
ON COMPOSITE RATIONAL FUNCTIONS

A. PETHŐ AND SZ. TENGELY

Abstract. In this paper we characterize all composite lacunary rational func-
tions having at most 3 distinct zeroes and poles and we also provide some
examples in case of 4, 5, 6 and 7 singularities.

1. introduction

In this article we deal with a problem related to decompositions of polynomials
and rational functions. A classical result by Ritt [32] states that if there is a
polynomial f ∈ C[X] satisfying certain tameness properties and

f = g1 ◦ g2 ◦ · · · ◦ gr = h1 ◦ h2 ◦ · · · ◦ hs,

then r = s and {deg g1, . . . , deg gr} = {deg h1, . . . , deg hr}. Ritt’s fundamental
result has been investigated, extended and applied in various wide-ranging contexts
(see e.g. [5, 12, 15, 16, 19, 20, 23, 24, 26, 27, 36, 37]). The above statement is not
true for rational functions. It is not true that all complete decompositions of a
rational function have the same length. Gutierrez and Sevilla [23] provided an
example with rational coefficients as follows

f =
x3(x + 6)3(x2 − 6x + 36)3

(x− 3)3(x2 + 3x + 9)3
,

f = g1 ◦ g2 ◦ g3 = x3 ◦ x(x− 12)
x− 3

◦ x(x + 6)
x− 3

,

f = h1 ◦ h2 =
x3(x + 24)

x− 3
◦ x(x2 − 6x + 36)

x2 + 3x + 9
.

We would like to emphasize that combinations of Siegel’s [34] and Faltings’ [18]
finiteness theorems, related to integral and rational points on algebraic curves, and
Ritt’s result have yielded many nice results in Diophantine number theory (see e.g.
[2, 7, 8, 9, 11, 14, 20, 25, 28, 29, 35]).

In his book [30, 31] Rédei introduced lacunary polynomials over finite fields. He
characterized certain fully reducible lacunary polynomials over finite fields and he
used this theory to obtain applications to areas of algebra and number theory.

In case of lacunary polynomials, that is when the number of terms of the polyno-
mial is considered to be fixed while the degrees and coefficients may vary, Erdős [17]
and independently Rényi posed the following conjecture. If h(x)2 has boundedly
many terms, then the same is true for h(x) ∈ C[X]. Schinzel [33] gave a proof in a
more general case, namely when h(x)d has boundedly many terms. Schinzel made
the conjecture that if g(h(x)) has boundedly many terms, then it holds also for
h(x). This latter conjecture has been proved by Zannier [38]. Fuchs and Zannier
[22] extended the problem, they considered lacunary rational functions which are
decomposable. An other possibility to think about lacunarity is that one considers
the number of zeros and poles of a rational function in reduced form to be bounded.
In this case Fuchs and Pethő [21] obtained results related to the structure of such
decomposable rational functions. We note that their proof was algorithmic.
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2 A. PETHŐ AND SZ. TENGELY

In this paper we provide some computational experiments that we obtained by
using a MAGMA [10] implementation of the algorithm of Fuchs and Pethő. We not
only compute the appropriate varieties, but we also provide parametrizations of the
possible solutions. We remark that algorithms have been developed earlier to find
decompositions of a given rational function (see e.g. [1, 3, 4]). In [3], Ayad and
Fleischmann implemented a MAGMA code to find decompositions, as an example
they considered the rational function

f =
x4 − 8x

x3 + 1
and they obtained that f(x) = g(h(x)), where

g =
x2 + 4x

x + 1
and h =

x2 − 2x

x + 1
.

At the end of the paper we show that this concrete decomposition corresponds to
a point on certain variety.

Our paper is organized as follows. In Section 2 we present the result of Fuchs and
Pethő [21] and we introduce some notation. In Section 3 we describe our algorithm
and provide some information about the computation we have done. In Section 4
we prove Theorem 1 that we state below. First we define equivalence of rational
functions. Two rational functions f1(x) =

∏n
i=1(x − α

(1)
i ) and f2(x) =

∏n
i=1(x −

α
(2)
i ) are equivalent if there exist ai,j ∈ Q, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n + 1}

such that
α

(1)
i = ai,1α

(2)
1 + ai,2α

(2)
2 + . . . + ai,nα(2)

n + ai,n+1,

for all i ∈ {1, 2, . . . , n}.
Theorem 1. Let k be an algebraically closed field of characteristic zero. If f, g, h ∈
k(x) with f(x) = g(h(x)) and with deg g, deg h ≥ 2, g not of the shape (λ(x))m,m ∈
N, λ ∈ PGL2(k), and f has 3 zeros and poles altogether, then f is equivalent to one
of the following rational functions

(a) (x−α1)
k1 (x+1/4−α1)

2k2

(x−1/4−α1)2k1+2k2
for some α1 ∈ k and k1, k2 ∈ Z, k1 + k2 6= 0,

(b) (x−α1)
2k1 (x+α1−2α2)

2k2

(x−α2)2k1+2k2
for some α1, α2 ∈ k and k1, k2 ∈ Z, k1 + k2 6= 0.

In Section 5 we deal with systems related to the case n = 4. Finally, in Section
6 we provide some examples with n ∈ {5, 6, 7}.

2. auxiliary results

Fuchs and Pethő [21] proved the following theorem.

Theorem A. Let k be an algebraically closed field of characteristic zero. Let n be a
positive integer. Then there exists a positive integer J and, for every i ∈ {1, . . . , J},
an affine algebraic variety Vi defined over Q and with Vi ⊂ An+ti for some 2 ≤ ti ≤
n, such that:

(i) If f, g, h ∈ k(x) with f(x) = g(h(x)) and with deg g, deg h ≥ 2, g not of the
shape (λ(x))m, m ∈ N, λ ∈ PGL2(k), and f has at most n zeros and poles altogether,
then there exists for some i ∈ {1, . . . , J} a point P = (α1, . . . , αn, β1, . . . , βti) ∈
Vi(k), a vector (k1, . . . , kti) ∈ Zti with k1 + k2 + . . . + kti = 0 or not depending on
Vi , a partition of {1, . . . , n} in ti + 1 disjoint sets S∞, Sβ1 , . . . , Sβti

with S∞ = ∅
if k1 + k2 + . . . + kti = 0, and a vector (l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n, also both
depending only on Vi, such that

f(x) =
ti∏

j=1

(ωj/ω∞)kj , g(x) =
ti∏

j=1

(x− βj)kj
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and

h(x) =

{
βj + ωj

ω∞
(j = 1, . . . , ti), if k1 + k2 + . . . + kti 6= 0

βj1ωj2−βj2ωj1
ωj2−ωj1

(1 ≤ j1 < j2 ≤ ti), otherwise,

where
ωj =

∏

m∈Sβj

(x− αm)lm , j = 1, . . . , ti

and
ω∞ =

∏

m∈S∞

(x− αm)lm .

Moreover, we have deg h ≤ (n− 1)/ max{ti − 2, 1} ≤ n− 1.
(ii) Conversely for given data P ∈ Vi(k), (k1, . . . , kti), S∞, Sβ1 , . . . , Sβti

, (l1, . . . , ln)
as described in (i) one defines by the same equations rational functions f, g, h with
f having at most n zeros and poles altogether for which f(x) = g(h(x)) holds.

(iii) The integer J and equations defining the varieties Vi are effectively com-
putable only in terms of n.

The method of proof of the above Theorem is effective. It provides an algorithm
to obtain all possible decompositions of rational functions with at most n zeros and
poles altogether.

We introduce some notation. Without loss of generality we may assume that f
and g are monic. Let

f(x) =
n∏

i=1

(x− αi)fi

with pairwise distinct αi ∈ k and fi ∈ Z for i = 1, . . . , n. Similarly, let

g(x) =
t∏

j=1

(x− βj)kj

with pairwise distinct βj ∈ k and kj ∈ Z for j = 1, . . . , t and t ∈ N. Therefore we
have

n∏

i=1

(x− αi)fi = f(x) = g(h(x)) =
t∏

j=1

(h(x)− βj)kj .

We shall write h(x) = p(x)/q(x) with p, q ∈ k[x], p, q coprime. Fuchs and Pethő
showed that if S∞ 6= ∅ then

q(x) =
∏

m∈S∞

(x− αm)lm

and there is a partition of the set {1, . . . , n} \ S∞ in t disjoint non empty subsets
Sβ1 , . . . , Sβt such that

(1) h(x) = βj +
1

q(x)

∏

m∈Sβj

(x− αm)lm ,

where lm ∈ N satisfies lmkj = fm for m ∈ Sβj , and this holds true for every
j = 1, . . . , t. We obtain at least two different representations of h, since we assumed
that g is not of the shape (λ(x))m. Hence we get at least one equation of the form

(2) βi +
1

q(x)

∏

r∈Sβi

(x− αr)lr = βj +
1

q(x)

∏

s∈Sβj

(x− αs)ls .

If S∞ = ∅ then we have

(p(x)− βjq(x))kj =
∏

m∈Sβj

(x− αm)fm .
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Now we have that t ≥ 3, otherwise g is in the special form we excluded. Siegel’s
identity provides the equations in this case. That is if 1 ≤ j1 < j2 < j3 ≤ t, then
we have

(3) vj1,j2,j3 + vj3,j1,j2 + vj2,j3,j1 = 0,

where

vj1,j2,j3 = (βj1 − βj2)
∏

m∈Sβj3

(x− αm)lm .

3. the computation

The method of proof by Fuchs and Pethő provides an algorithm to obtain the
possible varieties. So we followed the steps described below.

(i) compute the partitions of {1, 2, . . . , n} into t + 1 disjoint sets
(ii) given a partition S∞, Sβ1 , . . . , Sβt and a vector (l1, . . . , ln) ∈ {1, 2, . . . , n}n

compute the corresponding variety V = {v1, . . . , vr}, where vi is a polyno-
mial in α1, . . . , αn, β1, . . . , βt obtained from (2) or (3)

(iii) compute Groebner basis using lexicographical ordering (see e.g. [6, 13])
VG of the ideal generated by the polynomials v1, . . . , vr (we note that here
Groebner basis makes easier to compare the resulting varieties)

(iv) test ideal membership for all αi−αj , i, j = 1, 2, . . . , n, i 6= j and βi−βj , i, j =
1, 2, . . . , t, i 6= j

(v) if there is no contradiction in step (iv) list the given partition, vector and
variety.

We implemented the algorithm in Magma [10], the procedure CFunc.m can be
downloaded from http://www.math.unideb.hu/∼tengely/CFunc.m. The func-
tion works as follows: CFunc(t,n,tipus), where t denotes the number of roots/poles
of g, n denotes the number of roots/poles of f, tipus is in {0, 1}, it is 0 if S∞ is
empty, otherwise it is 1. So one way to call the function is CFunc(2,3,1); we
obtain a set of cardinality 18, an element of this set is:

< [{1}, {2}, {3}],
< 1, 2, 2 >,

[X[1]−X[3]− 1/4 ∗X[4] + 1/4 ∗X[5],
X[2]−X[3]− 1/2 ∗X[4] + 1/2 ∗X[5]] >

this element is a record having 3 fields
1st : a list contaning the partitions of [1, 2, . . . , n]
2nd : the exponent vector < l1, l2, . . . , ln >
3rd : the system of equations defining the variety, where X[1] = α1, . . . , X[n] =

αn and X[n + 1] = β1, . . . , X[n + t] = βt.
Other way to use the function is to use the optional parameters PSet and

exptup. PSet is a list contaning some fixed partitions of [1, 2, . . . , n], exptup is
a list containing some fixed exponents l1 up to ln. In this way we get a sys-
tem of equations corresponding to the given partition and exponent vector e.g.:
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CFunc(2,3,1:PSet:=[[{1},{2},{3}]]); the output is:

{
< [{1}, {2}, {3}], < 1, 2, 2 >,

[X[1]−X[3]− 1/4 ∗X[4] + 1/4 ∗X[5],
X[2]−X[3]− 1/2 ∗X[4] + 1/2 ∗X[5]] >,

< [{1}, {2}, {3}], < 2, 2, 1 >,

[X[1]−X[3]− 1/4,

X[2]−X[3] + 1/4,

X[4]−X[5] + 1] >,

< [{1}, {2}, {3}], < 2, 1, 2 >,

[X[1]−X[3]− 1/2,

X[2]−X[3]− 1/4,

X[4]−X[5]− 1] >

}.
That is we obtained all systems with the given partition [{1}, {2}, {3}] and t =
2, n = 3, S∞ 6= ∅. In a similar way one can compute all systems with a given
exponent vector [[1, 2, 2]]: CFunc(2,3,1:exptup:=[[1,2,2]]);.

Using the above mentioned procedure we computed all systems corresponding
to n ∈ {3, 4, 5}. Some details of the computations can be found in the following
table. Here #RS denotes the number of remaining systems to be considered, that
is those systems which were not eliminated, while #TS denotes the total number
of systems.

n t S∞ # RS # TS
3 2 6= ∅ 18 96
3 3 6= ∅ 0 0
3 3 ∅ 6 48
4 2 6= ∅ 264 3888
4 3 6= ∅ 0 5832
4 4 6= ∅ 0 0
4 3 ∅ 24 1944
4 4 ∅ 24 7776
5 2 6= ∅ 4644 122880
5 3 6= ∅ 60 368640
5 4 6= ∅ 0 491520
5 5 6= ∅ 0 0
5 3 ∅ 384 61440
5 4 ∅ 0 491520
5 5 ∅ 120 1228800

The above table shows that combinatorial explosion increases the total number of
systems very rapidly.

4. proof of Theorem 1.

We are going to deal with the three possible cases (n, t, S∞) ∈ {(3, 2, 6= ∅), (3, 3, 6=
∅), (3, 3, ∅)}. We note that the previous table shows that there are no solutions with
(n, t, S∞) = (3, 3, 6= ∅).
4.1. The case n = 3, t = 2 and S∞ 6= ∅. There are two types of systems here, in
the first class one obtains solutions having two parameters, in the second class one
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has solutions having three parameters. Below we indicate the 12 systems which
yield families with two parameters.

(S∞, Sβ1 , Sβ2 ), (l1, l2, l3) System of equations Solution (α1, α2, α3, β1, β2)

({3}, {2}, {1}) α1 − α3 + 1/4 = 0 (−1/4 + α3,−1/2 + α3, α3,−1 + β2, β2)
(1, 2, 2) α2 − α3 + 1/2 = 0

β1 − β2 + 1 = 0
({2}, {1}, {3}) α1 − α3 + 1/4 = 0 (−1/4 + α3, 1/4 + α3, α3,−1 + β2, β2)
(2, 2, 1) α2 − α3 − 1/4 = 0

β1 − β2 + 1 = 0
({1}, {2}, {3}) α1 − α3 − 1/4 = 0 (1/4 + α3,−1/4 + α3, α3,−1 + β2, β2)
(2, 2, 1) α2 − α3 + 1/4 = 0

β1 − β2 + 1 = 0
({1}, {3}, {2}) α1 − α3 − 1/2 = 0 (1/2 + α3, 1/4 + α3, α3,−1 + β2, β2)
(2, 1, 2) α2 − α3 − 1/4 = 0

β1 − β2 + 1 = 0
({2}, {3}, {1}) α1 − α3 + 1/4 = 0 (−1/4 + α3, 1/4 + α3, α3, 1 + β2, β2)
(2, 2, 1) α2 − α3 − 1/4 = 0

β1 − β2 − 1 = 0
({3}, {1}, {2}) α1 − α3 + 1/2 = 0 (−1/2 + α3,−1/4 + α3, α3,−1 + β2, β2)
(2, 1, 2) α2 − α3 + 1/4 = 0

β1 − β2 + 1 = 0
({1}, {3}, {2}) α1 − α3 − 1/4 = 0 (1/4 + α3,−1/4 + α3, α3, 1 + β2, β2)
(2, 2, 1) α2 − α3 + 1/4 = 0

β1 − β2 − 1 = 0
({1}, {2}, {3}) α1 − α3 − 1/2 = 0 (1/2 + α3, 1/4 + α3, α3, 1 + β2, β2)
(2, 1, 2) α2 − α3 − 1/4 = 0

β1 − β2 − 1 = 0
({2}, {1}, {3}) α1 − α3 − 1/4 = 0 (1/4 + α3, 1/2 + α3, α3, 1 + β2, β2)
(1, 2, 2) α2 − α3 − 1/2 = 0

β1 − β2 − 1 = 0
({2}, {3}, {1}) α1 − α3 − 1/4 = 0 (1/4 + α3, 1/2 + α3, α3,−1 + β2, β2)
(1, 2, 2) α2 − α3 − 1/2 = 0

β1 − β2 + 1 = 0
({3}, {2}, {1}) α1 − α3 + 1/2 = 0 (−1/2 + α3,−1/4 + α3, α3, 1 + β2, β2)
(2, 1, 2) α2 − α3 + 1/4 = 0

β1 − β2 − 1 = 0
({3}, {1}, {2}) α1 − α3 + 1/4 = 0 (−1/4 + α3,−1/2 + α3, α3, 1 + β2, β2)
(1, 2, 2) α2 − α3 + 1/2 = 0

β1 − β2 − 1 = 0

As an example consider the system from the sixth row, that is (S∞, Sβ1 , Sβ2) =
({3}, {1}, {2}) and (l1, l2, l3) = (2, 1, 2). Here we obtain the following system of
equations

α1 − α3 + 1/2 = 0,

α2 − α3 + 1/4 = 0,

β1 − β2 + 1 = 0.

Therefore one gets the parametric solution (α3 − 1/2, α3 − 1/4, α3, β2 − 1, β2) and
with k1 = k2 = 1 we have

f(x) =
(x− α3 + 1/2)2(x− α3 + 1/4)

(x− α3)4
,

g(x) = (x− β2 + 1)(x− β2),

h(x) = β2 − 1 +
(x− α3 + 1/2)2

(x− α3)2
.

It is easy to see that f(x − 1/4) is of the form (a) stated in Theorem 1. We
note that one gets the same family in case of (S∞, Sβ1 , Sβ2) = ({3}, {2}, {1}) and
(l1, l2, l3) = (1, 2, 2). In a similar way we can show that the remaining systems yield
equivalent rational functions to the function in part (a) of Theorem 1.

Now we provide the table containing the 6 systems which yield families with
three parameters.
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(S∞, Sβ1 , Sβ2 ), (l1, l2, l3) System of equations Solution (α1, α2, α3, β1, β2)

({3}, {2}, {1}) α1 − α2 + 1/2β1 − 1/2β2 = 0 (−α2 + 2α3, α2, α3, 4α2 − 4α3 + β2, β2)
(2, 2, 1) α2 − α3 − 1/4β1 + 1/4β2 = 0
({1}, {3}, {2}) α1 − α3 + 1/4β1 − 1/4β2 = 0 (α1,−α3 + 2α1, α3,−4α1 + 4α3 + β2, β2)
(1, 2, 2) α2 − α3 + 1/2β1 − 1/2β2 = 0
({2}, {3}, {1}) α1 − α3 + 1/2β1 − 1/2β2 = 0 (2α2 − α3, α2, α3,−4α2 + 4α3 + β2, β2)
(2, 1, 2) α2 − α3 + 1/4β1 − 1/4β2 = 0
({1}, {2}, {3}) α1 − α3 − 1/4β1 + 1/4β2 = 0 (α1,−α3 + 2α1, α3, 4α1 − 4α3 + β2, β2)
(1, 2, 2) α2 − α3 − 1/2β1 + 1/2β2 = 0
({3}, {1}, {2}) α1 − α2 − 1/2β1 + 1/2β2 = 0 (−α2 + 2α3, α2, α3,−4α2 + 4α3 + β2, β2)
(2, 2, 1) α2 − α3 + 1/4β1 − 1/4β2 = 0
({2}, {1}, {3}) α1 − α3 − 1/2β1 + 1/2β2 = 0 (2α2 − α3, α2, α3, 4α2 − 4α3 + β2, β2)
(2, 1, 2) α2 − α3 − 1/4β1 + 1/4β2 = 0

From the parametrizations one can easily obtain the corresponding rational
functions, as an example we take the fourth row of the table. That is, we have
(S∞, Sβ1 , Sβ2) = ({1}, {2}, {3}), (l1, l2, l3) = (1, 2, 2) and

α1 − α3 − 1/4β1 + 1/4β2 = 0,

α2 − α3 − 1/2β1 + 1/2β2 = 0.

Thus if k1 = k2 = 1, then

f(x) =
(x− α3)2(x− 2α1 + α3)2

(x− α1)2
,

g(x) = (x− 4α1 + 4α3 − β2)(x− β2),

h(x) = β2 +
(x− α3)2

x− α1
.

It is clear that f is equivalent to the rational function in part (b) of Theorem 1.
The remaining systems can be handled in a similar way, all of these are equivalent
to the rational function indicated in part (b).

4.2. The case n = 3, t = 3 and S∞ = ∅. In total there are six parametrizations
here, these are indicated in the table below.

(Sβ1 , Sβ2 , Sβ3 , ), (l1, l2, l3) System of equations Solution (α1, α2, α3, β1, β2, β3)

({1}, {3}, {2}) α1β2 − α1β3 + α2β1 − α2β2 − α3β1 + α3β3 = 0 (−α2β1−α2β2−α3β1+α3β3
β2−β3

,

(1, 1, 1) α2, α3, β1, β2, β3)

({2}, {1}, {3}) α1β1 − α1β3 − α2β2 + α2β3 − α3β1 + α3β2 = 0 (
α2β2−α2β3+α3β1−α3β2

β1−β3
,

(1, 1, 1) α2, α3, β1, β2, β3)

({3}, {1}, {2}) α1β1 − α1β3 − α2β1 + α2β2 − α3β2 + α3β3 = 0 (
α2β1−α2β2+α3β2−α3β3

β1−β3
,

(1, 1, 1) α2, α3, β1, β2, β3)

({1}, {2}, {3}) α1β2 − α1β3 − α2β1 + α2β3 + α3β1 − α3β2 = 0 (
α2β1−α2β3−α3β1+α3β2

β2−β3
,

(1, 1, 1) α2, α3, β1, β2, β3)

({3}, {2}, {1}) α1β1 − α1β2 − α2β1 + α2β3 + α3β2 − α3β3 = 0 (
α2β1−α2β3−α3β2+α3β3

β1−β2
,

(1, 1, 1) α2, α3, β1, β2, β3)

({2}, {3}, {1}) α1β1 − α1β2 + α2β2 − α2β3 − α3β1 + α3β3 = 0 (−α2β2−α2β3−α3β1+α3β3
β1−β2

,

(1, 1, 1) α2, α3, β1, β2, β3)

We remark that all these systems correspond to trivial solutions (deg h=1). We
have that ωj =

∏
m∈Sβj

(x− αm)lm is a linear polynomial for all j ∈ {1, 2, 3}, since
l1 = l2 = l3 = 1 and the cardinality of Sβj is 1 for all possible cases. Therefore

h(x) =
βj1ωj2 − βj2ωj1

ωj2 − ωj1

is a linear polynomial. So we do not obtain non-trivial rational function from this
case.

As an illustration we provide an example corresponding to the parametrization
indicated in the fourth row, that is (Sβ1 , Sβ2 , Sβ3) = ({1}, {2}, {3}) and (l1, l2, l3) =
(1, 1, 1). Now let (α2, α3, β1, β2, β3) = (2, 1,−1, 1, 0) and k1 = k2 = 1, k3 = −2. One
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has that α1 = 0 and

f(x) =
(x− 2)x
(x− 1)2

,

g(x) =
(x− 1)(x + 1)

x2
,

h(x) = x− 1.

5. cases with n = 4

In this section we provide some details of the computation corresponding to cases
with n = 4.

5.1. The case n = 4, t = 2 and S∞ 6= ∅. There are 264 systems to deal with. We
will treat only a few representative examples.

Systems containing two polynomials.
If (S∞, Sβ1 , Sβ2) = ({4}, {1, 2}, {3}) and (l1, l2, l3, l4) = (1, 1, 2, 1), then we have

α1 + α2 − 2α3 − β1 + β2 = 0
α2

2 − 2α2α3 − α2β1 + α2β2 + α2
3 + α4β1 − α4β2 = 0.

Since αi 6= αj and βi 6= βj if i 6= j, we have that

α1 = −α2 + 2α3 + β1 − β2,

α4 = α2 − (α2 − α3)2

β1 − β2
.

For example, if we consider the solution (α1, α2, α3, α4, β1, β2) = (−2, 1, 0, 2, 0, 1),
then we get

f(x) =
(x− 1)x2(x + 2)

(x− 2)2
,

g(x) = (x− 1)x,

h(x) =
(x− 1)(x + 2)

x− 2
.

Systems containing three polynomials.
If (S∞, Sβ1 , Sβ2) = ({1}, {2, 3}, {4}) and (l1, l2, l3, l4) = (1, 2, 1, 3), then we get

α1 + 1/3α3 − 4/3α4 = 0
α2 + 1/2α3 − 3/2α4 = 0

α2
3 − 2α3α4 + α2

4 − 4/3β1 + 4/3β2 = 0.

Thus one obtains the parametrization

α1 = −1/3α3 + 4/3α4,

α2 = −1/2α3 + 3/2α4,

β1 = 3/4α2
3 − 3/2α3α4 + 3/4α2

4 + β2.

Let us take (α1, α2, α3, α4, β1, β2) = (−1/3,−1/2, 1, 0, 1, 1/4), then we have

f(x) =
(x− 1)x3(x + 1/2)2

(x + 1/3)2
,

g(x) = (x− 1)(x− 1/4),

h(x) =
1
4

+
x3

x + 1/3
.

Systems containing four polynomials.
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Consider the case (S∞, Sβ1 , Sβ2) = ({1}, {2, 3}, {4}) and (l1, l2, l3, l4) = (3, 1, 1, 3).
One gets the system

α1 − α4 − 1/3 = 0
α2 + α3 − 2α4 − 1/3 = 0

α2
3 − 2α3α4 − 1/3α3 + α2

4 + 1/3α4 + 1/27 = 0
β1 − β2 − 1 = 0.

The parametrization is as follows

α1 = α4 + 1/3,

α2 = α4 ∓
√−3
18

+
1
6
,

α3 = α4 ±
√−3
18

+
1
6
,

β1 = β2 + 1.

As an example we take (α1, α2, α3, α4, β1, β2) = (1/6,−√−3/18,
√−3/18,−1/6, 1, 0),

then we obtain

f(x) =
(x−√−3/18)(x +

√−3/18)(x + 1/6)3

(x− 1/6)6
,

g(x) = (x− 1)x,

h(x) =
(x + 1/6)3

(x− 1/6)3
.

Systems containing five polynomials.
If (S∞, Sβ1 , Sβ2) = ({1}, {2, 3}, {4}) and (l1, l2, l3, l4) = (3, 1, 2, 2), then we have

α1 − 1/3α2 − 2/3α3 − 1/3 = 0
α2

2 − 2α2α4 + 2α2 + 8α2
3 − 16α3α4 + 6α3 + 9α2

4 − 8α4 + 1 = 0
α2 + 7/2α3 − 9/2α4 + 1 = 0

α3 − α4 + 8/27 = 0
β1 − β2 + 1 = 0.

We get the parametrization

α1 = α4 + 4/27,

α2 = α4 + 1/27,

α3 = α4 − 8/27,

β1 = β2 − 1.

As a concrete example we deal with the case (α1, α2, α3, α4, β1, β2) = (4/27, 1/27,−8/27, 0, 0, 1).
It easily follows that

f(x) =
(x− 1/27)x2(x + 8/27)2

(x− 4/27)6
,

g(x) = (x− 1)x,

h(x) = 1 +
x2

(x− 4/27)3
.

5.2. The case n = 4, t = 3 and S∞ = ∅. There are 24 systems to handle
in this case. The systems are getting more and more complicated therefore we
deal with two typical cases. There are 6 systems having two polynomials in the
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Groebner basis, one of these is as follows: (Sβ1 , Sβ2 , Sβ3) = ({1, 3}, {4}, {2}) and
(l1, l2, l3, l4) = (1, 2, 1, 2). The system of equations are given by

α1β2 − α1β3 + 2α2β1 − 2α2β2 + α3β2 − α3β3 − 2α4β1 + 2α4β3 = 0

α
2
2β1 − α

2
2β2 − 2α2α3β1 + 2α2α3β2 − α

2
3β2 + α

2
3β3 + 2α3α4β1 − 2α3α4β3 − α

2
4β1 + α

2
4β3 = 0.

There are four solutions where αi = αj or βi = βj

(α1 = α4, α2 = α4, α3 = α4, α4, β1, β2, β3),
(α1 = α3, α2 = α3, α3, α4, β1 = β3, β2, β3),

(α1, α2, α3, α4, β1 = β3, β2 = β3, β3),
(α1, α2 = α4, α3, α4, β1, β2 = β3, β3).

These solutions do not lead to appropriate rational functions. There is one solution
which yield solutions of the original problem

α1 = −α2α3 − 2α2α4 + α3α4

α2 − 2α3 + α4
,

β2 =
α2

2β1 − 2α2α3β1 + α2
3β3 + 2α3α4β1 − 2α3α4β3 − α2

4β1 + α2
4β3

(α2 − α3)2
,

where α2, α3, α4, β1, β3 are parameters such that αi 6= αj , βi 6= βj and α2 − 2α3 +
α4 6= 0. As an example consider the case (α2, α3, α4, β1, β3) = (0, 1, 3, 0, 1). We
obtain that α1 = −3 and β2 = 4. Let k1 = k2 = 1 and k3 = −2. We get that

f(x) =
(x− 3)2(x− 1)(x + 3)

x4
,

g(x) =
(x− 4)x
(x− 1)2

,

h(x) =
(x− 1)(x + 3)

2x− 3
.

There are 18 systems having three polynomials in the Groebner basis, one of these
is as follows: (Sβ1 , Sβ2 , Sβ3) = ({1}, {2, 3}, {4}) and (l1, l2, l3, l4) = (2, 1, 1, 2). The
system of equations is

α1α2 + α1α3 − 2α1α4 − 2α2α3 + α2α4 + α3α4 = 0

α1β2 − α1β3 − 1/2α2β1 + 1/2α2β3 − 1/2α3β1 + 1/2α3β3 + α4β1 − α4β2 = 0

α
2
2β1 − α

2
2β3 + 2α2α3β1 − 4α2α3β2 + 2α2α3β3 − 4α2α4β1+

+4α2α4β2 + α
2
3β1 − α

2
3β3 − 4α3α4β1 + 4α3α4β2 + 4α

2
4β1 − 4α

2
4β2 = 0.

The only solution where one can obtain appropriate rational functions is

α1 =
−α2α4 − α3α4 + 2α2α3

α2 + α3 − 2α4
,

β3 =
α2

2β1 + 2α2α3β1 − 4α2α3β2 − 4α2α4β1 + 4α2α4β2 + α2
3β1 − 4α3α4β1 + 4α3α4β2 + 4α2

4β1 − 4α2
4β2

(α2 − α3)2
,

where α2, α3, α4, β1, β2 are parameters such that αi 6= αj , βi 6= βj and α2 + α3 −
2α4 6= 0. Now we consider the example with (α2, α3, α4, β1, β2) = (0, 1, 3, 0, 1). We
have that α1 = 2/3 and β3 = −8. Let k1 = k2 = 1 and k3 = −2. We have that

f(x) =
(x− 2/3)2(x− 1)x

(x− 2)4
,

g(x) =
(x− 1)x
(x + 8)2

,

h(x) =
(3x− 2)2

−3x + 4
.
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5.3. The case n = 4, t = 4 and S∞ = ∅. Here we have 24 systems to solve. We
have the same remark as in case of t = 3, n = 3 and S∞ = ∅. That is there are only
trivial solutions here with deg h = 1.

Since one has 24 very similar systems, we will deal with one of these only. Let
(Sβ1 , Sβ2 , Sβ3 , Sβ4) = ({1}, {2}, {3}, {4}) and (l1, l2, l3, l4) = (1, 1, 1, 1). One gets
the system of equations

α1β2 − α1β4 − α2β1 + α2β4 + α4β1 − α4β2 = 0
α1β3 − α1β4 − α3β1 + α3β4 + α4β1 − α4β3 = 0
α2β3 − α2β4 − α3β2 + α3β4 + α4β2 − α4β3 = 0.

There are three solutions which do not correspond to appropriate rational functions,
the remaining solution has

α1 =
α3β1 − α3β4 − α4β1 + α4β3

β3 − β4
,

α2 =
α3β2 − α3β4 − α4β2 + α4β3

β3 − β4
.

Now let (α3, α4, β1, β2, β3, β4) = (0, 1, 3, 2, 1, 0) and k1 = k2 = 1, k3 = k4 = −1.
One obtains that

f(x) =
(x + 1)(x + 2)

(x− 1)x
,

g(x) =
(x− 3)(x− 2)

(x− 1)x
,

h(x) = −x + 1.

6. some examples with n ∈ {5, 6, 7}
We computed all the varieties corresponding to n = 5, the systems are getting

more and more complicated therefore we selected only three examples given below.
All systems in case of n = 5 can be downloaded from
http://www.math.unideb.hu/∼tengely/CFunc5.txt.tar.gz. We also consider
examples with n = 6 and 7.

• Consider the case (S∞, Sβ1 , Sβ2) = ({1, 5}, {3, 4}, {2}) and (l1, l2, l3, l4, l5) =
(3, 1, 1, 3, 1). One gets a system containing 5 equations

α1 − 2α4 + α5 = 0
α2 − 3/2α4 + 1/2α5 = 0

α3 − 3α4 + 2α5 = 0
α3

4 − 3α2
4α5 + 3α4α

2
5 − α3

5 + 1/2 = 0
β1 − β2 + 1 = 0.

The solutions of this system of equations are given by

(α1, α1+
1
4

3
√

4ζk,
1
2
( 3
√

2α1−1) 3
√

4ζk,
1
2
( 3
√

2α1+1) 3
√

4ζk,
1
2
( 3
√

2α1+2) 3
√

4ζk, β1, β1+1),

where ζ = 1+i
√

3
2 and k = 0, 1, 2.

• Let (S∞, Sβ1 , Sβ2) = ({1, 2, 5}, {3}, {4}) and (l1, l2, l3, l4, l5) = (1, 1, 1, 3, 1).
We obtain the following system of equations

α1 + α2 − 3α4 + α5 = 0
α2

2 − 3α2α4 + α2α5 + 3α2
4 − 3α4α5 + α2

5 − 1 = 0
α3 − α3

4 + 3α2
4α5 − 3α4α

2
5 + α3

5 − α5 = 0
β1 − β2 − 1 = 0.
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The general solutions are given by
α1,

α2,

α3 =
1

18

p
−α1 + α2 + 2

�
4
p

α1 − α2 + 2
√

3α1α2 − 2
p

α1 − α2 + 2
√

3α
2
2 −

p
α1 − α2 + 2

�
2
√

3α
2
1 +

√
3
��

+

1

2
α1 +

1

2
α2,

α4 = − 1

6

q
−α2

1 + 2 α1α2 − α2
2 + 4

√
3 +

1

2
α1 +

1

2
α2,

α5 = − 1

2

p
−α1 + α2 + 2

p
α1 − α2 + 2

√
3 +

1

2
α1 +

1

2
α2

β1,

β2 = β1 − 1.

and
α1,

α2,

α3 = − 1

18

p
−α1 + α2 + 2

�
4
p

α1 − α2 + 2
√

3α1α2 − 2
p

α1 − α2 + 2
√

3α
2
2 −

p
α1 − α2 + 2

�
2
√

3α
2
1 +

√
3
��

+

1

2
α1 +

1

2
α2,

α4 =
1

6

q
−α2

1 + 2 α1α2 − α2
2 + 4

√
3 +

1

2
α1 +

1

2
α2,

α5 =
1

2

p
−α1 + α2 + 2

p
α1 − α2 + 2

√
3 +

1

2
α1 +

1

2
α2,

β1,

β2 = β1 − 1.

• Now, we provide an example where the zeroes and poles of f form an arith-
metic progression. Let (S∞, Sβ1 , Sβ2) = ({4, 5}, {2, 3}, {1}) and (l1, l2, l3, l4, l5) =
(1, 1, 1, 1, 1). We get the following system of equations

α1 − α2
3 + α3α4 + α3α5 − α3 − α4α5 = 0

α2 + α3 − α4 − α5 + 1 = 0
β1 − β2 + 1 = 0.

Now assume that α5, α3, α1, α4, α2 form an arithmetic progression in this
order. We have that

α5 + α1 − 2α3 = 0
α1 + α2 − 2α4 = 0
α5 + α2 − 2α1 = 0.

The two systems of equations above simplify to

α1 = α5 − 1,

α2 = α5 − 2,

α3 = α5 − 1
2
,

α4 = α5 − 3
2
,

β1 = β2 − 1.

Thus the rational functions are given by

f(x) =
(x− α5 + 1/2)(x− α5 + 1)(x− α5 + 2)

(x− α5)2(x− α5 + 3/2)2

g(x) = (x− β2)(x− β2 + 1)

h(x) = β2 +
x− α5 + 1

(x− α5)(x− α5 + 3/2)
.
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• Let n = 6 and we fix the vector (l1, l2, . . . , l6) to be (1, 1, 2, 1, 1, 1). The pro-
cedure CFunc(3,6,1:exptup:=[[1,1,2,1,1,1]]); yields that there are
30 systems to deal with. One of these is as follows. The partition is given
by [{4}, {1, 2}, {5, 6}, {3}] and the system of equations is

α1 − α4 + α5 − α6 − β1 + β2 = 0,

α2β1 − α2β3 + 1/4α2
4 − α4α5 + 1/2α4α6 − 1/2α4β2 + 1/2α4β3 + α2

5−
α5α6 − α5β1 + α5β2 + 1/4α2

6 − 1/2α6β2 + 1/2α6β3 + 1/4β2
2 − 1/2β2β3 + 1/4β2

3 = 0,

α2β2 − α2β3 + 1/4α2
4 − 1/2α4α6 − 1/2α4β2 + 1/2α4β3 + 1/4α2

6 − 1/2α6β2+

1/2α6β3 + 1/4β2
2 − 1/2β2β3 + 1/4β2

3 = 0,

α3 − 1/2α4 − 1/2α6 + 1/2β2 − 1/2β3 = 0,

α2
4β1 − α2

4β2 + 4α4α5β2 − 4α4α5β3 − 2α4α6β1 − 2α4α6β2+

4α4α6β3 − 2α4β1β2 + 2α4β1β3 + 2α4β
2
2 − 2α4β2β3 − 4α2

5β2 + 4α2
5β3+

4α5α6β2 − 4α5α6β3 + 4α5β1β2 − 4α5β1β3 − 4α5β
2
2 + 4α5β2β3+

α2
6β1 − α2

6β2 − 2α6β1β2 + 2α6β1β3 + 2α6β
2
2 − 2α6β2β3 + β1β

2
2−

2β1β2β3 + β1β
2
3 − β3

2 + 2β2
2β3 − β2β

2
3 = 0.

• Finally, we show an example with n = 7. Using our Magma procedure
CFunc(3,7,1:PSet:=[[{1},{2,3},{4,5},{6,7}]],exptup:=[[1,1,1,1,1,1,1]]);
we get the system of equations

α1β1 − α1β3 + α2
3 − α3α6 − α3α7 − α3β1 + α3β3 + α6α7 = 0,

α1β2 − α1β3 + α2
5 − α5α6 − α5α7 − α5β2 + α5β3 + α6α7 = 0,

α2 + α3 − α6 − α7 − β1 + β3 = 0,

α2
3β2 − α2

3β3 − α3α6β2 + α3α6β3 − α3α7β2 + α3α7β3−
α3β1β2 + α3β1β3 + α3β2β3 − α3β

2
3 − α2

5β1 + α2
5β3+

α5α6β1 − α5α6β3 + α5α7β1 − α5α7β3 + α5β1β2 − α5β1β3−
α5β2β3 + α5β

2
3 − α6α7β1 + α6α7β2 = 0,

α4 + α5 − α6 − α7 − β2 + β3 = 0.

We note that the above system has a solution

(α1, α2, α3, α4, α5, α6, α7, β1, β2, β3) =

(−1, 0, 2,−1−√−3,−1 +
√−3,

1−√−3
2

,
1 +

√−3
2

, 0,−4,−1).

It corresponds to the example given by Ayad and Fleischmann, that is

f =
x4 − 8x

x3 + 1
,

g =
x2 + 4x

x + 1
,

h =
x2 − 2x

x + 1
.
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