On a polynomial transformation and its
application to the construction of a
public key cryptosystem

A. Pethe *

Abstract. Generalizing results of Kovacs and Pethé [5] we study when a certain map is
‘njective (or bijective). Based on this ap we propose a to the Merkle-Hellman knapsack
<cheme related cryptosystem.

1 Introduction

Let g(t) = t" + g, 471 4 4 9o € Zt] and A a finite subset of Z. We
denote by Z as usual the ring of integers. Let us define the sequence z; € Z",
:=0,1,... by

&0 = (10~0)7 z
where the nxn matrix G is given by
0 1 0

= z,G if i>0, (1.1)

i+1

0 0 0 -0 1 (1:2)
90 gL =g e =g
Let A4 A/ be the set of all finite words w — Wo ... wy over N with the convention
that if 0 € AV then either w; # 0 or { = 0 and wo = 0. We call /(w) = [ + 1 the
length of w.
The pair {g(¢), N} will be called (weak) number system (WNS) NS if the map
I': Apr — Z™, which is defined by

T(wg,...w) = woltp +... +wyzy (1.3)

s (injective) bijective.
In the special case g(t) = t -+ 9o With go > 2 and N'= {0, 90 — 1} (1.3)
defines the gy-adic radix representation of the integers. You find results about the
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radix representation of integers with extensive literature in Knuth [2]. Kovdcs and
Pethd [4] proved that there exist infinitely many finite subsets N of Z such that
{t + go. N} is a number system in Z. They proved moreover in (5], that if g(t)
is irreducible then it is decidable whether the pair {g(¢). A’} is a number system
in the ring Z[t]/g(t)Z]t]. We generalize their results for arbitrary polynomials in
sections 6. and 7.

If T is injective then we can use it in a private key cryptosystem. Such a system
is described in section 3.

Merkle and Hellman proposed in [6] a public key cryptographic scheme based
on the knapsack problem. Starting from a superincreasing sequence myg, mq, ...,
my of integers, they chosed suitable integers w and k with (w, k) = 1 and took

m; =wm; (modk) i=0....,n.

The numbers Ty, . . ., 772, were proposed for apply as public keys. Shamir [7] proved
that knowing the public keys it is possible to compute under natural conditions
in polynomial time w. k and my mp. Cryptosystems based on the knapsack
problem are extensively studied in Horster [1].

We propose in section 4 a to the Merkle-Hellman cryptosystem related public
key cryptographic scheme based on weak number systems. For a WNS we choose a
suitable integer A and an nxn invertible matrix C in Z a7 which do not commute
with G. For public keys we use 2 C (mod M) and NV, however C—1,
g(t) and M remain secret.

2 Preliminary results about the map 7’

Let Nt] denote the set of polynomials in ¢ with coefficients from A and let Ty =
Aps — Nt], defined by

Ty (w) = wo + wit + ...+ wyt

forany wy ... vy = w € Ax . Let T, be the natural ring homomorphism
Ty« Z[t] — Z[t]/g(t)Z]t] = R,. By the definition of g(t) it is clear that R, is a
commutative ring which is as a Z-module isomorphic to Z". Putting ¢ = T} (t)
we may write the elements of R, uniquely in the form

n—1
Zyiéi cwithy; € Z for i=0....,n—1.
i=0

Let T3 be the Z-module isomorphism Ry —Z".

Proposition 2.1. We have with the above notations
T= T3 o] TQ o T].

Furthermore, T is bijective iff the restriction of Ty to Nt] is bijective.
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Polynomial transformation 33

Proof. We have g(¢) = 0 in R,. hence

0" =(—g0-—G1:- - ~Gn_1)®".

where ®7 denotes the transposition of the vector ® = (1,9,...,0""1). Using this
identity and (1.1) it is easy to prove

o =g,07 | i=0.1,....

Therefore, if

then
{ {
T(u'o ¥E@ wl)iDT = Z U‘i’ki(br = Z wiqbl

= [Byeeplna)® =T g s i),

We know that T is a Z-module isomorphism, thus (2.1) is proved. The second
assertion follows easily from (1.3). O

Proposition 2.2. Let |go| > 1 and assume that the elements of N are pairwise
incongruent modulo go. Then {g(t),N'} is a WNS.

Proof. We need to prove that T is injective. By Proposition 2.1 it is enough to
show that the restriction of T5 to A[t] is injective. Assume contrary that there
exist polynomials p;(t) = pio + ... + pim, "™ € N[t], i = 1,2 such that

Ta(p1) = Ta(p2), (2.2)

and p; has the smallest degree among such polynomials. There exists by (2.2) a
polynomial h(t) € Z[t] with

p1(t) = p2(t) + h(t)g(t). (2.3)
Comparing the constant terms in (2.3) we get
pio = pao (mod go).

By the assumption on N this is possible only if p1g = pag, thus h(t) = thy(t).
Hence
Tg(pll Hrms +p1m1tm171) = Tg(pgl s +p2m2tm271),

which contradicts the choice of p (¢). ad

3 Private key cryptosystem

Let g(t) = t" 4+ go_1t" "  + ... + go € Z[t] with |go| > 1 and assume that the
elements of N are pairwise incongruent modulo gy, then it is possible to define a
private key cryptosystem based on the WNS {g(¢), N'}.
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Assume that the individual 4 will send a message w = wy...w; € Apr to
the individual B. He chooses integers u < v and random integers [1.(5,... from
the interval [u.v]. He cuts then u into consecutive blocks 7. W5, ... of length
[1,l5,... such that the last letters of the blocks are not 0, and send the encrypted
message T(W7). T(113). ... to the individual B. Knowing the polynomial g(¢) and
the set V. B is able to decrypt the original message w from T(Wh), T(Ws),.. ..
We describe the method formally in the following two algorithms.

Algorithm 3.1.

Input: wy...u; € Ad,\,’; ur € Z with0 <wu <y,

Output: Yo ¥y, € Az

(1) Set W =wy...uy, h=—1.

(2) Repeat untill < 0
Seth=h=+1andi=— random{u,v]. Ifl < i then set i =],
While w; =0 and i >0doi=1:— 1.
Set Yy, = Tlwy...w); W= Wigt1...wy and l ={—7—1.

The individual B can decrypt the message Yo Y, € Az~ using the following
algorithm.

Algorithm 3.2.
Input: Yo Y, € Azn with y, € T(Aps).
Output: Wy... W), = wy... w; Apr
(1) Sets=0.
(2) Repeat until s > h
(3)  Putl(s)=n-1, p@t) = ¥y (Lt P =+ zys)t®; j=0.
(4)  Repeat until j > I(s) ‘_
If z; € N then determine z; € N such that zj = x5 (mod go)

and set p(t) = p(t) — gt (z; — ;) /g0, set I(s) = n + 7,

if zi =0 for j+1<i<I(s) then setl = j, j =1I(s).

el
QU o

i A ot
(8) Setj=1L o

Set j =354 1.
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Polyvnomial transformation 35

(6) Whiez;=0andj>0doj=7j—1
(7) SetWe=2...2;5.s=5+1.

Theorem 3.1. The Algorithms 3.1 and 3.2 terminate successfully after cinl ope-
rations on integers, where ¢y is a constant depending only on the size of N.

Proof. The most time consuming operation in Algorithm 3.1 is the computation
of y; in the repeat loop. We have °

gj =wglg — ... T Wik

by the definition of T', where the vectors z; are defined by (1.1). Hence y, can be

computed by 2n(i + 1) arithmetical operations. Summing up these numbers we
get that Algorithm 3.1 terminates after O(n/) operations.

In the inner repeat loop of Algorithm 3.2 the inverse of the map T5 is computed.
The vectors y _ have by the assumption preimages, and by Proposition 2.2 they are
unique. Hence Algorithm 3.2 terminates also. If the length of Wi is j + 1, then
the inner repeat loop must be performed at most j+2 times, and the computation
of p(t) requires each times at most gg — n + 2 operations. This proves the upper
bound for the number of operations needed in Algorithm 3.2. a

Remark 1. For a binarv message. i.e. for a message consisting of 0's and 1’s,
it is most convenient to choose gg a power of 2. say go = 2™, and N a complete
residue system modulo gg. In this case we split the message into consecutive blocks
of length m. change each block with that element of N'. which it is congruent
modulo go and then apply Algorithm 3.1 for the encryption. In order to decrypt
the message one must apply naturally the inverse change.

Remark 2. Theorem 3.2 gives information about the time complexity of the en-
cryption/decryption algorithm, but we have said nothing about their space com-
plexity. If g(t) is squarefree and its roots are of absolute value larger then 1, we
examine the space complexity of Algorithms 3.1 and 3.2 in Theorem 6.3.

Remark 3. We have freedom in Algorithm 3.1 for the choice of the integers u
and v. It is convenient to choose u > 7 because otherwise we get the same words
after the transformation as in the plaintext.

4 The public key cryptosystem

We shall now modify the cryptosystem described in the previous section so that the
parameters required for the encryption are public, but for the efficient decryption
one needs further secret parameters. The idea behind our cryptosystem is similar
to that used by Merkle and Hellman [6].
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Let {g(t).\'} be a WNS. If for a o — Wo...w; € Anr we have T(w) =
(yo. .. .. Yn—1) € Z". then m(w) = max {|yp|..... Wn-1,.1} will be called the
height of .

Let AL\ denote the set of all words from Ans with length at most I, + 1, and
let M be an integer with

M > 2max {m(u) twe AL,\/*"} : (4.1)

Denote Z,; the residue class ring modulo 17. and Zyr(n.m) the ring of nxm
matrices over Z ;.

Let C € Zy;(n. n) be invertible which does not commute with G, i.e. GC #Cda
in Zyr(n. n). Let

L = Loy

C (mod M) fori=0..... L, (4.2)

and let the map 7 - AR — Z" be defined by

Tlwo...w)) = woky +... + wig; (1< L). (4.3)

The individual B, who creates the public kev system publishes V| Z,,. .. 25
but not g(¢). C. and /. The individual A can send messages to B using Algo-
rithm 3.1 with u = 0, v = I and computing j’(wo ...w;) instead of T(wg...w;).
Knowing C and A/, the individual B is able to compute C-! and so decrypt the
message. We have namely by (4.3) and (4.2)

T(wg...wy) = wWoly + ...+ wi, = (woz,, +...+ wiz, )C  (mod M),

hence

T(wo ... u)C™ = (gp, ..., g ) O = Woly + ... +wiz, , (mod M).
Therefore
(Yo, Yn1) = T(OMup...wy) = T(wy. .. w)C ! (mod M). (4.4)

We have |y;| < M/2 by (4.1). hence (4.4) determines the integers yo, ..., yn_1
uniquely performing the computations in the absolute smallest residue system
modulo A7. Knowing (vo.. ... Yn—1) the individual B is able to compute wy ... w;

applying Algorithm 3.2 to (Yo:---.yn_1) and dropping the first n invaluable letters
from the resuls.

5 Remarks about the parameters

We have in the public key cryptosystem defined in the previous section two im-
portant parameters: the polynomial g(t) and the matrix (.

It is convenient to choose [, < n?2 +n —1 because otherwise taking g1,..., g,
and the entries of C' as unknowns we would get at least as many equations by (4.2)
and (1.1) as we have unknowns.
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There exist in Zy7(n.n) at least 1/~ 1o()) invertible elements. It is easy to
prove that if A/ is prime then the exact number of invertible elements in Z /(n, 1)
is (M7 —1)%.. . % (A" — ALy,

The most important assumption in our cryptosystem is

GC # CG. (5.1)
Suppose namely that (5.1) is not satisfied. i.e. GC' = CG. Then we get by (4.2)
and (1.1)
I=z,,C =0, ,GC=1,_,.,CCG=1,,G.
from which G is easv to compute. Knowing G it is possible to compute C from
equation (4.2).

Hence it is important to know how many matrices from Zx;(n. n) satisfy (5.1).
The next proposition shows that at least half of the invertible elements of Z 7 (n,n)
satisfv (5.1).

Proposition 5.1. Let Z3; (n.n) be the group of the invertible elements of
Z1(n.n) and G the matriz defined by (1.2). Denote C(G) the set of elements
of Z;(n.n) which do not satisfy (5.1). Then

|Z3(n.n)} > 2,C(G)].

Proof. By the definition C'(G) is the centralizer of G in Z};(n.n), which is a
subgroup. We have |C'(G)| | |Z3;(n.n)| by Lagrange’s theorem, hence it is enough
to prove that there exists at least one element of Z 3, (n. n) which does not commute
with G.

Let P be the following permutation matrix

010 - 0

100 - 0
p—|00

S E,_ 5

0 0

where E,,_> denotes the (n—2)x(n —2) unit matrix. Then PG differs from G such
that the first two rows are exchanged, while GP such that the first two columns are
exchanged. Hence P ¢ C(G) except when n =2, go = —~l and g1 =0 (mod M).
In the exceptional case taking P = ( ? } ) one can prove by an easy computation
that P ¢ C(G). The proposition is proved. a

6 Characterisation of number systems

We have given in section 2 a general sufficient condition for {g(t), N'} to be a WNS.
In the following theorem we are given a characterization of number systems when
g(t) is squarefree, i.e. without multiple roots. Denote in the sequel A = max{lal :
a € N'}, D, the discriminant of g and |g| the maximum of the absolute values of
the roots of g.
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Theorem 6.1. Let g(t) = " — Gtk gy € Z[t] be squarefree. Then
{9(t). N} is a number system if and only if

(1) Anyrootsa; (i=1...., n) of g(t) satisfy |a;| > 1.
(ii) A is a complete residue system modulo |go| containing 0,

(ili) Any y = (Yo. . yn_1) € Z™ with lyit < ¢, (i = 1;...,n) has a unique
preimage under the map T. where

= D72 (nigin—1yn/2 L
% = [P (g A max ooy

Remark. This is the generalization of Theorem 3 of Kovdes and Peths [5].

Proof. We shall use the notations of section 2. Let w = wy...w; € Ay and
T(w) = (20,...,2,-1) € Z". We shall prove first the necessity of the conditions.

(i) Let a be a complex root of g(t). Then we have
Ti(w)e =wy +wia+ ...+ wial = zotzia+ ...+ z,_1a" L. (6.1)

If [a] < 1. then the absolute value of the number staying on the left hand side of
(6.1) is bounded independently of w, while the supremum of the right hand side is
infinite, hence |a] > 1. Assume now that la| = 1. Then « must be a root of unity
(see the proof of Theorem 3. in Kovécs and Pethé  [5]). Let m be the smallest
positive integer with a” = 1 and let 91(t) = g(t)/ ged(g(t), t™ — 1). The degree of
91(t) is less then n and

91{t) = g1 ()™ (mod g{t)). (6.2)
Suppose that
(T30 1) ' g1(0) = wo + 21t + . .. + wyt!

with w; €N w; # 0. Then we have
(T5 0 T2) " g1(0)8"™ = woth™ 4 . 4 wythmH
by (6.2) for any A = 0.1, ..., hence T can not be bijective.

(ii) Let z, = (Tio ... Tim_1), 1 = 0.1,..., where gz, is defined by (1.1). It
follows golz;o immediately from (1.1), hence zy = wy (mod gp) thus N contains
a complete residue system modulo 90- , e

Assume that 0 £ w = wy...u; € T71(0). Then T o Ty(w) = 0 and T} o
Ti(ww) = Ty o Ty (w) + 1Ty o Ty (w) = 0, hence T(w) = T(ww) and T is not even
injective, so 0 € A,

Assume finally that there exist ni.nz € N with ny = ny  (mod go) but ny #
na2. Let ny = ny + sgy with an integer 5. If T (sgg) = hy . . .hy, then hg = sgy =
0 (mod gy), hence hy = 0 and so

ng = (Tg o TI)_I(TLl) = (TZ o T1>—1(n2 + Sgo) = n2h1 .. .h[

which contradicts the bijectivity of T.

T oo

"
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(iii) is obviously necessary for {g(#) A} to be an NS.

We shall now prove the sufficiency of (i).(ii) and (iii). If (i) and (ii) hold. then T

is injective by Proposition 2.2. For a polvnomial p(t) = pg+pit+. .. +p, 1" e
Z[t] let

R(p(t)) = wpe=w. withweA and v = po  (mod gg).
St) = (1) = (po — w)g(t)/go — w)/t.

The polynomial S(p(t)) has integer coefficients. it is of degree at most n — 1 and
it satisfies

p{t) = wo + wit +. .. + ugth + SF1(p(g))eh1 (6.3)
for any £ =0.1..... where w; = R(Si(p(t))).
Let £ > 0 and choose k = k(z) so large that

plai)jaf™ <2

hold for i = 1,....n. This is possible because of (i). We have by (6.3)
k

plei) = wjal = S (p(t)),, ak*,
Jj=0

which implies

|S*H (p(t))a, ]| <

o]
. = ime., n. (6.4)
lai —1

Let Sk‘*l(p(t)) = Prk+10 oo+ Prc1a—1t" 1 where Dr+1.; € Z. The matrix
(o) i=1,....n: § =0,....,n — 1 is invertible . because the roots of g(t) are
distinct. Hence there exists only finitelv manv possibilities for the polvnomials

Sk+1(p(t)). We may take £ arbitrarily small. hence choosing £ large enough we
get

o]

1S5 p(t))a| < (6.5)

CHEE N

Considering (6.5) as a system of linear inequalities in priqg,... s Piet1,n and
using Hadamard’s inequality we get Pk+1.5] < 3. The polynomial Sk“(p(t)v) has
therefore a preimage under T o Ty by (iii). Inserting the resulting word into-(6.3)"

we gek the preimeage of p{1) which proves the theorem. |

In the sequel let

lgl =min{[a| : o aroot of the polynomial g(t)}.

Theorem 6.2. Let g(t) be a squarefree polynomial such that lgl > 1 and let
{9(t) N'} be a WNS. Then there exists a constant ¢4 depending only on n,g(t)
and A such that

m(w) o ‘4nn/2lgll{uv)~1—n(;n~lf)/’f_’('g[ _ 1)71 (66)




hold for any v = \"

Proof. Let ay.....qa, denote the roots of g(¢). let w =
{yo. . .. «¥Yn—1). Then we have

0---w; and T(w) =

yo+...+yn_laf—1:u‘0+...+wgaf. 1=1....,n.
Hence
]av‘H‘l = I
. . —1 ety
‘yo*-~-*“yn—1ain ’ S
lai) — 1

Using again Hadamard's inequality we get

M) = max 5] < A2l H1entn=n2 ) gyt

For w = 0 the Inequality (6.7) is obviously true with ¢4 = 1, hence we may
assume w # 0 in the following. Take

1 > 1 g il — 1
k= |28 ) i) — min \OO(,CLJ ) +n+1.
log |g] 1<i<n  log |oy
then
1 - m(w)|a;|™

‘.y“‘-”#‘yn—ai ST <1

ot 1 ]S R el -1
holds for any ¢ = 1

s---.n. This inequality implies (6.4) with ¢ = 1. There
exists only finitely many polynomials in Z[t]/ 9(t)Z[t] for which (6.4) holds. Let
¢5 denotes the maximum of the length of the preimages of this polynomials. Then

and the theorem is proved. o O

The quantity p(w) = n log m(w)isan

atural measure for the size of w € A,/
Theorems 3.1 and 6.2 implies immediately

the following

Theorem 6.3. Let {9(t) N} be as i
3.2 terminate successfully after O(

where the O-constant depends only
g(t) and N.

n Theorem 6.2. Then the Algorithms 3.1 and
p(w)) operations on integers of size O(u(w))
on the choice of the number system, namely on




ol

Polvnomial transformation 41

7 A special case

Let a polynomial g(t) = 1" — g, _1t" ' + ... + gy € Z't] with lgo] > 2 and a finite
subset A" of Z be given. To verify that T is injective, which is most important for
the applications in cryptography. O('gy?) operations are needed by Proposition
2.2. In Theorem 6.1 we proved necessary and sufficient conditions for {g(t) N} to
be an NS. It is easv to check whether g(t) is squarefree as well as the conditions
(i) and (ii). but to verifv (iii) generallv extensive computations are needed. The
example g(t) = 2% — 22% — 7 — 4. \'= {0.1.2.3} shows that {g(t) N} is a WNS
for which (i) and (ii) hold. but it is not an NS because for example —1 does not
have a preimage. Hence (iii) is necessary too.

For a wide class of pairs {g(¢)..\"} we are able to prove however that it is an
NS. The idea goes back to Kovédcs [3]. We assume in the sequel that 0 < g,_1 <
-+ = go- go 2 2 and none of the roots of g(t) are roots of unity. We take finally
N ={0..... go —1}. We are given now a variant of the decryption Algorithm 3.2.

however. for simplicity. only for a single input block.
Algorithm 7.1.
Input: z = (2¢.....2,_1) € Z".
Output: w=uy... Wiw) € Ays
Hw)
(1) Putl{fw)=n—1. w; = z; (0 <i<lw)), p(t) = Z wit', 7 =0.

1=0

(2) Set p(t) = p(t) = p(t)Ag(t) with A = rnax{ [ min lwi/gi] . 0}.

0<i<n—

If A # 0 then set l(w) = [(w) + 1. Set A=0.
(3) Repeat until j > l(w)
if w; €N then set p(t) = p(t) = Ag(t)t. and determine
y; €N such that y; = w; (mod go) and set A = (w; — y;)/go,
p(t) = p(t) = Ag(t)t/. {(w) =n+.
Set j=7+1.
(4) While l(w) > 0 and wy(,y = 0 do l{(w) = I{w) — 1.
Remark. We used in Algorithm 7.1 the polynomial p(t) only for the convenience

of the proof of the next theorem. One can easily modify Step 3 without using p(t).

Theorem 7.1. Algorithm 7.1 terminates successfully i.e {g.N'} is a NS. If g(t)
is squarefree then it takes O(u(w)) operations on numbers if size O(pe(w)) where
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the O-constant depends onl

Yy on the choice of
we have on every stage of the algorithm

the polynomia[g(t). More precisely,

o
D Tidl < (n+ (1 + go)m(w), (7.1)
=0
1) )
where pt) = 3 w;t,
7=0

Proof. After stage 2. all the coefficients of p(t) and p(t) are non-negative and an
€asy computation shows that for the coefficients of p(¢) (7.1) holds. We shall show
that in the repeat loop the coefficients of b(t) remain always non-negative and their
Sum can not increase. In the sequel we set g,, = 1 and Int1 =Gnio=...=(.

Of course if w; € A\ then nothing else as an increment of j is done. Assume
that w; ¢ A" At the first occurrence of this event )\ = 0. hence P(t) remains
unchanged and the assertion is true. Otherwise, assume that J1 < j was the last
index when wj, & N occurred. At this stage the algorithm sets ) # 0 and

Ji—1

n

PO =) =g = 3™ a4 3 (v - Agi) L (79)
=0 =0

Between the occurrence i ' €N and w; & N the data p(t) and X do not change,

which means that Wi = Wy 1 =0., .. .71 and Wii+1 = Wy, 41 — Mgy, . . Wi =

¢ N occurs then the algorithm

wy_1 — /\9j~1~j1 are all non-negative. W hen w;
sets

J
p(t) = p(t) + Ag(t)t! = Z Wikt o+ Z ('u’j+i + /\giJ T

n
=0 =0

Using (7.2) we get

Wits + Ags = lz'j+s - )‘gj—j1+s +Ags > UA}JHLS >0

.-+, by the monoton decreasing property
The sum of the coefficients of the modified p(¢) is

Jtn

of the coefficients of g(t).

n J+n n n J+n
S S L) SPRUY i L
i=0 i=0 =0 i=0 i=0 i=0

So we proved (7.1).
Take ﬁ(t) =Wy +...+ w,(u,)z‘l(“') and Sj<ﬁ(t))

= ’UAJ]‘ + T + ZZ)[(H,)tl(w). Then
ﬁ(f) =Wy +...+ U:‘j_ltjhl -+ tj5j<ﬁ(t))
holds. The coefficients of S;(B())

there exists so only finitely many possibilities for § 5 (B(¢))
be non—finite, then there would exi

Sj2(B(t)). This means that there ex

are non-negative and their sum is bounded,

- If Algorithm 7.1 would
st integers 0 < j; < j, such that S5, (p(2)) =
ists a polynomial q(t) € Nt] with

Si(0(1) = g(t) + /20 g, (B(1)).

(7.3)
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We have ¢(t) = 0 because it has non-negative coefficients and the sum of the
coefficients on both sides of (7.3) is equal. Hence

Si () #2 —1)=0

holds in Z#]/g(t)Z][t]. The assumption that none of the roots of g(t) are roots
of unity and the last equality implies g(¢);.S;, (p(t)). Hence p(t) = wo + ... +
wy, T+ 0 -+ 0t!(w1 holds after j = j, in the repeat loop, we have
therefore in the remaining steps always w; € A" and the algorithm terminates.

The second statement follows immediately from Theorem 6.2 and (7.1). O
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