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Abstract. In this paper, we provide an explicit upper bound on
the absolute value of the solutions n < m < 0 to the Diophan-

tine equation F
(k)
n = ±F (k)

m , assuming k is even. Here {F (k)
n }n∈Z

denotes the k-generalized Fibonacci sequence. The upper bound
depends only on the term of k.
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1. Introduction

Let k ≥ 2 be a positive integer. The k-generalized Fibonacci sequ-

ence {F (k)
n }n∈Z is defined by

(1) F
(k)
−k+2 = · · · = F

(k)
0 = 0, F

(k)
1 = 1,

and by

F (k)
n = F

(k)
n−1 + · · ·+ F

(k)
n−k for all n ∈ Z.

The case k = 2 gives the Fibonacci sequence. There exist several results

in the literature connected to the sequence {F (k)
n }, but less deal with

problems when negative subscripts are considered. To construct the
sequence in reverse direction using, for example (1) as initial values,
one can apply the recurrence relation

F
(k)
−t = −F (k)

−t+1 − · · · − F
(k)
−t+k−1 + F

(k)
−t−k,

where the index −t emphasizes its negativity (t ∈ Z+, t ≥ k− 1). The
main problem with negative subscripts is that while the characteristic

polynomial Tk(x) = xk − xk−1 − · · · − x − 1 (of {F (k)
n }∞n=n0

) has a

(positive real) dominating zero, the characteristic polynomial T k(x) =
xk + xk−1 + · · ·+ x− 1 of the reverse sequence has no one if k is odd.
Other difficulty in computations is that, although T k(x) possesses a
dominating zero (a negative real number) if k is even but the dominance
is not strong. This paper supposes that k is even, and according to the
previous note, we face this difficulty.
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Bravo et al. [2], extending the results of [1], determined the total

multiplicity of Tribonacci sequence {Tn}n∈Z = {F (3)
n }n∈Z. In particular,

they solved the Diophantine equation Tn = Tm for negative subscripts.
Pethő [5] proved that the Diophantine equation

F (k)
n = F (`)

m

possesses only finitely many solutions (n,m) ∈ Z2 for fixed k ≥ ` ≥ 2.
This result is ineffective, the proof is based on the theory of S-unit
equations. An effective finiteness results of [5] states that if k and ` are
given positive even integers, and the integers n and m satisfy

F (k)
n = ±F (`)

m ,

then |m|, |n| < C, where the constant C depends only on k, `, and on
the zeros of Tk(x) and T`(x).

This paper is devoted to investigate the equation

(2) F (k)
n = ±F (k)

m

for negative subscripts n and m if k = 2κ is even. We explicitly give
an upper bound Bk such that the solutions satisfy |n|, |m| < Bk. This
bound is huge, and cannot be applied to eliminate the solutions to (2).
But, in fact, it bounds explicitly the size of the solutions only in the
term of k. In the proof, we do not use Baker method. The precise
result is given here.

Theorem 1. If k is even, and n < m < 0 satisfy (2), then

(3) |m| < 6k
4+1 log(5k2(1 + 3dk/k)) + 1, |n| < |m|+ dk,

where dk = 6k
4+1 log(9k).

Note that this theorem is true even for the Fibonacci sequence. More-
over Pethő [5] solved (2) if k = 4, and (3) obviously fulfils in this case,
too. Hence it is sufficient to justify the theorem for k ≥ 6. The method
follows the proof of Theorem 5, Case ii of [5]. In order to have this
paper self-contained, we will refer the necessary details from that proof.

Now we introduce some more notations in order to fix a few subject
materials. It is known that the polynomial Tk(x) has simple zeros,
the largest one in absolute value is a positive real number denoted by
α1, which is greater than 1. Tk(x) is a Pisot polynomial, i.e. all zeros
but α1 lie inside the unit circle. The other zeros are complex non-real
numbers, except if k is even. In this case there exist a second real zero,
say αk, which is negative, and has the unique smallest absolute value
among all the zeros. If two zeros have common absolute value then
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they form a complex conjugate pair (see [5]). Hence the zeros of the
characteristic polynomial Tk(x) can be ordered by

|αk| < |αk−1| = |αk−2| < · · · < |α3| = |α2| < α1

assuming k is even.
For any k ≥ 2, Dresden and Du [3] gave the simplified explicit for-

mula

(4) F (k)
n =

k∑
j=1

gk(αj)α
n−1
j forn ≥ 0,

where

(5) gk(x) =
x− 1

2 + (k + 1)(x− 2)
.

Note that (4) is also true for any n ∈ Z.
Keeping that k = 2κ is even, we consider equation (2) for negative

subscripts n < m < 0. Clearly, F
(k)
−k+1 = 1, F

(k)
−k = −1, and F

(k)
−k−1 =

0 follow from (1) and (1). Hence without loss of generality we may
suppose m ≤ −k + 2.

Here we list up a few estimates will be used later. The first three
lemmata do not depend on the parity of k ≥ 2.

Lemma 1. For k ≥ 2 the following inequalities hold.

2− 1

2k−1
< α1 < 2− 1

2k
.

Proof. This is Lemma 3.6, and a consequence of Theorem 3.9 in [6]. �

Lemma 2. If j 6= 1, then 3−1/k < |αj|.
Proof. See Lemma 2.1 in [4]. �

Lemma 3. If |αj| > |αi|, then
|αj|
|αi|

> ck := 1 + 6−k
4

.

Proof. A simple computation shows that the statement is true for k =
2, 3, . . . , 9. If k ≥ 10, then we follow the proof of Lemma 2.2 in [4].

Note that ck = 1 + 8−k
4

was given there. The improvement is based
on the fact that 1 + 4 · 32/k < 6 if k ≥ 10 (see (2.5) and afterwards in
[4]). �

Lemma 4. Assume that k ≥ 4 is even. Then

|αk| <
2k − 1

2k + 1
.
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Proof. Consider the graph of the polynomial function

fk(x) = (x− 1)Tk(x) = xk+1 − 2xk + 1.

For negative x the function is increasing and reaches its relative maxi-
mum at x0 = 0. Put ak = −(2k − 1)/(2k + 1). It is sufficient to show
that fk(ak) = akk(ak − 2) + 1 < 0. Equivalently we prove

(6)
2k + 1

6k + 1
<

(
2k − 1

2k + 1

)k
.

The left-hand side is a decreasing sequence which tends to 1/3 (as
k → ∞). The right-hand side is an increasing sequence, and it tends
to 1/e. Since (6) holds if k = 4, then it holds for all even k > 4,
too. �

2. Proof of Theorem 1

2.1. Preparation. First we carry out a few preliminary computations.
We arrange these results in lemmata as follows. In the sequel, assume
that k is even.

Lemma 5. Suppose that k ≥ 2 is even. Then |gk(αk)| > 2(1+3−1/k)
6k+3

holds.

Proof. Apply (5), which together with the fact −1 < αk < 0 and
Lemmata 2, 4 provides

|gk(αk)| =
|αk − 1|

|2 + (k + 1)(αk − 2)|
=

1− αk
−2 + (k + 1)(2− αk)

>
1 + 3−1/k

−2 + (k + 1)
(
3− 2

2k+1

) =
(2k + 1)(1 + 3−1/k)

6k2 + 3k − 1

>
2(1 + 3−1/k)

6k + 3
.

�

Lemma 6. For 2 ≤ j ≤ k (k is even) we have |gk(αj)| < 2
k−1 .

Proof. Use again (5). Then we have

|gk(αj)| =
|αj − 1|

|2 + (k + 1)(αj − 2)|
≤ |αj|+ 1

| − 2k + (k + 1)αj|

<
2

|2k − (k + 1)|αj||
<

2

2k − (k + 1)
=

2

k − 1
.

�
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Lemma 7. If k ≥ 2 is even, then |gk(α1)| < 2k−1
2(2k−k−1) .

Proof. Observe that Lemma 1 implies −(k+1)/2k−1 < (k+1)(α1−2) <
−(k + 1)/2k. Thus (k + 1)(α1 − 2) is always negative, but its absolute
value is less than or equal to 3/2 if k ≥ 2. Combining this argument
with function (5) and Lemma 1, it leads to

|gk(α1)| =
|α1 − 1|

|2 + (k + 1)(α1 − 2)|
<

1− 2−k

2 + (k + 1)(α1 − 2)

<
1− 2−k

2− (k + 1)21−k =
2k − 1

2(2k − k − 1)
.

�

Lemma 8. If k ≥ 6 is even and 2 ≤ j ≤ k − 1, then
|gk(αj)|
|gk(αk)|

< 4.26.

Proof. Lemmata 5 and 6 show

|gk(αj)|
|gk(αk)|

<
(6k + 3)31/k

(k − 1)(31/k + 1)
.

The last expression is monotone decreasing and tends to 3. Hence its
value at k = 6 gives the upper bound indicated in the lemma. �

Lemma 9. If k ≥ 6 is even, then |gk(α1)|
|gk(αk)|

< 0.453(2k + 1).

Proof. Lemmata 5 and 7 imply

|gk(α1)|
|gk(αk)|

<
3

2
(2k + 1) · 2k − 1

2(2k − k − 1)
· 1

1 + 3−1/k
.

The last two fractions are monotone decreasing, and each tends to 1/2
(as k → ∞). Hence ruling out 2k + 1, the remaining part at k = 6
confirms the statement of the lemma. �

Lemma 10. Assume that k ≥ 2 is even. Then |α1|
|αk|

> 2 follows.

Proof. Comparing the bounds of the numerator and denominator (see
Lemmata 1 and 4), we see

|α1|
|αk|

>
2k + 1

2k − 1
· 2k − 1

2k−1
,

and this sequence decreasingly tends to 2. �
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2.2. The proof. Now turn our attention to the principal part of the
proof. Recall n < m ≤ −k+2, and k ≥ 6. Hence m ≤ −4. We combine
equation (2) and the explicit formula (4) with (5), which admit

gk(αk)α
m−1
k +

k−1∑
j=1

gk(αj)α
m−1
j = ±

(
gk(αk)α

n−1
k +

k−1∑
j=1

gk(αj)α
n−1
j

)
,

or equivalently

gk(αk)α
m−1
k

(
1∓ αn−mk

)
=

k−1∑
j=1

gk(αj)α
m−1
j

(
−1± αn−mj

)
.

It leads immediately to

(7) 1∓ αn−mk =
k−1∑
j=1

gk(αj)

gk(αk)

(
αj
αk

)m−1 (
−1± αn−mj

)
.

In the first phase, we will bound |n − m| (recall that n − m < 0).
Therefore take the absolute value of the sides of (7) to conclude∣∣1∓ αn−mk

∣∣ ≤ k−1∑
j=2

∣∣∣∣gk(αj)gk(αk)

∣∣∣∣ ∣∣∣∣αjαk
∣∣∣∣m−1 ∣∣−1± αn−mj

∣∣
+

∣∣∣∣gk(α1)

gk(αk)

∣∣∣∣ ∣∣∣∣α1

αk

∣∣∣∣m−1 ∣∣−1± αn−m1

∣∣ .(8)

On the right-hand side of the above formula we have separated the term
corresponding to α1 since this odd one out addend requires different
treatment.

Clearly, for the left-hand side 0 < |αk|n−m − 1 ≤
∣∣1∓ αn−mk

∣∣ holds.
For the right-hand side (in short, RHS) we apply Lemmata 5-10. Be-
sides we also need an additional argument presented by∣∣−1± αn−m1

∣∣ ≤ α−11 + 1 <
1

2− 1
2k−1

+ 1 =
2k−1

2k − 1
+ 1.

The last sequence is decreasing, and k ≥ 6 implies that it does not
exceed 1 + 32/63 < 1.51. Thus

RHS ≤ (k − 2) ·
(
4.26cm−1k

(
1 + cn−mk |αk|n−m

))
+ 0.453(2k + 1) · 2m−1 · 1.51

< 4.304k − 8.498 + 4.26(k − 2)cn−mk |αk|n−m,(9)

where in the second inequality we used the fact that cm−1k < 1 (the
definition of ck is given at Lemma 3), and m− 1 ≤ −5. Consequently

|αk|n−m − 1 < 4.304k − 8.498 + 4.26(k − 2)cn−mk |αk|n−m.
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Add +1 to both sides, and divide the inequality by cn−mk |αk|n−m, which
together with the fact 1 < cn−mk |αk|n−m (since 1 > |αj| > ck|αk| for
2 ≤ j ≤ k − 1) yields

cm−nk < 4.304k − 7.498 + 4.26(k − 2) < 9k − 16.

Finally we find

(10) m−n = |n−m| < log(9k − 16)

log ck
<

log(9k − 16)
1
6
· 6−k4

= 6k
4+1 log(9k).

Put dk = 6k
4+1 log(9k).

In the second phase of the proof, we return to (7), and knowing the
upper bound (10) on |n−m| we target to bound m and n. Clearly,

(11)
∣∣1∓ αn−mk

∣∣ · |αk|m−1 =

∣∣∣∣∣
k−1∑
j=1

gk(αj)

gk(αk)
αj

m−1 (−1± αn−mj

)∣∣∣∣∣ .
First observe that∣∣1∓ αn−mk

∣∣ ≥ |αk|−1 − 1 >
2k + 1

2k − 1
− 1 =

2

2k − 1
.

Similarly, as we handled (8), and obtained (9), we treat the right-hand
side of (11) which we denote by RHS1. So

RHS1 ≤ (k − 2) · 4.26 · |αk−1|m−1(1 + |αk|n−m)

+0.453(2k + 1)|α1|m−1(1 + αn−m1 )

≤ 4.26(k − 2)|αk−1|m−1(1 + |αk|−dk)

+0.453(2k + 1)

(
2k−1

2k − 1

)5(
1 +

(
2k−1

2k − 1

))
≤ 4.26(k − 2)cm−1k |αk|m−1(1 + |αk|−dk) + 0.024(2k + 1).

Combining (11) and the two previous arguments, together with Lemma
4 it yields

2

4k2 − 1
< 4.26

k − 2

2k + 1
cm−1k (1 + |αk|−dk) + 0.024

(
2k + 1

2k − 1

)m−1
,

and then
1

4k2
<
(
1.065(1 + |αk|−dk) + 0.012

)
cm−1k .

Indeed, ck = 1 + 8−k
4
< (2k + 1)/(2k − 1). Now

1

k2
<
(
4.26(1 + |αk|−dk) + 0.048

)
cm−1k < 4.27(1 + |αk|−dk)cm−1k ,
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which, via |αk| > 3−1/k leads to

c
|m−1|
k < 4.27k2(1 + 3dk/k).

Hence

|m− 1| < log(5k2(1 + 3dk/k))

log(1 + 6−k4)
< 6k

4+1 log(5k2(1 + 3dk/k)).

Then the proof is complete.
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