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Abstract. In the present paper we study sequences defined by the recurrence relation

an+3 = − ⌊
an + λ2an+1 + λ2an+2

⌋

for n ≥ 0, where λ = 1+
√

5
2

the golden ratio. These sequences are related to shift radix systems
as well as to β-expansions with respect to Salem numbers.

1. Introduction

In [1] the following notion of shift radix system was introduced. Let d ≥ 1 be an integer and
r = (r1, . . . , rd) ∈ Rd. To r we associate τr : Zd → Zd as follows: if a = (a1, . . . , ad) ∈ Zd then
we let

τr(a) = (a2, . . . , ad,−brac),
where ra = r1a1 + · · ·+ rdad is the inner product of the vectors r and a.

If iterates of τ always end up at zero, i.e., if

(1.1) for all a ∈ Zd there exists k > 0 with τk
r (a) = 0

holds, we will call τr a shift radix system (SRS for short). For simplicity, we write 0 = (0, . . . , 0).
In the present paper we are interested in parameters r such that τr is eventually periodic for each

starting value. Let Dd be the set of all d-dimensional vectors r having this property. Moreover,
let

(1.2) Ed :=
{
(r1, . . . , rd) ∈ Rd |Xd + rdX

d−1 + · · ·+ r1 has only roots y ∈ C with |y| < 1
}

.

It is not hard to see (cf. [1, Section 4]) that

Ed ⊆ Dd ⊆ Ed.

Thus the problem that remains is to find out for which parameters r ∈ ∂Ed do we have r ∈ Dd.
This question was addressed for the two-dimensional case in [3, Section 2]. It is easy to see that
D2 is (apart from its boundary) an isosceles triangle. In [3, Section 2] ∂D2 was characterized for
two sides of this triangle. To characterize which points of the third side of this triangle belong to
D2 turned out to be a hard problem. In particular, what remains to be proved is

{(1, y) | |y| < 2} ⊂ D2.

Using the definition of τr this reads as follows. Let |λ| < 2 and let (an)∞n=1 be a sequence of
integers which satisfies

0 ≤ an + λan+1 + an+2 < 1 (n ∈ N).
Then (an)∞n=1 is periodic.

Results concerning this conjecture are contained in [2]. Especially, in that paper it is shown
that the conjecture is true for λ = 1+

√
5

2 .
In the present paper we want to start with the consideration of ∂D3. Up to now nothing is

known about the periodicity properties of τr with r ∈ ∂D3. Here we want to study the behavior
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of certain sequences related to a point in r ∈ ∂D3. In particular, we study the behavior of the
sequences defined by the initial values a0 = a1 = 1, a2 ∈ N and

an+3 = − ⌊
an + λ2an+1 + λ2an+2

⌋

for n ≥ 0, where λ = 1+
√

5
2 the golden ratio. Equivalently an+3 is the unique integer solution of

the inequality

(1.3) 0 ≤ an + λ2an+1 + λ2an+2 + an+3 < 1.

Our aim is to characterize for which values of a2 the sequence is periodic and for which it becomes
divergent. We will show (see Theorems 4.1, 5.1, 5.2 and 5.3) that the behavior of the sequence
depends on the starting digits of the Zeckendorf representation of a2.

Notice that the characteristic polynomial of the linearized sequence

ān+3 = −ān − λ2ān+1 − λ2ān+2

is x3 +λ2x2 +λ2x+1 = (x+1)(x2 +λx+1), whose zeros are roots of unity, thus {ān} is periodic.

2. Preliminaries

To prove our result we need some well-known properties of λ and the Fibonacci sequence (cf.
[4]). The number λ is a zero of the polynomial x2 − x − 1. Its algebraic conjugate, which is the
other zero of x2 − x− 1 will be denoted by λ′ = 1−√5

2 = − 1
λ = 1− λ.

λ2 = λ + 1 =
3 +

√
5

2
, λ3 = 2λ + 1 = 2 +

√
5, λ4 = 3λ + 2 =

7 + 3
√

5
2

,

λ′2 = λ′ + 1 =
3−√5

2
, λ′3 = 2λ′ + 1 = 2−

√
5, λ′4 = 3λ′ + 2 =

7− 3
√

5
2

.

We also need the following relations, which are very easy to prove
∞∑

j=0

λ′2j =
1

1− λ′2
= − 1

λ′
= λ,(2.1)

∞∑

j=0

λ′2j+1 =
λ′

1− λ′2
= −1,(2.2)

−1 <

∞∑

j=0

a2,jλ
′j < λ,(2.3)

where in the third relation a2,j ∈ {0, 1}.
The members of the Fibonacci sequence are defined by the initial terms F1 = F2 = 1 and by

the recursion Fn+2 = Fn+1 + Fn, n ≥ 0. It is well known (cf. [5]) that any positive integer, e.g.
a2 has a unique representation

(2.4) a2 =
∞∑

j=2

a2,jFj

such that a2,j ∈ {0, 1}, a2,ja2,j+1 = 0, j ≥ 2 and a2,j = 0 for all but finitely many indices j. This
is called the Zeckendorf representation.

If n ≥ 2 then it is easy to show, that

(2.5) Fnλ2 = Fn+2 − λ′n.

We now study a family of sequences, which is periodic and helps to prove the periodicity of
other sequences. For x ∈ R let ‖x‖ denote the distance of x to the nearest integer. We also need
the nearest integer to x, which is bx + 1

2c.
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Lemma 2.1. Let k ≥ 3 and f0 = f1 = 0 and f2 =
∑

j≥k f2,jFj, where f2,j ∈ {0, 1}, f2,jf2,j+1 = 0.
Let f̃0 = f̃1 = f̃2 = 0 and for h ≥ 0

f̃h+3 = fh + (fh+1 + fh+2)λ2 and fh+3 = −
⌊
f̃h+3 +

1
2

⌋
.

Then the sequence {fh} is periodic with minimal period length 10 and its members and upper bound
for ‖f̃h‖ are given in Table 1.

h mod 10 0 1 2 3 4
fh 0 0

∑
f2,jFj −∑

f2,jFj+2

∑
f2,jFj+3

‖f̃h‖ ≤ |λ′|k |λ′|k−1 0 |λ′|k−1 |λ′|k
h 5 6 7 8 9
fh −2

∑
f2,jFj+2 2

∑
f2,jFj+2 −∑

f2,jFj+3

∑
f2,jFj+2 −∑

f2,jFj

‖f̃h‖ ≤ |λ′|k |λ′|k−1 0 |λ′|k−1 |λ′|k
Table 1. Behavior of fh

Proof. We prove the statement only for h = 5, because the other cases are similar. By using the
properties of the Fibonacci numbers and (2.5) we get

f̃5 = f2 + (f3 + f4)λ2

=
∑

j≥k

f2,jFj +


−

∑

j≥k

f2,jFj+2 +
∑

j≥k

f2,jFj+3


λ2

=
∑

j≥k

f2,jFj +
∑

j≥k

f2,j (Fj+3 − Fj+2) λ2

=
∑

j≥k

f2,jFj +
∑

j≥k

f2,jFj+3 −
∑

j≥k

f2,jλ
′j+1

= 2
∑

j≥k

f2,jFj+2 −
∑

j≥k

f2,jλ
′j+1.

We can estimate the second summand by using (2.3), which gives

|
∑

j≥k

f2,jλ
′j+1| < |λλ′k+1| = |λ′k|.

As k ≥ 3 we have |λ′k| < 1
2 , thus

‖f̃5‖ < |λ′k|
implies

f5 = −2
∑

j≥k

f2,jFj+2.

¤

To the sequence (an) satisfying (1.3) we associate the sequence (ân) by the rule

ân = an−3 + λ2an−2 + λ2an−1 + an, n ∈ Z.

We have 0 ≤ ân < 1 for any n ∈ Z. The following lemma will be used later frequently.

Lemma 2.2. Let (an) be a sequence, which satisfies (1.3). Assume that there exists a k ≥ 3 such
that

|λ′|k−1 ≤ ân < 1− |λ′|k−1

holds for any n ∈ Z. Then the sequence (an + fn), where (fn) is defined in Lemma 2.1, satisfies
(1.3) too. Moreover, if (an) is periodic with period length p, then (an + fn) is periodic too with
period length lcm(p, 10).
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Proof. We have

an−3 + fn−3 + (an−2 + fn−2 + an−1 + fn−1)λ2 + an + fn = ân + f̃n −
⌊
f̃n +

1
2

⌋

= ân ± ‖f̃n‖.
By Lemma 2.1 ‖f̃n‖ < |λ′|k−1, thus the lemma is proved. ¤

3. The first six terms of the sequence

Set a0 = a1 = 1, a2 ∈ N. Starting from the Zeckendorf representation (2.4) of a2 we establish
the Zeckendorf representation of a3, . . . , a6.

To find a3 we have to find the integer part of

S = a0 + (a1 + a2)λ2

= 1 +


1 +

∞∑

j=2

a2,jFj


 λ2

= 1 + λ2 +
∞∑

j=2

a2,jFj+2 −
∞∑

j=2

a2,jλ
′j

= 3 +
∞∑

j=2

a2,jFj+2 + λ− 1−
∞∑

j=2

a2,jλ
′j .

Using (2.1) and (2.2) we obtain

0 ≤ λ− 1−
∞∑

j=1

λ′2j < λ− 1−
∞∑

j=2

a2,jλ
′j < λ− 1−

∞∑

j=1

λ′2j+1 = λ + λ′ = 1.

Thus

a3 = −3−
∞∑

j=2

a2,jFj+2.

If a2,2 = a2,3 = 0 then we have the stronger estimate

(3.1) λ′2 = λ− 1− λ′4λ < λ− 1−
∞∑

j=4

a2,jλ
′j < λ− 1 + λ′4 = 2λ′2.

Using a1, a2, a3 we will compute a4.

S = a1 + (a2 + a3)λ2

= 1 +




∞∑

j=2

a2,jFj − 3−
∞∑

j=2

a2,jFj+2


λ2

= 1− 3λ2 +
∞∑

j=2

a2,j(Fj − Fj+2)λ2

=
−7− 3

√
5

2
−

∞∑

j=2

a2,jFj+1λ
2

= −7−
∞∑

j=2

a2,jFj+3 + λ′4 +
∞∑

j=2

a2,jλ
′j+1.

To obtain a4 we have to analyze the summand

R = λ′4 +
∞∑

j=2

a2,jλ
′j+1.
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We distinguish two cases.
Case I. a2,2 = 0. Using again (2.1) and (2.2) we obtain

(3.2) 0 = λ′4 + λ′5λ < R < λ′4 + λ′4λ = λ′2.

Thus we have bSc = −7−∑∞
j=2 a2,jFj+3. Notice that if a2,3 = 0 holds as well, then

(3.3) 0 = λ′4 + λ′5λ < R < λ′4 + λ′6λ = −λ′3.

We need this stronger estimate later.
Case II. a2,2 = 1. In this case a2,3 = 0, by the property of the Zeckendorf representation and we
obtain

(3.4) −1 < λ′3 = λ′4 + λ′3λ < R < λ′4 + λ′3 + λ′6λ = 0,

hence we obtain bSc = −8−∑∞
j=2 a2,jFj+3.

Summarizing our result a4 = a4,c +
∑∞

j=2 a2,jFj+3, where

a4,c =

{
7, if a2,2 = 0

8, if a2,2 = 1.

Now we turn to establish a5. Let

S = a2 + (a3 + a4)λ2

=
∞∑

j=2

a2,jFj +


−3 + a4,c +

∞∑

j=2

a2,j(Fj+3 − Fj+2)


λ2

= (−3 + a4,c)λ2 +
∞∑

j=2

a2,jFj +
∞∑

j=2

a2,jFj+1λ
2

= (−3 + a4,c)λ2 +
∞∑

j=2

a2,jFj +
∞∑

j=2

a2,jFj+3 −
∞∑

j=2

a2,jλ
′j+1

= 2
∞∑

j=2

a2,jFj+2 + R,

where

R =

{
4λ2 − λ′4

∑∞
j=0 a2,j+3λ

′j , if a2,2 = 0

5λ2 − λ′3 − λ′5
∑∞

j=0 a2,j+4λ
′j , if a2,2 = 1.

We estimate R by using (2.3) and get

(3.5) 10 < 8 +
√

5 = 4λ2 + λ′3 < R < 4λ2 + λ′4 = 9 + λ < 11,

i.e. bRc = 10 in case a2,2 = 0.
If a2,2 = 1 then we get similarly

(3.6) 13 < 2 + 5
√

5 = 5λ2 − λ′3 − λ′4 < R < 5λ2 − λ′3 + λ′5 = 11 +
√

5 < 14,

i.e. bRc = 13. Thus we have a5 = a5,c − 2
∑∞

j=2 a2,jFj+2, where

a5,c =

{
−10, if a2,2 = 0

−13, if a2,2 = 1.
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Finally we compute a6. Let

S = a3 + (a4 + a5)λ2

= −3−
∞∑

j=2

a2,jFj+2 +


a4,c + a5,c +

∞∑

j=2

a2,j(Fj+3 − 2Fj+2)


 λ2

= −3 + (a4,c + a5,c)λ2 −
∞∑

j=2

a2,j

(
Fj+2 + Fjλ

2
)

= −3 + (a4,c + a5,c)λ2 − 2
∞∑

j=2

a2,jFj+2 +
∞∑

j=2

a2,jλ
′j

= −2
∞∑

j=2

a2,jFj+2 + R,

where

R =

{ −3− 3λ2 + λ′3
∑∞

j=0 a2,j+3λ
′j , if a2,2 = 0

−3− 5λ2 + λ′2 + λ′4
∑∞

j=0 a2,j+4λ
′j , if a2,2 = 1.

We estimate R by using (2.3) and get

(3.7) −16 < −9− λ4 = −3− 5λ2 + λ′2 − λ′4 < R < −3− 5λ2 + λ′2 − λ′3 = −11− 2
√

5 < −15,

i.e. bRc = −16 in the case a2,2 = 1.
If a2,2 = 0 then

R + 11 = λ′4 + λ′3
∞∑

j=0

a2,j+3λ
′j .

It follows from (2.3) that |R + 11| < 1. Moreover, if a2,3 = 0 then

(3.8) 0 < λ′4 − λ′4 ≤ R + 11 = λ′4 + λ′4
∞∑

j=0

a2,j+4λ
′j ≤ λ′4 − λ′3 = λ′2,

i.e. bRc = −11. However, if a2,3 = 1 then a2,4 = 0 by the property of the Zeckendorf expansion
and we get

R + 11 = λ′4 + λ′3 + λ′5
∞∑

j=0

a2,j+5λ
′j < λ′4 + λ′3 − λ′5 = 0,

i.e. bRc = −12 in this case. Thus we have a6 = a6,c + 2
∑∞

j=2 a2,jFj+2, where

a6,c =





11, if a2,2 = a2,3 = 0

12, if a2,2 = 0, a2,3 = 1

16, if a2,2 = 1.

4. The divergent case, a2,2 = a2,3 = 0

We continue our investigation first with the case a2,2 = a2,3 = 0 and prove that then the
sequence is divergent. Notice that now a6 = −a5 +1. The next member of the sequence is defined
by

a7 = − ⌊
a4 + (a5 + a6)λ2

⌋
= − ⌊

a4 + λ2
⌋

= −a4 − 2.

We prove that a8 = −a3 + 2. To see this we examine the number

S = a5 + (a6 + a7)λ2 − a3 + 2
= −a6 + 1 + (−a5 + 1− a4 − 2)λ2 − a3 + 2
= −(a3 + (a4 + a5)λ2 + a6) + 3− λ2

Using (3.8) we conclude

0 = 3− λ2 − λ′2 < S < 3− λ2 = λ′2 < 1,
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which proves our claim.
To prove a9 = −a2 we consider

S = a6 + (a7 + a8)λ2 − a2

= −a5 + 1 + (−a4 − 2− a3 + 2)λ2 − a2

= −(a2 + (a3 + a4)λ2 + a5) + 1.

We know that 0 ≤ a2 + (a3 + a4)λ2 + a5 < 1, but it cannot be 0, because otherwise a2 = −a5,
which is absurd.

Now we prove that a10 = −4 = −a1 − 3 = a0 − 5. We have

S = a7 + (a8 + a9)λ2 − a1 − 3
= −a4 − 2 + (−a3 + 2− a2)λ2 − a1 − 3
= −(a1 + (a2 + a3)λ2 + a4)− 5 + 2λ2.

Using (3.3) we get S < −5 + 2λ2 = −2 +
√

5 < 1.

0 = −5 + 2λ2 + λ′3 < S < −5 + 2λ2 = −2 +
√

5 < 1.

We prove that a11 = 6 = −a0 + 7 = a1 + 5. Indeed

S = a8 + (a9 + a10)λ2 − a0 + 7
= −a3 + 2 + (−a2 − a1 − 3)λ2 − a0 + 7
= −(a0 + (a1 + a2)λ2 + a3) + 9− 3λ2.

Using (3.1) we get

0 < λ′2 = 9− 3λ2 − 2λ′2 < S < 9− 3λ2 − λ′2 = 2λ′2 < 1

and our claim is proved.
Next we prove that a12 = a2 − 5. Let

S = a9 + (a10 + a11)λ2 + a2 − 5
= −a2 + 2λ2 + a2 − 5
= 2λ2 − 5 = −2 +

√
5

and our claim is proved.
Now we can formulate the first theorem.

Theorem 4.1. If a0 = a1 = 1 and a2 =
∑∞

j=4 a2,jFj, where a2,j ∈ {0, 1}, a2,ja2,j+1 = 0, then

a10n+2k = a2k − 5n

a10n+2k+1 = a2k+1 + 5n

holds for any n ∈ Z and k = 0, . . . , 4. Thus the sequence is divergent.

Proof. We proved the statement for a10, a11 and a12. Assume that it holds for three consecutive
terms a10n+2k, a10n+2k+1, a10n+2k+2. Then

a10n+2k+3 = − ⌊
a10n+2k + (a10n+2k+1 + a10n+2k+2)λ2

⌋

= − ⌊
a2k − 5n + (a2k+1 + 5n + a2k+2 − 5n)λ2

⌋

= − ⌊
a2k + (a2k+1 + a2k+2)λ2 − 5n

⌋

= a2k+3 + 5n.

We can now finish similarly the induction in the case where the index of the first term is even.
Finally, the recursive procedure (1.3) is symmetric, thus the induction works for negative indices
too. ¤

5. Periodic sequences, a2,2 = 1 or a2,2 = 0, a2,3 = 1.

In this section we prove that the sequences with a2,2 = 1 or a2,2 = 0, a2,3 = 1 are periodic.
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5.1. The case a2,2 = 1, a2,3 = a2,4 = 0. We prove the following theorem.

Theorem 5.1. Let the sequence (an) be defined by the starting values a0 = a1 = 1 and a2 =
F2 +

∑
j≥5 a2,jFj, where a2,j ∈ {0, 1}, a2,ja2,j+1 = 0. Then (an) is periodic with minimal period

length 30.

Proof. Consider first the special case a′0 = a′1 = a′2 = F2 = 1. Let â′n = a′n−3 + (a′n−2 + a′n−1)λ
2 +

a′n, n ∈ Z. A simple computation shows that (a′n) is periodic with minimal period length 30.
Moreover

−λ′3 ≤ â′n ≤ 1− λ′6

hold for all n ∈ Z. Thus, if a2 = F2 +
∑

j≥7 a2,jFj , then by Lemma 2.2 for the sequence (an)
the assertion holds. The sequences with starting values a′0 = a′1 = 1, a′2 = F2 + F5 +

∑
j≥7 a2,jFj

and a′′0 = a′′1 = 1, a′′2 = F2 + F6 +
∑

j≥8 a2,jFj require a more careful analysis. Considering the
auxiliary sequence with starting values b′0 = b′1 = 1, b′2 = F2 +F5 a simple computation shows that

λ′4 ≤ b̂′n ≤ 1− λ′6

holds except when n = 4, 19. (In the exceptional cases ;b̂′n = 1 + λ′7.) It follows from Section 3
that a′n = b′n + fn holds for 0 ≤ n ≤ 6, especially

a′1 = 1, a′2 = F2 + F5 +
∑

j≥7

a2,jFj , a′3 = −3−

F4 + F7 +

∑

j≥7

a2,jFj+2


 ,

a′4 = 8 +


F5 + F8 +

∑

j≥7

a2,jFj+3


 .

Thus

(5.1) 0 ≤ â′4 = a′1 + (a′2 + a′3)λ
2 + a′4 = 9− 3λ2 + λ′3 + λ′6 +

∑

j≥7

a2,jλ
′j+1 < 1 + λ′7.

By the above inequality, which holds for n ≤ 18 and by Lemma 2.2 we have a′n = b′n + fn for
0 ≤ n ≤ 18, i.e.

a′16 = 15 + 2


F4 + F7 +

∑

j≥7

a2,jFj+2


 , a′17 = −14−


F5 + F8 +

∑

j≥7

a2,jFj+3


 ,

a′18 = 11 +


F4 + F7 +

∑

j≥7

a2,jFj+2


 .

We have

b′19 + f19 = −6−

F2 + F5 +

∑

j≥7

a2,jFj


 .

Using these data we obtain

a′16 + (a′17 + a′18)λ
2 + b′19 + f19 = 9− 3λ2 + λ′3 + λ′6 +

∑

j≥7

a2,jλ
′j+1

= â′4,

i.e. a′19 = b′19+f19. Using this and Lemma 2.2 we have a′n = b′n +fn for 20 ≤ n ≤ 30, consequently
for 0 ≤ n ≤ 30.

The proof for the sequence (a′′n) is similar, therefore we omit it. ¤
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5.2. The case a2,2 = 0, a2,3 = 1, a2,4 = 0. Now we turn to the second kind of periodic sequences.

Theorem 5.2. Let the sequence (an) be defined by the starting values a0 = a1 = 1 and a2 =
F3 +

∑
j≥5 a2,jFj, where a2,j ∈ {0, 1}, a2,ja2,j+1 = 0. Then (an) is periodic with minimal period

length 30.

Proof. The proof is analogous to the proof of Theorem 5.1, therefore we omit it. ¤
5.3. The case a2,2 = 1, a2,3 = 0, a2,4 = 1. To complete the study of the sequences with starting
values a0 = a1 = 1, a2 a positive integer, it remains to consider the case in the title. Now we fill
this gap.

Theorem 5.3. Let the sequence (an) be defined by the starting values a0 = a1 = 1 and a2 =
F2 + F4 +

∑
j≥6 a2,jFj, where a2,j ∈ {0, 1}, a2,ja2,j+1 = 0. Then (an) is periodic with minimal

period length 70.

Proof. Considering again the auxiliary sequence with initial values a′0 = a′1 = 1, a′2 = F2 + F4 = 4
we see that (a′n) is periodic with length 70 and

0 < −λ′7 ≤ â′n < 1 + λ′5,

which implies that the assertion is true if we assume j ≥ 8 in the definition of a2. The remaining
cases can be proved by a more careful analysis like in the proof of Theorem 5.1. ¤

At the end of this note we mention that the same methods also apply for the investigation of
sequences starting with other values than a0 = a1 = 1. However, the higher the values of a0 and
a1 are, the more cases have to be distinguished according to the Zeckendorf representation of a2.
Computer experiments suggest that the length of the occurring periods is not bounded.
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