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On Composite Rational Functions

Attila Peth̋o and Szabolcs Tengely

Abstract. In this paper we characterize all composite lacunary rational functions having at
most 3 distinct zeroes and poles and we also provide some examples in case of 4, 5, 6 and 7
singularities.
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1 Introduction

In this article we deal with a problem related to decompositions of polynomials and
rational functions. A classical result by Ritt [32] states that if there is a polynomial
f ∈ C[X] satisfying certain tameness properties and

f = g1 ◦ g2 ◦ · · · ◦ gr = h1 ◦ h2 ◦ · · · ◦ hs,

thenr = s and{degg1, . . . , deggr} = {degh1, . . . , deghr}. Ritt’s fundamental result
has been investigated, extended and applied in various wide-ranging contexts (see e.g.
[5, 12, 15, 16, 19, 20, 23, 24, 26, 27, 36, 37]). The above statement is not true for
rational functions. It is not true that all complete decompositions of a rational function
have the same length. Gutierrez and Sevilla [23] provided an example with rational
coefficients as follows

f =
x3(x + 6)3(x2 − 6x + 36)3

(x− 3)3(x2 + 3x + 9)3 ,

f = g1 ◦ g2 ◦ g3 = x3 ◦ x(x− 12)
x− 3

◦ x(x + 6)
x− 3

,

f = h1 ◦ h2 =
x3(x + 24)

x− 3
◦ x(x2 − 6x + 36)

x2 + 3x + 9
.

We would like to emphasize that combinations of Siegel’s [34] and Faltings’ [18]
finiteness theorems, related to integral and rational points on algebraic curves, and
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Ritt’s result have yielded many nice results in Diophantine number theory (see e.g.
[2, 7, 8, 9, 11, 14, 20, 25, 28, 29, 35]).

In his book [30, 31] Rédei introduced lacunary polynomials over finite fields. He
characterized certain fully reducible lacunary polynomials over finite fields and he
used this theory to obtain applications to areas of algebra and number theory.

In case of lacunary polynomials, that is when the number of terms of the polynomial
is considered to be fixed while the degrees and coefficients may vary, Erdős [17] and
independently Rényi posed the following conjecture. Ifh(x)2 has boundedly many
terms, then the same is true forh(x) ∈ C[X]. Schinzel [33] gave a proof in a more
general case, namely whenh(x)d has boundedly many terms. Schinzel made the con-
jecture that ifg(h(x)) has boundedly many terms, then it holds also forh(x). This
latter conjecture has been proved by Zannier [38]. Fuchs and Zannier [22] extended
the problem, they considered lacunary rational functions which are decomposable. An
other possibility to think about lacunarity is that one considers the number of zeros
and poles of a rational function in reduced form to be bounded. In this case Fuchs
and Peth̋o [21] obtained results related to the structure of such decomposable rational
functions. We note that their proof was algorithmic.

In this paper we provide some computational experiments that we obtained by us-
ing a MAGMA [10] implementation of the algorithm of Fuchs and Pethő. We not only
compute the appropriate varieties, but we also provide parametrizations of the possible
solutions. We remark that algorithms have been developed earlier to find decomposi-
tions of a given rational function (see e.g. [1, 3, 4]). In [3], Ayad and Fleischmann
implemented a MAGMA code to find decompositions, as an example they considered
the rational function

f =
x4 − 8x

x3 + 1

and they obtained thatf(x) = g(h(x)), where

g =
x2 + 4x

x + 1
and h =

x2 − 2x

x + 1
.

At the end of the paper we show that this concrete decomposition corresponds to a
point on certain variety.

Our paper is organized as follows. In Section 2 we present the result of Fuchs and
Peth̋o [21] and we introduce some notation. In Section 3 we describe our algorithm and
provide some information about the computation we have done. In Section 4 we prove
Theorem 1 that we state below. First we define equivalence of rational functions. Two
rational functionsf1(x) =

∏n
i=1(x−α

(1)
i ) andf2(x) =

∏n
i=1(x−α

(2)
i ) are equivalent

if there existai,j ∈ Q, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n + 1} such that

α
(1)
i = ai,1α

(2)
1 + ai,2α

(2)
2 + . . . + ai,nα(2)

n + ai,n+1,

for all i ∈ {1, 2, . . . , n}.
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Theorem 1.Let k be an algebraically closed field of characteristic zero. Iff, g, h ∈
k(x) with f(x) = g(h(x)) and withdegg, degh ≥ 2, g not of the shape(λ(x))m,m ∈
N, λ ∈ PGL2(k), andf has 3 zeros and poles altogether, thenf is equivalent to one
of the following rational functions

(a) (x−α1)k1(x+1/4−α1)2k2

(x−1/4−α1)2k1+2k2
for someα1 ∈ k andk1, k2 ∈ Z, k1 + k2 6= 0,

(b) (x−α1)2k1(x+α1−2α2)2k2

(x−α2)2k1+2k2
for someα1, α2 ∈ k andk1, k2 ∈ Z, k1 + k2 6= 0.

In Section 5 we deal with systems related to the casen = 4. Finally, in Section 6
we provide some examples withn ∈ {5, 6, 7}.

2 Auxiliary results

Fuchs and Peth̋o [21] proved the following theorem.

Theorem A. Let k be an algebraically closed field of characteristic zero. Letn be a
positive integer. Then there exists a positive integerJ and, for everyi ∈ {1, . . . , J}, an
affine algebraic varietyVi defined overQ and withVi ⊂ An+ti for some2 ≤ ti ≤ n,
such that:

(i) If f, g, h ∈ k(x) with f(x) = g(h(x)) and withdegg, degh ≥ 2, g not of the
shape(λ(x))m,m ∈ N, λ ∈ PGL2(k), andf has at mostn zeros and poles altogether,
then there exists for somei ∈ {1, . . . , J} a pointP = (α1, . . . , αn, β1, . . . , βti) ∈
Vi(k), a vector(k1, . . . , kti) ∈ Zti with k1 + k2 + . . . + kti = 0 or not depending on
Vi , a partition of{1, . . . , n} in ti + 1 disjoint setsS∞, Sβ1, . . . , Sβti

with S∞ = ∅
if k1 + k2 + . . . + kti = 0, and a vector(l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n, also both
depending only onVi, such that

f(x) =
ti∏

j=1

(ωj/ω∞)kj , g(x) =
ti∏

j=1

(x− βj)kj

and

h(x) =

{
βj + ωj

ω∞ (j = 1, . . . , ti), if k1 + k2 + . . . + kti 6= 0
βj1ωj2−βj2ωj1

ωj2−ωj1
(1≤ j1 < j2 ≤ ti), otherwise,

where
ωj =

∏

m∈Sβj

(x− αm)lm , j = 1, . . . , ti

and
ω∞ =

∏

m∈S∞

(x− αm)lm .



4 A. Peth̋o and Sz. Tengely

Moreover, we havedeg h ≤ (n− 1)/ max{ti − 2, 1} ≤ n− 1.
(ii) Conversely for given dataP ∈ Vi(k), (k1, . . . , kti), S∞, Sβ1, . . . , Sβti

, (l1, . . . , ln)
as described in (i) one defines by the same equations rational functionsf, g, h with f
having at mostn zeros and poles altogether for whichf(x) = g(h(x)) holds.

(iii) The integerJ and equations defining the varietiesVi are effectively computable
only in terms ofn.

The method of proof of the above Theorem is effective. It provides an algorithm to
obtain all possible decompositions of rational functions with at mostn zeros and poles
altogether.

We introduce some notation. Without loss of generality we may assume thatf and
g are monic. Let

f(x) =
n∏

i=1

(x− αi)fi

with pairwise distinctαi ∈ k andfi ∈ Z for i = 1, . . . , n. Similarly, let

g(x) =
t∏

j=1

(x− βj)kj

with pairwise distinctβj ∈ k andkj ∈ Z for j = 1, . . . , t andt ∈ N. Therefore we
have

n∏

i=1

(x− αi)fi = f(x) = g(h(x)) =
t∏

j=1

(h(x)− βj)kj .

We shall writeh(x) = p(x)/q(x) with p, q ∈ k[x], p, q coprime. Fuchs and Pethő
showed that ifS∞ 6= ∅ then

q(x) =
∏

m∈S∞

(x− αm)lm

and there is a partition of the set{1, . . . , n} \ S∞ in t disjoint non empty subsets
Sβ1, . . . , Sβt such that

h(x) = βj +
1

q(x)

∏

m∈Sβj

(x− αm)lm , (2.1)

wherelm ∈ N satisfieslmkj = fm for m ∈ Sβj
, and this holds true for everyj =

1, . . . , t. We obtain at least two different representations ofh, since we assumed that
g is not of the shape(λ(x))m. Hence we get at least one equation of the form

βi +
1

q(x)

∏

r∈Sβi

(x− αr)lr = βj +
1

q(x)

∏

s∈Sβj

(x− αs)ls . (2.2)
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If S∞ = ∅ then we have

(p(x)− βjq(x))kj =
∏

m∈Sβj

(x− αm)fm .

Now we have thatt ≥ 3, otherwiseg is in the special form we excluded. Siegel’s
identity provides the equations in this case. That is if1 ≤ j1 < j2 < j3 ≤ t, then we
have

vj1,j2,j3 + vj3,j1,j2 + vj2,j3,j1 = 0, (2.3)

where
vj1,j2,j3 = (βj1 − βj2)

∏

m∈Sβj3

(x− αm)lm .

3 The computation

The method of proof by Fuchs and Pethő provides an algorithm to obtain the possible
varieties. So we followed the steps described below.

(i) compute the partitions of{1, 2, . . . , n} into t + 1 disjoint sets

(ii) given a partitionS∞, Sβ1, . . . , Sβt and a vector(l1, . . . , ln) ∈ {1, 2, . . . , n}n

compute the corresponding varietyV = {v1, . . . , vr}, wherevi is a polynomial
in α1, . . . , αn, β1, . . . , βt obtained from (2.2) or (2.3)

(iii) compute Groebner basis using lexicographical ordering (see e.g. [6, 13])VG of
the ideal generated by the polynomialsv1, . . . , vr (we note that here Groebner
basis makes easier to compare the resulting varieties)

(iv) test ideal membership for allαi−αj , i, j = 1, 2, . . . , n, i 6= j andβi−βj , i, j =
1, 2, . . . , t, i 6= j

(v) if there is no contradiction in step (iv) list the given partition, vector and variety.

We implemented the algorithm in Magma [10], the procedureCFunc.m can be down-
loaded fromhttp://www.math.unideb.hu/∼tengely/CFunc.m. The function works
as follows: CFunc(t,n,tipus), wheret denotes the number of roots/poles ofg, n
denotes the number of roots/poles off, tipus is in {0, 1}, it is 0 if S∞ is empty, oth-
erwise it is 1. So one way to call the function isCFunc(2,3,1); we obtain a set of
cardinality 18, an element of this set is:

< [{1}, {2}, {3}],
< 1, 2, 2 >,

[X[1]−X[3]− 1/4 ∗X[4] + 1/4 ∗X[5],

X[2]−X[3]− 1/2 ∗X[4] + 1/2 ∗X[5]] >

this element is a record having 3 fields
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1st: a list contaning the partitions of[1, 2, . . . , n]
2nd: the exponent vector< l1, l2, . . . , ln >

3rd: the system of equations defining the variety, whereX[1] = α1, . . . , X[n] = αn

andX[n + 1] = β1, . . . , X[n + t] = βt.

Other way to use the function is to use the optional parametersPSet andexptup.
PSet is a list contaning some fixed partitions of[1, 2, . . . , n], exptup is a list con-
taining some fixed exponentsl1 up to ln. In this way we get a system of equations
corresponding to the given partition and exponent vector e.g.:

CFunc(2,3,1:PSet:=[[{1},{2},{3}]]);
the output is:

{
< [{1}, {2}, {3}], < 1, 2, 2 >,

[X[1]−X[3]− 1/4 ∗X[4] + 1/4 ∗X[5],

X[2]−X[3]− 1/2 ∗X[4] + 1/2 ∗X[5]] >,

< [{1}, {2}, {3}], < 2, 2, 1 >,

[X[1]−X[3]− 1/4,

X[2]−X[3] + 1/4,

X[4]−X[5] + 1] >,

< [{1}, {2}, {3}], < 2, 1, 2 >,

[X[1]−X[3]− 1/2,

X[2]−X[3]− 1/4,

X[4]−X[5]− 1] >

}.

That is we obtained all systems with the given partition[{1}, {2}, {3}] andt = 2, n =
3, S∞ 6= ∅. In a similar way one can compute all systems with a given exponent vector
[[1, 2, 2]]: CFunc(2,3,1:exptup:=[[1,2,2]]);.

Using the above mentioned procedure we computed all systems corresponding to
n ∈ {3, 4, 5}. Some details of the computations can be found in the following table.
Here#RS denotes the number of remaining systems to be considered, that is those
systems which were not eliminated, while#TS denotes the total number of systems.

n t S∞ # RS # TS

3 2 6= ∅ 18 96

3 3 6= ∅ 0 0

3 3 ∅ 6 48

4 2 6= ∅ 264 3888

4 3 6= ∅ 0 5832

4 4 6= ∅ 0 0

4 3 ∅ 24 1944

4 4 ∅ 24 7776

5 2 6= ∅ 4644 122880

5 3 6= ∅ 60 368640

5 4 6= ∅ 0 491520

5 5 6= ∅ 0 0

5 3 ∅ 384 61440

5 4 ∅ 0 491520

5 5 ∅ 120 1228800

The above table shows that combinatorial explosion increases the total number of
systems very rapidly.
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4 Proof of Theorem 1.

We are going to deal with the three possible cases(n, t, S∞) ∈ {(3, 2, 6= ∅), (3, 3, 6=
∅), (3, 3, ∅)}. We note that the previous table shows that there are no solutions with
(n, t, S∞) = (3, 3, 6= ∅).

4.1 The casen = 3, t = 2 and S∞ 6= ∅
There are two types of systems here, in the first class one obtains solutions having two
parameters, in the second class one has solutions having three parameters. Below we
indicate the 12 systems which yield families with two parameters.

(S∞, Sβ1
, Sβ2

), (l1, l2, l3) System of equations Solution(α1, α2, α3, β1, β2)

({3}, {2}, {1}) α1 − α3 + 1/4 = 0 (−1/4 + α3,−1/2 + α3, α3,−1 + β2, β2)
(1, 2, 2) α2 − α3 + 1/2 = 0

β1 − β2 + 1 = 0

({2}, {1}, {3}) α1 − α3 + 1/4 = 0 (−1/4 + α3, 1/4 + α3, α3,−1 + β2, β2)
(2, 2, 1) α2 − α3 − 1/4 = 0

β1 − β2 + 1 = 0

({1}, {2}, {3}) α1 − α3 − 1/4 = 0 (1/4 + α3,−1/4 + α3, α3,−1 + β2, β2)
(2, 2, 1) α2 − α3 + 1/4 = 0

β1 − β2 + 1 = 0

({1}, {3}, {2}) α1 − α3 − 1/2 = 0 (1/2 + α3, 1/4 + α3, α3,−1 + β2, β2)
(2, 1, 2) α2 − α3 − 1/4 = 0

β1 − β2 + 1 = 0

({2}, {3}, {1}) α1 − α3 + 1/4 = 0 (−1/4 + α3, 1/4 + α3, α3, 1 + β2, β2)
(2, 2, 1) α2 − α3 − 1/4 = 0

β1 − β2 − 1 = 0

({3}, {1}, {2}) α1 − α3 + 1/2 = 0 (−1/2 + α3,−1/4 + α3, α3,−1 + β2, β2)
(2, 1, 2) α2 − α3 + 1/4 = 0

β1 − β2 + 1 = 0

({1}, {3}, {2}) α1 − α3 − 1/4 = 0 (1/4 + α3,−1/4 + α3, α3, 1 + β2, β2)
(2, 2, 1) α2 − α3 + 1/4 = 0

β1 − β2 − 1 = 0

({1}, {2}, {3}) α1 − α3 − 1/2 = 0 (1/2 + α3, 1/4 + α3, α3, 1 + β2, β2)
(2, 1, 2) α2 − α3 − 1/4 = 0

β1 − β2 − 1 = 0

({2}, {1}, {3}) α1 − α3 − 1/4 = 0 (1/4 + α3, 1/2 + α3, α3, 1 + β2, β2)
(1, 2, 2) α2 − α3 − 1/2 = 0

β1 − β2 − 1 = 0

({2}, {3}, {1}) α1 − α3 − 1/4 = 0 (1/4 + α3, 1/2 + α3, α3,−1 + β2, β2)
(1, 2, 2) α2 − α3 − 1/2 = 0

β1 − β2 + 1 = 0

({3}, {2}, {1}) α1 − α3 + 1/2 = 0 (−1/2 + α3,−1/4 + α3, α3, 1 + β2, β2)
(2, 1, 2) α2 − α3 + 1/4 = 0

β1 − β2 − 1 = 0

({3}, {1}, {2}) α1 − α3 + 1/4 = 0 (−1/4 + α3,−1/2 + α3, α3, 1 + β2, β2)
(1, 2, 2) α2 − α3 + 1/2 = 0

β1 − β2 − 1 = 0

As an example consider the system from the sixth row, that is(S∞, Sβ1, Sβ2) =
({3}, {1}, {2}) and (l1, l2, l3) = (2, 1, 2). Here we obtain the following system of
equations

α1 − α3 + 1/2 = 0,

α2 − α3 + 1/4 = 0,

β1 − β2 + 1 = 0.
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Therefore one gets the parametric solution(α3 − 1/2, α3 − 1/4, α3, β2 − 1, β2) and
with k1 = k2 = 1 we have

f(x) =
(x− α3 + 1/2)2(x− α3 + 1/4)

(x− α3)4 ,

g(x) = (x− β2 + 1)(x− β2),

h(x) = β2 − 1 +
(x− α3 + 1/2)2

(x− α3)2 .

It is easy to see thatf(x − 1/4) is of the form (a) stated in Theorem 1. We note that
one gets the same family in case of(S∞, Sβ1, Sβ2) = ({3}, {2}, {1}) and(l1, l2, l3) =
(1, 2, 2). In a similar way we can show that the remaining systems yield equivalent
rational functions to the function in part (a) of Theorem 1.

Now we provide the table containing the 6 systems which yield families with three
parameters.

(S∞, Sβ1
, Sβ2

), (l1, l2, l3) System of equations Solution(α1, α2, α3, β1, β2)

({3}, {2}, {1}) α1 − α2 + 1/2β1 − 1/2β2 = 0 (−α2 + 2α3, α2, α3, 4α2 − 4α3 + β2, β2)
(2, 2, 1) α2 − α3 − 1/4β1 + 1/4β2 = 0

({1}, {3}, {2}) α1 − α3 + 1/4β1 − 1/4β2 = 0 (α1,−α3 + 2α1, α3,−4α1 + 4α3 + β2, β2)
(1, 2, 2) α2 − α3 + 1/2β1 − 1/2β2 = 0

({2}, {3}, {1}) α1 − α3 + 1/2β1 − 1/2β2 = 0 (2α2 − α3, α2, α3,−4α2 + 4α3 + β2, β2)
(2, 1, 2) α2 − α3 + 1/4β1 − 1/4β2 = 0

({1}, {2}, {3}) α1 − α3 − 1/4β1 + 1/4β2 = 0 (α1,−α3 + 2α1, α3, 4α1 − 4α3 + β2, β2)
(1, 2, 2) α2 − α3 − 1/2β1 + 1/2β2 = 0

({3}, {1}, {2}) α1 − α2 − 1/2β1 + 1/2β2 = 0 (−α2 + 2α3, α2, α3,−4α2 + 4α3 + β2, β2)
(2, 2, 1) α2 − α3 + 1/4β1 − 1/4β2 = 0

({2}, {1}, {3}) α1 − α3 − 1/2β1 + 1/2β2 = 0 (2α2 − α3, α2, α3, 4α2 − 4α3 + β2, β2)
(2, 1, 2) α2 − α3 − 1/4β1 + 1/4β2 = 0

From the parametrizations one can easily obtain the corresponding rational func-
tions, as an example we take the fourth row of the table. That is, we have

(S∞, Sβ1, Sβ2) = ({1}, {2}, {3}), (l1, l2, l3) = (1, 2, 2)

and

α1 − α3 − 1/4β1 + 1/4β2 = 0,

α2 − α3 − 1/2β1 + 1/2β2 = 0.

Thus ifk1 = k2 = 1, then

f(x) =
(x− α3)2(x− 2α1 + α3)2

(x− α1)2 ,

g(x) = (x− 4α1 + 4α3 − β2)(x− β2),

h(x) = β2 +
(x− α3)2

x− α1
.

It is clear thatf is equivalent to the rational function in part (b) of Theorem 1. The
remaining systems can be handled in a similar way, all of these are equivalent to the
rational function indicated in part (b).
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4.2 The casen = 3, t = 3 and S∞ = ∅
In total there are six parametrizations here, these are indicated in the table below.

(Sβ1
, Sβ2

, Sβ3
, ), (l1, l2, l3) System of equations Solution(α1, α2, α3, β1, β2, β3)

({1}, {3}, {2}) α1β2 − α1β3 + α2β1 − α2β2 − α3β1 + α3β3 = 0 (−α2β1−α2β2−α3β1+α3β3
β2−β3

,

(1, 1, 1) α2, α3, β1, β2, β3)

({2}, {1}, {3}) α1β1 − α1β3 − α2β2 + α2β3 − α3β1 + α3β2 = 0 (
α2β2−α2β3+α3β1−α3β2

β1−β3
,

(1, 1, 1) α2, α3, β1, β2, β3)

({3}, {1}, {2}) α1β1 − α1β3 − α2β1 + α2β2 − α3β2 + α3β3 = 0 (
α2β1−α2β2+α3β2−α3β3

β1−β3
,

(1, 1, 1) α2, α3, β1, β2, β3)

({1}, {2}, {3}) α1β2 − α1β3 − α2β1 + α2β3 + α3β1 − α3β2 = 0 (
α2β1−α2β3−α3β1+α3β2

β2−β3
,

(1, 1, 1) α2, α3, β1, β2, β3)

({3}, {2}, {1}) α1β1 − α1β2 − α2β1 + α2β3 + α3β2 − α3β3 = 0 (
α2β1−α2β3−α3β2+α3β3

β1−β2
,

(1, 1, 1) α2, α3, β1, β2, β3)

({2}, {3}, {1}) α1β1 − α1β2 + α2β2 − α2β3 − α3β1 + α3β3 = 0 (−α2β2−α2β3−α3β1+α3β3
β1−β2

,

(1, 1, 1) α2, α3, β1, β2, β3)

We remark that all these systems correspond to trivial solutions (degh=1). We have
that ωj =

∏
m∈Sβj

(x − αm)lm is a linear polynomial for allj ∈ {1, 2, 3}, since

l1 = l2 = l3 = 1 and the cardinality ofSβj
is 1 for all possible cases. Therefore

h(x) =
βj1ωj2 − βj2ωj1

ωj2 − ωj1

is a linear polynomial. So we do not obtain non-trivial rational function from this case.
As an illustration we provide an example corresponding to the parametrization in-

dicated in the fourth row, that is(Sβ1, Sβ2, Sβ3) = ({1}, {2}, {3}) and(l1, l2, l3) =
(1, 1, 1). Now let (α2, α3, β1, β2, β3) = (2, 1,−1, 1, 0) andk1 = k2 = 1, k3 = −2.
One has thatα1 = 0 and

f(x) =
(x− 2)x
(x− 1)2 ,

g(x) =
(x− 1)(x + 1)

x2 ,

h(x) = x− 1.

5 Cases withn = 4

In this section we provide some details of the computation corresponding to cases with
n = 4.

5.1 The casen = 4, t = 2 and S∞ 6= ∅
There are 264 systems to deal with. We will treat only a few representative examples.

Systems containing two polynomials.
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If (S∞, Sβ1, Sβ2) = ({4}, {1, 2}, {3}) and(l1, l2, l3, l4) = (1, 1, 2, 1), then we have

α1 + α2 − 2α3 − β1 + β2 = 0

α2
2 − 2α2α3 − α2β1 + α2β2 + α2

3 + α4β1 − α4β2 = 0.

Sinceαi 6= αj andβi 6= βj if i 6= j, we have that

α1 = −α2 + 2α3 + β1 − β2,

α4 = α2 − (α2 − α3)2

β1 − β2
.

For example, if we consider the solution(α1, α2, α3, α4, β1, β2) = (−2, 1, 0, 2, 0, 1),
then we get

f(x) =
(x− 1)x2(x + 2)

(x− 2)2 ,

g(x) = (x− 1)x,

h(x) =
(x− 1)(x + 2)

x− 2
.

Systems containing three polynomials.
If (S∞, Sβ1, Sβ2) = ({1}, {2, 3}, {4}) and(l1, l2, l3, l4) = (1, 2, 1, 3), then we get

α1 + 1/3α3 − 4/3α4 = 0

α2 + 1/2α3 − 3/2α4 = 0

α2
3 − 2α3α4 + α2

4 − 4/3β1 + 4/3β2 = 0.

Thus one obtains the parametrization

α1 = −1/3α3 + 4/3α4,

α2 = −1/2α3 + 3/2α4,

β1 = 3/4α2
3 − 3/2α3α4 + 3/4α2

4 + β2.

Let us take(α1, α2, α3, α4, β1, β2) = (−1/3,−1/2, 1, 0, 1, 1/4), then we have

f(x) =
(x− 1)x3(x + 1/2)2

(x + 1/3)2 ,

g(x) = (x− 1)(x− 1/4),

h(x) =
1
4

+
x3

x + 1/3
.

Systems containing four polynomials.
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Consider the case(S∞, Sβ1, Sβ2) = ({1}, {2, 3}, {4}) and(l1, l2, l3, l4) = (3, 1, 1, 3).
One gets the system

α1 − α4 − 1/3 = 0

α2 + α3 − 2α4 − 1/3 = 0

α2
3 − 2α3α4 − 1/3α3 + α2

4 + 1/3α4 + 1/27 = 0

β1 − β2 − 1 = 0.

The parametrization is as follows

α1 = α4 + 1/3,

α2 = α4 ∓
√−3
18

+
1
6
,

α3 = α4 ±
√−3
18

+
1
6
,

β1 = β2 + 1.

As an example we take(α1, α2, α3, α4, β1, β2) = (1/6,−√−3/18,
√−3/18,−1/6, 1, 0),

then we obtain

f(x) =
(x−√−3/18)(x +

√−3/18)(x + 1/6)3

(x− 1/6)6 ,

g(x) = (x− 1)x,

h(x) =
(x + 1/6)3

(x− 1/6)3 .

Systems containing five polynomials.
If (S∞, Sβ1, Sβ2) = ({1}, {2, 3}, {4}) and(l1, l2, l3, l4) = (3, 1, 2, 2), then we have

α1 − 1/3α2 − 2/3α3 − 1/3 = 0

α2
2 − 2α2α4 + 2α2 + 8α2

3 − 16α3α4 + 6α3 + 9α2
4 − 8α4 + 1 = 0

α2 + 7/2α3 − 9/2α4 + 1 = 0

α3 − α4 + 8/27 = 0

β1 − β2 + 1 = 0.

We get the parametrization

α1 = α4 + 4/27,

α2 = α4 + 1/27,

α3 = α4 − 8/27,

β1 = β2 − 1.
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As a concrete example we deal with the case

(α1, α2, α3, α4, β1, β2) = (4/27, 1/27,−8/27, 0, 0, 1).

It easily follows that

f(x) =
(x− 1/27)x2(x + 8/27)2

(x− 4/27)6 ,

g(x) = (x− 1)x,

h(x) = 1 +
x2

(x− 4/27)3 .

5.2 The casen = 4, t = 3 and S∞ = ∅
There are 24 systems to handle in this case. The systems are getting more and more
complicated therefore we deal with two typical cases. There are 6 systems having
two polynomials in the Groebner basis, one of these is as follows:(Sβ1, Sβ2, Sβ3) =
({1, 3}, {4}, {2}) and(l1, l2, l3, l4) = (1, 2, 1, 2). The system of equations are given
by

α1β2 − α1β3 + 2α2β1 − 2α2β2 + α3β2 − α3β3 − 2α4β1 + 2α4β3 = 0

α
2
2β1 − α

2
2β2 − 2α2α3β1 + 2α2α3β2 − α

2
3β2 + α

2
3β3 + 2α3α4β1 − 2α3α4β3 − α

2
4β1 + α

2
4β3 = 0.

There are four solutions whereαi = αj or βi = βj

(α1 = α4, α2 = α4, α3 = α4, α4, β1, β2, β3),

(α1 = α3, α2 = α3, α3, α4, β1 = β3, β2, β3),

(α1, α2, α3, α4, β1 = β3, β2 = β3, β3),

(α1, α2 = α4, α3, α4, β1, β2 = β3, β3).

These solutions do not lead to appropriate rational functions. There is one solution
which yield solutions of the original problem

α1 = −α2α3 − 2α2α4 + α3α4

α2 − 2α3 + α4
,

β2 =
α2

2β1 − 2α2α3β1 + α2
3β3 + 2α3α4β1 − 2α3α4β3 − α2

4β1 + α2
4β3

(α2 − α3)2 ,

whereα2, α3, α4, β1, β3 are parameters such thatαi 6= αj , βi 6= βj andα2 − 2α3 +
α4 6= 0. As an example consider the case(α2, α3, α4, β1, β3) = (0, 1, 3, 0, 1). We
obtain thatα1 = −3 andβ2 = 4. Let k1 = k2 = 1 andk3 = −2. We get that

f(x) =
(x− 3)2(x− 1)(x + 3)

x4 ,

g(x) =
(x− 4)x
(x− 1)2 ,

h(x) =
(x− 1)(x + 3)

2x− 3
.
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There are 18 systems having three polynomials in the Groebner basis, one of these is
as follows: (Sβ1, Sβ2, Sβ3) = ({1}, {2, 3}, {4}) and(l1, l2, l3, l4) = (2, 1, 1, 2). The
system of equations is

α1α2 + α1α3 − 2α1α4 − 2α2α3 + α2α4 + α3α4 = 0

α1β2 − α1β3 − 1/2α2β1 + 1/2α2β3 − 1/2α3β1 + 1/2α3β3 + α4β1 − α4β2 = 0

α
2
2β1 − α

2
2β3 + 2α2α3β1 − 4α2α3β2 + 2α2α3β3 − 4α2α4β1+

+4α2α4β2 + α
2
3β1 − α

2
3β3 − 4α3α4β1 + 4α3α4β2 + 4α

2
4β1 − 4α

2
4β2 = 0.

The only solution where one can obtain appropriate rational functions is

α1 =
−α2α4 − α3α4 + 2α2α3

α2 + α3 − 2α4
,

β3 =
α2

2β1 + 2α2α3β1 − 4α2α3β2 − 4α2α4β1 + 4α2α4β2 + α2
3β1 − 4α3α4β1 + 4α3α4β2 + 4α2

4β1 − 4α2
4β2

(α2 − α3)2
,

whereα2, α3, α4, β1, β2 are parameters such thatαi 6= αj , βi 6= βj andα2 + α3 −
2α4 6= 0. Now we consider the example with(α2, α3, α4, β1, β2) = (0, 1, 3, 0, 1). We
have thatα1 = 2/3 andβ3 = −8. Let k1 = k2 = 1 andk3 = −2. We have that

f(x) =
(x− 2/3)2(x− 1)x

(x− 2)4 ,

g(x) =
(x− 1)x
(x + 8)2 ,

h(x) =
(3x− 2)2

−3x + 4
.

5.3 The casen = 4, t = 4 and S∞ = ∅
Here we have 24 systems to solve. We have the same remark as in case oft = 3, n = 3
andS∞ = ∅. That is there are only trivial solutions here withdegh = 1.

Since one has 24 very similar systems, we will deal with one of these only. Let
(Sβ1, Sβ2, Sβ3, Sβ4) = ({1}, {2}, {3}, {4}) and(l1, l2, l3, l4) = (1, 1, 1, 1). One gets
the system of equations

α1β2 − α1β4 − α2β1 + α2β4 + α4β1 − α4β2 = 0

α1β3 − α1β4 − α3β1 + α3β4 + α4β1 − α4β3 = 0

α2β3 − α2β4 − α3β2 + α3β4 + α4β2 − α4β3 = 0.

There are three solutions which do not correspond to appropriate rational functions,
the remaining solution has

α1 =
α3β1 − α3β4 − α4β1 + α4β3

β3 − β4
,

α2 =
α3β2 − α3β4 − α4β2 + α4β3

β3 − β4
.
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Now let (α3, α4, β1, β2, β3, β4) = (0, 1, 3, 2, 1, 0) andk1 = k2 = 1, k3 = k4 = −1.
One obtains that

f(x) =
(x + 1)(x + 2)

(x− 1)x
,

g(x) =
(x− 3)(x− 2)

(x− 1)x
,

h(x) = −x + 1.

6 Some examples withn ∈ {5, 6, 7}
We computed all the varieties corresponding ton = 5, the systems are getting more
and more complicated therefore we selected only three examples given below. All sys-
tems in case ofn = 5 can be downloaded from
http://www.math.unideb.hu/∼tengely/CFunc5.txt.tar.gz. We also consider
examples withn = 6 and 7.

• Consider the case(S∞, Sβ1, Sβ2) = ({1, 5}, {3, 4}, {2}) and(l1, l2, l3, l4, l5) =
(3, 1, 1, 3, 1). One gets a system containing 5 equations

α1 − 2α4 + α5 = 0

α2 − 3/2α4 + 1/2α5 = 0

α3 − 3α4 + 2α5 = 0

α3
4 − 3α2

4α5 + 3α4α
2
5 − α3

5 + 1/2 = 0

β1 − β2 + 1 = 0.

The solutions of this system of equations are given by

(α1, α1+
1
4

3
√

4ζk,
1
2
( 3
√

2α1−1) 3
√

4ζk,
1
2
( 3
√

2α1+1) 3
√

4ζk,
1
2
( 3
√

2α1+2) 3
√

4ζk, β1, β1+1),

whereζ = 1+i
√

3
2 andk = 0, 1, 2.

• Let (S∞, Sβ1, Sβ2) = ({1, 2, 5}, {3}, {4}) and(l1, l2, l3, l4, l5) = (1, 1, 1, 3, 1).
We obtain the following system of equations

α1 + α2 − 3α4 + α5 = 0

α2
2 − 3α2α4 + α2α5 + 3α2

4 − 3α4α5 + α2
5 − 1 = 0

α3 − α3
4 + 3α2

4α5 − 3α4α
2
5 + α3

5 − α5 = 0

β1 − β2 − 1 = 0.
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The general solutions are given by

α1,

α2,

α3 =
1

18

p
−α1 + α2 + 2

�
4
p

α1 − α2 + 2
√

3α1α2 − 2
p

α1 − α2 + 2
√

3α
2
2 −
p

α1 − α2 + 2
�

2
√

3α
2
1 +

√
3
��

+

1

2
α1 +

1

2
α2,

α4 = − 1

6

q
−α2

1 + 2 α1α2 − α2
2 + 4

√
3 +

1

2
α1 +

1

2
α2,

α5 = − 1

2

p
−α1 + α2 + 2

p
α1 − α2 + 2

√
3 +

1

2
α1 +

1

2
α2

β1,

β2 = β1 − 1.

and

α1,

α2,

α3 = − 1

18

p
−α1 + α2 + 2

�
4
p

α1 − α2 + 2
√

3α1α2 − 2
p

α1 − α2 + 2
√

3α
2
2 −
p

α1 − α2 + 2
�

2
√

3α
2
1 +

√
3
��

+

1

2
α1 +

1

2
α2,

α4 =
1

6

q
−α2

1 + 2 α1α2 − α2
2 + 4

√
3 +

1

2
α1 +

1

2
α2,

α5 =
1

2

p
−α1 + α2 + 2

p
α1 − α2 + 2

√
3 +

1

2
α1 +

1

2
α2,

β1,

β2 = β1 − 1.

• Now, we provide an example where the zeroes and poles off form an arithmetic
progression. Let(S∞, Sβ1, Sβ2) = ({4, 5}, {2, 3}, {1}) and(l1, l2, l3, l4, l5) =
(1, 1, 1, 1, 1). We get the following system of equations

α1 − α2
3 + α3α4 + α3α5 − α3 − α4α5 = 0

α2 + α3 − α4 − α5 + 1 = 0

β1 − β2 + 1 = 0.

Now assume thatα5, α3, α1, α4, α2 form an arithmetic progression in this order.
We have that

α5 + α1 − 2α3 = 0

α1 + α2 − 2α4 = 0

α5 + α2 − 2α1 = 0.
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The two systems of equations above simplify to

α1 = α5 − 1,

α2 = α5 − 2,

α3 = α5 − 1
2
,

α4 = α5 − 3
2
,

β1 = β2 − 1.

Thus the rational functions are given by

f(x) =
(x− α5 + 1/2)(x− α5 + 1)(x− α5 + 2)

(x− α5)2(x− α5 + 3/2)2

g(x) = (x− β2)(x− β2 + 1)

h(x) = β2 +
x− α5 + 1

(x− α5)(x− α5 + 3/2)
.

• Let n = 6 and we fix the vector(l1, l2, . . . , l6) to be(1, 1, 2, 1, 1, 1). The pro-
cedureCFunc(3,6,1:exptup:=[[1,1,2,1,1,1]]); yields that there are 30
systems to deal with. One of these is as follows. The partition is given by
[{4}, {1, 2}, {5, 6}, {3}] and the system of equations is

α1 − α4 + α5 − α6 − β1 + β2 = 0,

α2β1 − α2β3 + 1/4α
2
4 − α4α5 + 1/2α4α6 − 1/2α4β2 + 1/2α4β3 + α

2
5 − α5α6−

α5β1 + α5β2 + 1/4α
2
6 − 1/2α6β2 + 1/2α6β3 + 1/4β

2
2 − 1/2β2β3 + 1/4β

2
3 = 0,

α2β2 − α2β3 + 1/4α
2
4 − 1/2α4α6 − 1/2α4β2 + 1/2α4β3 + 1/4α

2
6 − 1/2α6β2+

1/2α6β3 + 1/4β
2
2 − 1/2β2β3 + 1/4β

2
3 = 0,

α3 − 1/2α4 − 1/2α6 + 1/2β2 − 1/2β3 = 0,

α
2
4β1 − α

2
4β2 + 4α4α5β2 − 4α4α5β3 − 2α4α6β1 − 2α4α6β2+

4α4α6β3 − 2α4β1β2 + 2α4β1β3 + 2α4β
2
2 − 2α4β2β3 − 4α

2
5β2 + 4α

2
5β3+

4α5α6β2 − 4α5α6β3 + 4α5β1β2 − 4α5β1β3 − 4α5β
2
2 + 4α5β2β3+

α
2
6β1 − α

2
6β2 − 2α6β1β2 + 2α6β1β3 + 2α6β

2
2 − 2α6β2β3 + β1β

2
2−

2β1β2β3 + β1β
2
3 − β

3
2 + 2β

2
2β3 − β2β

2
3 = 0.

• Finally, we show an example withn = 7. Using our Magma procedure

CFunc(3,7,1:PSet:=[[{1},{2,3},{4,5},{6,7}]],exptup:=[[1,1,1,1,1,1,1]]);
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we get the system of equations

α1β1 − α1β3 + α2
3 − α3α6 − α3α7 − α3β1 + α3β3 + α6α7 = 0,

α1β2 − α1β3 + α2
5 − α5α6 − α5α7 − α5β2 + α5β3 + α6α7 = 0,

α2 + α3 − α6 − α7 − β1 + β3 = 0,

α2
3β2 − α2

3β3 − α3α6β2 + α3α6β3 − α3α7β2 + α3α7β3−
α3β1β2 + α3β1β3 + α3β2β3 − α3β

2
3 − α2

5β1 + α2
5β3+

α5α6β1 − α5α6β3 + α5α7β1 − α5α7β3 + α5β1β2 − α5β1β3−
α5β2β3 + α5β

2
3 − α6α7β1 + α6α7β2 = 0,

α4 + α5 − α6 − α7 − β2 + β3 = 0.

We note that the above system has a solution

(α1, α2, α3, α4, α5, α6, α7, β1, β2, β3) =

(−1, 0, 2,−1−
√
−3,−1 +

√
−3,

1−√−3
2

,
1 +

√−3
2

, 0,−4,−1).

It corresponds to the example given by Ayad and Fleischmann, that is

f =
x4 − 8x

x3 + 1
, g =

x2 + 4x

x + 1
, h =

x2 − 2x

x + 1
.
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