 0,−2, 1] 10/4 −91794884831
4 2 −5.900596788 · 10−6 −7.178887031 · 10−13

18 12 −5.992588896 · 10−88 3.869937527 · 10−206

[1,−3, 1, 1,−2, 4, 5,−2,−6,−1, 1] 10/6 23365118029
144 9 −9.587213264 · 10−45 −2.432961495 · 10−362

8 1 −1.042864950 · 10−12 −1.233503419 · 10−60

[1, 0,−6, 0, 10, 0,−1, 0,−6, 0, 1] 10/8 −219503494144
20 24 −7.570706443 · 10−55 −2.585660777 · 10−92

12 21 −2.523413550 · 10−144 −1.006573992 · 10−219

[1,−1,−10, 10, 34,−34,−43, 43, 12,−12, 1] 10/10 572981288913
10 1 8.201394073 · 10−5 −3.043169065 · 10−25

36 97 4.182998747 · 10−641 2.098225847 · 10−870
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Polynomial γpre+1 coordinates γpre+per+1 coordinates

[1,−1, 0,−1]
[−2, 0, 1] NA

[1,−2, 1] NA

[1, 0, 0,−2]
[−5, 9,−4] NA

[−5, 9,−4] NA

[1,−1,−7, 8]
[−10,−1, 1] [26402,−2841,−4685]
[−10,−1, 1] [−124606, 4685, 18876]

[1,−1,−10, 8]
[3, 1, 0] −44370512
[3, 1, 0] [1243, 33,−120]

[1, 0,−7,−4]
[26,−7,−8] [−18534,−45607,−16368]
[−10,−2, 1] −122170080922

[1, 0, 1, 0,−1]
[17,−26, 15,−12] [5101,−6554, 3275,−4060]
[4,−7, 4,−2] NA

[1, 0, 2, 0,−1]
[−4, 3, 5, 0] [−2501077, 4992804,−1477474,−376139]

[88,−7,−199,−4] [783,−576,−1870, 1359]

[1,−1,−5, 2, 4]
[5,−2,−1, 1] [−213, 934,−195,−453]
[15,−2,−6, 0] [81,−132, 4, 60]

[1,−1,−8, 1, 11]
[4, 4, 1, 0] [827, 32,−864,−344]

[644,−905,−312, 186] 11267442

[1,−1,−24,−22, 29]
[42,−13,−4, 1] [−4427704, 5536031, 941737,−310506]

[−370, 402, 71,−23] −5309914962

[1,−2, 2,−1, 0, 1]
[11, 4,−19, 13, 1] [−1905746, 394216, 3767480,−3946799, 1130929]

[1939,−983,−3809, 5160,−2276] [−381673, 304264, 853440,−1161671, 461023]

[1, 0,−1,−2, 0, 1]
[5,−6,−5, 3, 1] [127, 256,−434,−850, 687]

[−35, 65, 10,−54, 19] [−462549, 714348, 524419,−1022671, 325258]

[1,−2, 1, 2,−2,−1]
[6,−18, 5, 21,−13] [−36, 490, 372,−373,−141]
[8, 21, 21,−19,−10] [−27,−205,−270, 127, 163]

[1,−1,−12, 21, 1,−5]
[−249, 579,−225,−37, 19] [−1110349, 2651571,−1144504,−148264, 100843]

[−14, 10, 0,−1, 0] [−6141559, 13159446,−6024907,−678767, 544202]

[1, 0,−6, 0, 5,−1]
[−6, 0, 11, 0,−2] [32440,−13336,−35319, 2450, 5745]
[−6, 0, 11, 0,−2] [32440,−13336,−35319, 2450, 5745]

[1, 0, 0,−1, 0, 0,−1]
[−19635, 23726,−29113, 14733,−16731, 17869] −122626395

[−2625,−2224, 1863, 1650, 1327,−1131] −16586541

[1,−1,−1,−2, 2, 3,−1]
[−21, 9,−4, 10,−4, 1] [339,−144,−29,−141, 49, 21]

−3.760862090968621621612587 · 1027 1.781051624046654510181610 · 1030

[1,−2, 1,−4, 3, 3,−1]
[2, 0,−4, 0,−1, 1] [76,−131,−320, 2,−65, 81]
[7, 3,−9, 1,−3, 2] [−2418,−1357, 2607,−282, 1157,−686]

[1, 0,−9, 0, 10, 0,−1]
[2,−7, 0, 1, 0, 0] NA

[2,−7, 0, 1, 0, 0] NA

[1, 0,−6, 0, 9, 0,−3]
[8, 12, 6, 1, 0, 0] [−2852,−2754, 2358,−4029,−8550,−2907]

[166,−126,−105, 147, 21,−27] [−3688156, 4845960, 2884995,−4498911,−609426, 781434]

[1,−1, 1, 0, 3,−1, 3, 1]
[−1,−4,−1, 1,−4, 1,−4] 34986375304153

[7, 18,−32,−29,−7,−23, 11] 1149571479031

[1,−1,−3, 1, 4,−1,−1, 1]
[−41485, 58947, 144705,−28924,−113513,−11497, 30992] 440586763891

[533,−587,−2344,−95, 2153, 253,−553] 1.102489989765776989020537 · 1035

[1, 0,−3,−1, 1, 3, 1,−1]
[−3,−2, 6,−2,−7, 3, 1] [−22, 9, 101,−20,−107, 21, 20]
100632613641187286 −3.806667635599136876354076 · 1025
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Polynomial γpre+1 coordinates γpre+per+1 coordinates

[1,−1,−7, 2, 12, 0,−5,−1]
[9, 28,−3,−34, 9, 9,−3] [1876, 9316, 2019,−12895, 1345, 3342,−874]

[12041, 12760,−100412,−28895, 74372, 13214,−11612] 1188825840485144328047

[1,−3,−3, 11, 2,−8, 0, 1]
[1,−7, 2, 11,−3,−3, 1] [72,−189,−65, 307,−43,−88, 26]

[13, 3,−19,−12, 10, 4,−2] −32277024086450

[1,−1, 0, 1,−2,−1, 2, 2,−1]
[−71, 49, 248, 226,−49, 5, 74,−39] 137061842637993622173700

[3, 26,−32,−166, 66, 38,−33, 65] −1439528345

[1,−3,−2, 9, 0,−6,−2,−3, 1]
[21295,−57883,−118132, 65325, 95163,−42382,−24275, 9941] −21788644

[−11, 26, 82,−46,−97, 46, 31,−13] 79767903836100705

[1,−3, 0, 2, 4, 3,−5,−2, 1]
[6,−25, 12, 17, 17, 12,−20, 4] −75808490

[34,−537, 1140, 578, 388,−243,−473, 187] −2.017374966651652746587669 · 1039

[1, 0,−8, 0, 20, 0,−16, 0, 1]
[16, 32, 24, 8, 1, 0, 0, 0] [5980,−22624,−228528,−143848, 70449,−62720,−134320,−40480]

[−11899, 10993, 186108,−171091,−128269, 122281, 20562,−20324] 46663166453

[1, 0,−8, 0, 20, 0,−16, 0, 2]
26616203 1168468969

[−7027, 17647, 11200,−25490,−5031, 10605, 667,−1348] −31535162636746

[1, 0, 0,−2, 0, 0, 4, 0, 0,−2]
657367096199957009499 −1.007553881434116028428424 · 1035

−25495877647230 −6.844528020161353581312741 · 1050

[1,−5,−1, 4, 2, 3,−1,−3, 0, 1]
[−1, 2, 3,−8, 1,−4,−4, 11,−2] [138167, 736045,−2567689, 1595444, 361523,−194776, 2649709,

−2997512, 492554]
−1.528968471201757795897652 · 1051 −4.942000499296591884530495 · 1097

[1,−3, 3, 4,−12, 9, 1,−9, 6,−1]
[−88, 255,−100,−161, 330,−158,−64, 85,−33] 40669921145096231408692

[−275, 1425,−756,−407, 1650,−1101,−217, 459,−198] [−1026497, 4593321,−2166819,−2272107, 5508362,−2959461,−1265808,
1438346,−418044]

[1,−2,−5, 12, 3,−19, 7, 7,−2,−1]
[447,−518,−3081, 5228, 761,−3902, 699, 680,−188] [−33984, 51485, 244968,−464787,−54775, 342732,−61168,−59417, 16058]

593948596 2.449803338384091414109826 · 1029

[1,−1,−8, 7, 21,−15,−20, 10, 5,−1]
[−62, 421,−58,−655, 305, 330,−206,−51, 35] −6675180932632324543

8.837137313149988272030788 · 1036 −2.231841083474719943587546 · 1048

[1, 0, 0, 0, 0,−2, 0, 0, 0, 0,−1]
[−71680, 78309,−86079, 77942,−62148,−103553, 59884,−5809, −106481642097342

−94024, 118075]
−6.733541459691716998343494 · 1025 5.321103441924805906151133 · 1053

[1,−1, 0, 4,−2,−2,−1, 1, 0,−2, 1]
[−1,−4,−16, 3,−3,−11, 21, 1,−4, 5] [−269, 739,−475,−855, 1691,−154,−845, 361, 13,−122]

−285353508217 −1.151733509425989597322430 · 1027

[1,−3, 1, 1,−2, 4, 5,−2,−6,−1, 1]
99240069 −5.403602864408824548030169 · 1076

[−5, 19,−24, 41,−15, 7,−35, 38,−27, 7] 54390697181

[1, 0,−6, 0, 10, 0,−1, 0,−6, 0, 1]
−3177225612 553617849365239263

−1706060737252341015 1.637037835043587312564276 · 1028

[1,−1,−10, 10, 34,−34,−43, 43, 12,−12, 1]
[4, 4, 1, 0, 0, 0, 0, 0, 0, 0] [−3797,−28139,−64295,−99495,−138490,−112574,−49863,−21538,

−10626,−2299]
−5.630520512455940668061489 · 1082 −3.665318989712510095619541 · 10112
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