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On Composite Rational Functions

Attila Pethb and Szabolcs Tengely

Abstract. In this paper we characterize all composite lacunary rational functions having at
most 3 distinct zeroes and poles and we also provide some examples in case of 4, 5, 6 and 7
singularities.
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1 Introduction

In this article we deal with a problem related to decompositions of polynomials and
rational functions. A classical result by Ritt [32] states that if there is a polynomial
f € C[X] satisfying certain tameness properties and

f=g10g920---0g, =hgohpo---0h,

thenr = sand{deggs, . .., degg, } = {deghs, ..., degh, }. Ritt's fundamental result

has been investigated, extended and applied in various wide-ranging contexts (see e.g.
[5, 12, 15, 16, 19, 20, 23, 24, 26, 27, 36, 37]). The above statement is not true for
rational functions. It is not true that all complete decompositions of a rational function
have the same length. Gutierrez and Sevilla [23] provided an example with rational
coefficients as follows

23(x + 6)°(2? — 6z + 36)°
(x —3)3(2?2+3x+9)° ’
x(x —12) . z(z + 6)
x—3 r—3 "
23(x 4 24) . z(2? — 6z + 36)
r—3 ?+3x+9

=

f=gogogs=1%0

f=hiohy =

We would like to emphasize that combinations of Siegel's [34] and Faltings’ [18]
finiteness theorems, related to integral and rational points on algebraic curves, and
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Ritt's result have yielded many nice results in Diophantine number theory (see e.g.
[2,7,8,9, 11, 14, 20, 25, 28, 29, 35)).

In his book [30, 31] Rédei introduced lacunary polynomials over finite fields. He
characterized certain fully reducible lacunary polynomials over finite fields and he
used this theory to obtain applications to areas of algebra and number theory.

In case of lacunary polynomials, that is when the number of terms of the polynomial
is considered to be fixed while the degrees and coefficients may vads Erd] and
independently Rényi posed the following conjectureh(f)? has boundedly many
terms, then the same is true fofz) € C[X]. Schinzel [33] gave a proof in a more
general case, namely whéiiz)? has boundedly many terms. Schinzel made the con-
jecture that ifg(h(z)) has boundedly many terms, then it holds also/@t). This
latter conjecture has been proved by Zannier [38]. Fuchs and Zannier [22] extended
the problem, they considered lacunary rational functions which are decomposable. An
other possibility to think about lacunarity is that one considers the number of zeros
and poles of a rational function in reduced form to be bounded. In this case Fuchs
and PetB [21] obtained results related to the structure of such decomposable rational
functions. We note that their proof was algorithmic.

In this paper we provide some computational experiments that we obtained by us-
ing a MAGMA [10] implementation of the algorithm of Fuchs and RetW/e not only
compute the appropriate varieties, but we also provide parametrizations of the possible
solutions. We remark that algorithms have been developed earlier to find decomposi-
tions of a given rational function (see e.g. [1, 3, 4]). In [3], Ayad and Fleischmann
implemented a MAGMA code to find decompositions, as an example they considered

the rational function

x4 — 8z

f="=71
and they obtained that(x) = g(h(z)), where
_ 22 + 4z % —2x

and h = .
z+1 r+1

At the end of the paper we show that this concrete decomposition corresponds to a
point on certain variety.

Our paper is organized as follows. In Section 2 we present the result of Fuchs and
Pettd [21] and we introduce some notation. In Section 3 we describe our algorithm and
provide some information about the computation we have done. In Section 4 we prove
Theorem 1 that we state below. First we define equivalence of rational functions. Two
rational functionsf1(z) = [ [\, (x — a§l>) andfa(z) =[] (z— a§2>) are equivalent
if there exista; ; € Q,i € {1,2,...,n},j € {1,2,...,n + 1} such that

@) (2) 2

o = a;100 0+ 200

2
i + ...+ ama%) + Qi nt1,

foralli € {1,2,...,n}.
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Theorem 1.Let k& be an algebraically closed field of characteristic zerof, lif, h €
k(x) with f(z) = g(h(x)) and withdegg, degh > 2, g not of the shapé\(z))™, m €
N, X € PGLy(k), and f has 3 zeros and poles altogether, tifes equivalent to one
of the following rational functions

(a) (x—an)*1(24+1/4—1)?

I 1/4 a )2k1+2k2

(b) &= al Hlrdar-200"2 ¢ somens, ap € k andky, kp € 7, ki + kp % O.

(—ap)2F172F2

2 for someq; € k andky, ky € Z, k1 + ko # 0,

In Section 5 we deal with systems related to the ease 4. Finally, in Section 6
we provide some examples withe {5, 6, 7}.

2 Auxiliary results

Fuchs and Peth[21] proved the following theorem.

Theorem A. Let k be an algebraically closed field of characteristic zero. bt a
positive integer. Then there exists a positive intefand, forevery € {1,...,J}, an
affine algebraic variety; defined overQ and withV; c A" for some2 < t; < n,
such that:

) If f,g9,h € k(z) with f(z) = g(h(x)) and withdegg, degh > 2, g not of the
shapgA(z))™, m € N,\ € PGLy(k), andf has at most zeros and poles altogether,
then there exists for somee {1,...,J} a pointP = (a1,...,an,B1,...,0) €
Vi(k), avector(ky, ..., k) € Z' with k1 + k2 + ... + k¢, = 0 or not depending on
Vi , a partition of{1,...,n} in ¢; + 1 disjoint setsS., Sg,, . .. ,Sg,, With So = 0
if k1 +ko+ ...+ Kk, =0, and a vectofly,...,l,) € {0,1,...,n — 1}", also both
depending only o}, such that

t;

t;
= [[wi/ws)¥,  g(z) = [[(= - B;)"
j=1

j=1
and

hz) = Bj + ‘73 (J=1,...,t), if k1 +ko+...+ ke #0

% (1< j1<j2<t;), otherwise,
where
Wi = H(‘x—am)lm7 J:laatl
mESBj
and
Woo = H (x — am)lm
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Moreover, we havdeg h < (n — 1)/ max{t; — 2,1} <n — 1.

(i) Conversely for given dat& € V;(k), (k1. .- -, ki), Soo, Spys- - -5 Sp,,» (1, - -+, In)
as described in (i) one defines by the same equations rational fungtigns with f
having at most: zeros and poles altogether for whi¢fw) = g(h(z)) holds.

(iif) The integerJ and equations defining the varietigsare effectively computable
only in terms ofn.

The method of proof of the above Theorem is effective. It provides an algorithm to
obtain all possible decompositions of rational functions with at mastros and poles
altogether.

We introduce some notation. Without loss of generality we may assumg trad

g are monic. Let
n

F(@) = [[(x — an)”

i=1
with pairwise distincty; € kandf; € Z fori =1,...,n. Similarly, let

t
! Gt

with pairwise distincts; € k andk; € Z for j = 1,...,t andt € N. Therefore we

have .
[[@ = e’ = f@) = = H

Jj=
We shall writeh(xz) = p(z)/q(z) with p,q € k[z], p,q coprime. Fuchs and Pdih
showed that ifS., # () then

a@) = ] @— aw)"

mESoo

and there is a partition of the sél,...,n} \ Sy in ¢ disjoint non empty subsets
S8, - .,98, such that

W)= 0+ o= J] o, (2.1)

q(.'lf mEng

wherel,, € N satisfied,,k; = f,, form € Sg; s and this holds true for every =
1,...,t. We obtain at least two different representations o$ince we assumed that
g is not of the shapé\(z))™. Hence we get at least one equation of the form

1) 1 - o =6+

Bi + @
q T‘ESQZ.

(l) H (z — o). (2.2)

qlx
SGSﬁj
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If Sso = 0 then we have

((2) = Bia@)® = [ (@ = am)™.

mESﬁj

Now we have that > 3, otherwiseg is in the special form we excluded. Siegel's
identity provides the equations in this case. That B4 j1 < j» < j3 < t, then we
have

Uj1,jaga T Visgrge T Vizgagn = 0, (2.3)
where

Vj1,42,93 = (ﬁjl - ﬁjg) H (-’L‘ - Oém)l’”.

mGSﬁjs

3 The computation

The method of proof by Fuchs and P&tbrovides an algorithm to obtain the possible
varieties. So we followed the steps described below.

(i) compute the partitions df1, 2, ...,n} into ¢ + 1 disjoint sets

(i) given a partitionS, Ss,,...,Ss and a vector(ls,...,l,) € {1,2,...,n}"
compute the corresponding varigty= {v1,...,v,}, wherev; is a polynomial
inai,...,ap, 01,..., 05 obtained from (2.2) or (2.3)

(ii) compute Groebner basis using lexicographical ordering (see e.g. [6VA3)
the ideal generated by the polynomials ..., v. (we note that here Groebner
basis makes easier to compare the resulting varieties)

(iv) testideal membership forall; — «;,4,5 =1,2,...,n,i # jandg; — §;,4,j =
1L2,...,t,i# ]

(v) if there is no contradiction in step (iv) list the given partition, vector and variety.

We implemented the algorithm in Magma [10], the procedlfenc .m can be down-
loaded fromhttp://www.math.unideb.hu/~tengely/CFunc.m. The function works
as follows: CFunc(t,n,tipus), wheret denotes the number of roots/polesgfn
denotes the number of roots/polesfoftipus is in {0, 1}, itis O if S, is empty, oth-
erwise itis 1. So one way to call the functiondBunc(2,3,1) ; we obtain a set of
cardinality 18, an element of this set is:

< [{1}.{2}.{3}],

<1,22>,

[X[1] — X[3] —1/4« X[4] +1/4« X5,
X[2] - X[3] — 1/2% X[4] + 1/2+ X[5]] >

this element is a record having 3 fields
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1st a list contaning the partitions ¢£, 2, ..., n|

2nd the exponent vector iq,1o, ..., 1, >

3rd: the system of equations defining the variety, whEf&] = «y, ..., X[n] = a,
andX[n+1] =f1,...,X[n+t] = 6.

Other way to use the function is to use the optional paramegars andexptup.
PSet is a list contaning some fixed partitions [df 2, ..., n|, exptup is a list con-
taining some fixed exponentg up tol,. In this way we get a system of equations
corresponding to the given partition and exponent vector e.g.:

CFunc(2,3,1:PSet:=[[{1},{2},{3}11);
the output is:

{
<H{ih {2} {8}, < L2,2>,
(X[ — X[3] — 1/4 % X[4] + 1/4 % X[5],
X[2] — X3 —1/2x X[4 +1/2* X[5]] >,
< H1h {2} {3}, < 2,21 >,
(XY - X3 - 1/4,
X[2 — X[3) +1/4,
X4 — X[5+1] >,
{1} {2} {8}, <2,1,2>,
X[ - X[38 - 1/2,
(2] — X[3] - 1/4,
X4 - x5 -1 >

<

X

(-

That is we obtained all systems with the given partifigh}, {2}, {3}] andt = 2,n =
3, Sx # (. In a similar way one can compute all systems with a given exponent vector
[[1,2,2]]: CFunc(2,3,1:exptup:=[[1,2,2]1);.

Using the above mentioned procedure we computed all systems corresponding to
n € {3,4,5}. Some details of the computations can be found in the following table.

Here#RS denotes the number of remaining systems to be considered, that is those
systems which were not eliminated, whit& S denotes the total number of systems.

n | t | Seo | #RS #TS
3| 2| #0 18 %

3| 3| £0 0 0

3 | 3 0 6 48

a | 2| #0 | 264 3888
4 | 3| #0 0 5832
a | 4| #0 0 0

4 | 3 0 24 1944
4 | a 0 24 7776
5 | 2 | £0 | 4644 | 122880
5 | 3| #£0 60 368640
5 | 4| #£0 0 491520
5 | 5| #£0 0 0

5 | 3 0 384 61440
5 | 4 0 0 491520
5 | 5 0 120 | 1228800

The above table shows that combinatorial explosion increases the total number of
systems very rapidly.
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4 Proof of Theorem 1.

We are going to deal with the three possible cdses, Sw) € {(3,2,# 0), (3,3, #
0),(3,3,0)}. We note that the previous table shows that there are no solutions with

(n,t,5) = (3,3, # 0).

4.1 Thecaser =3,t =2and S, # 0

There are two types of systems here, in the first class one obtains solutions having two
parameters, in the second class one has solutions having three parameters. Below we

indicate the 12 systems which yield families with two parameters.

(S0, 8py558,): (U1, 12, I3)

System of equations

Solution(cy, arp, g, B1, B2)

({3}, {2}, {1} a; —az+1/4=0 | (=1/4+ a3, —1/2+ a3, a3, —1+ B2, B2)
(1,2,2) ap—az+1/2=0

BL—B2+1=0
({2}, {1}, {3H) a; —ag+1/4=0 | (-1/4+ a3, 1/4+ ag, ag, —1+ B2, B2)
(2,2,1) oy —az—1/4=0

Br—Br+1=0
({1}, {2}, {3} a;—az3—1/4=0 | (1/4+ a3, —1/4+ a3, ag, =1+ B2, B2)
(2,2,1) oap—az+1/4=0

BL—B2+1=0
({1}, {3}, {2}) a;—az—1/2=0 | (1/2+ ag,1/4+ a3, ag, =1+ B2, B2)
21,2 oy — az—1/4=0

B1—B2+1=0
({2}, {3}, {1} a; —az+1/4=0 | (=1/4+ a3, 1/4+ a3, a3, 1+ B2, B2)
(2,2,1) ar —az—1/4=0

BL—PB2—1=0
({3}, {1}, {2} a; —az+1/2=0 | (=1/2+ ag, —1/4+ a3, a3, —1+ B, B2)
(2,1,2) oap—az+1/4=0

Br—fpr1=0
({1}, {3}, {2H) a;—az3—1/4=0 | (1/4+ a3, —1/4+ a3, a3, 1+ B2, B2)
(2,2,1) ap — az+1/4=0

BL—B—1=0
({1}, {2}, {3} a; —az—1/2=0 (1/2+ a3, 1/4+ a3, a3,1+ B2, B2)
(2,1,2) ay—az—1/4=0

BL—PB2—-1=0
({2}, {1}, {3}) a;—az—1/4=0 | (1/4+ a3,1/2+ ag, a3, 1+ B, B2)
(1,2,2) ap—az—1/2=0

BL—B2—1=0
({2}, {3}, {1H) a;—az3—1/4=0 | (1/4+ a3,1/2+ a3, az, =1+ B2, B2)
1,2,2) oy —az—1/2=0

Br—Bp+1=0
({3}, {2}, {1}) a; —agz+1/2=0 | (=1/2+ ag, —1/4+ ag, ag, 1+ B2, B2)
(2,1,2) ar —ag+1/4=0

BL—B2—1=0
({3}, {1}, {2} a;—az+1/4=0 | (=1/4+ag, —1/2+ a3, a3, 1+ B2, B2)
(1,2,2) ar—az+1/2=0

BL—B2—1=0

As an example consider the system from the sixth row, thafis, Sg,, S,) =
({3},{1},{2}) and (l1,12,13) = (2,1,2). Here we obtain the following system of

equations

()éj_—Oé3+1/2
ap —az+1/4

f1—B2+1
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Therefore one gets the parametric solutie — 1/2, a3 — 1/4, a3, 52 — 1, 32) and
with k1 = k> = 1 we have

(x — a3 +1/2)%(x — az + 1/4)

fla) = " ,
9(z) = (z — B2+ 1)(z — B2),
hz)= 03— 1+ w

(x — agz)?

It is easy to see that(x — 1/4) is of the form (a) stated in Theorem 1. We note that
one gets the same family in case(6%., Ss,, Sg,) = ({3}, {2}, {1}) and(iy, 2, l3) =
(1,2,2). In a similar way we can show that the remaining systems yield equivalent

rational functions to the function in part (a) of Theorem 1.
Now we provide the table containing the 6 systems which yield families with three
parameters.

(Soo» Sal, Sﬁz)’ (1,12, 13) System of equations Solution (g, az, az, B1, B32)

({3}, {2}, {1} ap —oap+1/281 —1/28; =0 | (—ap + 203, ap, g, dap — dag + B, B2)
(2,2,1) ap —agz —1/481 +1/48, =0

({1}, {3}, {2} a; —ag+1/481 — 1/48; =0 | (a1, —ag + 20q, ag, —4ag +4ag + B2, B2)
(1,2,2) ap —ag+1/28; —1/28, =0

({2}, {3}, {1}) a; —ag+1/281 —1/28, =0 | (2ap — ag, az, ag, —4az +4ag + B2, B2)
(2,1,2) az —ag+1/4B; — 1/48, =0

({1}, {2}, {3} ap — a3 —1/481 +1/482 =0 | (ou, —ag + 24, ag, 4oy — daz + B2, B2)
(1,2,2) ap —ag —1/281 +1/28, =0

({3}, {1}, {2}) ap —ap —1/261 +1/28; =0 | (—az + 203, ap, a3, —4ap + dag + B2, B2)
(2,2,1) ar —az+1/4B81 — 1/48, =0

({2}, {1}, {3} a; — a3z —1/261 +1/26; =0 | (20 — a3, ap, a3, 4ap — 4az + B2, B2)
(2,1,2) ap —ag —1/481 +1/48, =0

From the parametrizations one can easily obtain the corresponding rational func-
tions, as an example we take the fourth row of the table. That is, we have

(Soor S15,) = ({11,{2}, {3}), (I, 12, 13) = (1,2,2)
and
a1 —az—1/461+ 1/45; 0,
az —az3—1/281+1/23;
Thusifk; = k, = 1, then

(x — ag)z(;z: — 201 + a3)2

fz) =

(x — ) ’

9(x) = (z — 4oz + daz — (2)(z — (2),
Cag)?

hla) = g+ =2

It is clear thatf is equivalent to the rational function in part (b) of Theorem 1. The
remaining systems can be handled in a similar way, all of these are equivalent to the
rational function indicated in part (b).
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4.2 Thecasen = 3,t =3and Sec = 0

In total there are six parametrizations here, these are indicated in the table below.

(Sﬁl’ Sga,, 5'33, ), (11,12, 13) System of equations Solution(avg, ap, a3, B1, B2, B3)
({1}, (33,42} 10, — afls + a1 — az0; — agfy + agfy = 0 | (- 2= 2Z2_JIATOIT,
(1,1,1) ag, oz, B1, B2, B3)

({2}, {1}, {3} a1fy — c1f3 — P + cpfs — agfy + agfy =0 (%,
(1,19 o, a3, B1, B2, B3)

({3}, {1}, {2} o181 — aafBg — aBy + apfy — agfy + agfz =0 (%,
(1,1,1) ag, oz, B1, B2, B3)

({1}, {2}, {3} 18y — a1fB3 — apBy + apf3 + azBfy — azf, =0 (%,
(1,11 ag, oz, B1, B2, B3)

({3}, {2}, {1} a1f1 — c1fz — P + B3 + agfy — agfy =0 (%,
(1,1,1) ag, ag, B1, B2, B3)

({2}, {3}, {1} 1By — of + apfy — a3 — agfy + agBy =0 (_W’
(1,11 ag, oz, B1, B2, B3)

We remark that all these systems correspond to trivial solutibeghE1). We have
thatw; = []nes, (2 — am)™ is a linear polynomial for allj € {1,2,3}, since
li=lh=13=1 an]d the cardinality 055]. is 1 for all possible cases. Therefore

h(z) = Zai = Pinois

Wi, — Wjy

is a linear polynomial. So we do not obtain non-trivial rational function from this case.
As an illustration we provide an example corresponding to the parametrization in-

dicated in the fourth row, that i65g,, Ss,, S3,) = ({1},{2},{3}) and (l1,12,03) =

(l, 1, l). Now let (az, a3, ﬂl, ﬁz, ,33) = (2, 1,-11, O) and k1 =ky=21k3 = -2

One has thatr; = 0 and

 (z— 2
flz) = m;
g(z) = (ac—la):—zaﬂrl),
h(z) = -1

5 Cases withn =4
In this section we provide some details of the computation corresponding to cases with

n=4.

5.1 Thecasen = 4,t =2and S, # 0

There are 264 systems to deal with. We will treat only a few representative examples.
Systems containing two polynomials.
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If (Soc, Spy: Sp,) = ({4}, {1,2}, {3}) and(ly, Iz, I, la) = (1,1, 2, 1), then we have

a1 tax—203—P1+ B2 =

a — 20003 — P+ apf + ob + asfr — aufp =

Sincea; # o andp; # B; if i # j, we have that

a1 = —ao+ 203+ (1 — B,
e = oy (02703
B1— B2

For example, if we consider the solutiéni, oz, az, aa, 81, 52) = (—2,1,0,2,0,1),
then we get

(x — D)a?(x +2)

f@) = S
g(z) = (z— 1,
h(z) (x —xl)_(xz—i— 2).

Systems containing three polynomials.
If (Seo,S8,,98,) = ({1},{2,3},{4}) and(l1, 12,13, la) = (1,2,1, 3), then we get

a1 + 1/3&3 — 4/3044 =0
az+1/2a3—3/2a4 = 0
of — 20304+ a5 — 4/351+4/33, = O.

Thus one obtains the parametrization

o1 = —1/30[3 + 4/30[4,
ay = —1/2a3+ 3/2a4,
B = 3/404% — 3/2a304 + 3/404421 + [o.

Let us take(aa, an, a3, ag, f1, 52) = (—1/3,-1/2,1,0,1,1/4), then we have

(v — D)a3(x + 1/2)?

fle) = (r+1/32
g(x) = (z—-1)(z—1/4),

1 a3
o) = 3+ v

Systems containing four polynomials.
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Consider the cased, Ss,, S3,) = ({1},{2,3},{4}) and(ly,2,13,14) = (3,1,1,3).
One gets the system

a1 —ag—1/3 =

ap +az—204—1/3 =

a3 — 2agag — 1/303 + a4+ 1/3as + 1/27 =

fr—p2—1 =

o o o o

The parametrization is as follows

o) = Oé4+1/3,

3 1

@2 = “T g Ty

V=3 1

= + ¥ T4 =

% o4 18 +6’
fr = B2+1

As an example we takevs, oz, a3, aa, 81, 52) = (1/6, —/—3/18,v/—3/18 —1/6,1,0),
then we obtain

(z — V=3/18)(x + v/—3/18)(z + 1/6)°

g(x) = (z—-1u,
(x4 1/6)3
R S T

Systems containing five polynomials.
If (Soc, Sp1: S5,) = ({1}, {2,3}, {4}) and(ly, l2, I, la) = (3,1, 2, 2), then we have

a1 —1/30p—2/303—1/3 = 0

a% — 200000 + 2000 + 8@% — 16a3a4 + 603 + 90@?1 —8as+1 =
az+7/2a3—9/2a4+1 =

az—ag+8/27 =

pr—p2+1 =

o o o o

We get the parametrization
a1 = agq+4/27,
ap = ag+1/27,
az = ag—8/27,
pr = P2-1
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As a concrete example we deal with the case
(o1, a2, a3, g, 1, B2) = (4/27,1/27,—8/27,0,0,1).
It easily follows that
(x —1/27)2%(z + 8/27)?

@) = (z — 4/27)6 ’
g(z) = (z—1u,
LL‘Z

5.2 Thecasen = 4,t =3and Soc =0

There are 24 systems to handle in this case. The systems are getting more and more
complicated therefore we deal with two typical cases. There are 6 systems having
two polynomials in the Groebner basis, one of these is as follo¥ig;, Ss,, Ss,) =
({1,3},{4},{2}) and(l1,12,13,14) = (1,2,1,2). The system of equations are given
by

a1y — a1fB3 + 2081 — 2082 + agBy — agfz — 204B1 + 2043 = O

a3B1 — a3By — 200381 + 20038, — o382 + 033 + 2030481 — 2030483 — Q3B + a3Bs = 0.
There are four solutions whetg = «; or §; = 3;
(1 = ag, a0 = g, 3 = g, g, B1, B2, B3),
(1 = a3, a2 = az, a3, a4, f1 = (3, 52, 43),
(a1, 2, a3, 04, 1 = B3, B2 = (33, 33),
(a1, 2 = Qu, 3, a4, B1, B2 = 33, B3)-

These solutions do not lead to appropriate rational functions. There is one solution
which yield solutions of the original problem

Qo3 — 2000004 + (13004

a1 =
ap — 203 + g

5, — a31 — 2000301 + a4f3 + 2030401 — 2030403 — a461 + o303
(az — as)?
whereay, az, a4, 41, 3 are parameters such that # o;, 3; # 3; andao — 2a3 +

aq # 0. As an example consider the cage, as, as, 01,03) = (0,1,3,0,1). We
obtain thato; = —3andf, = 4. Letky = k» = 1andkz = —2. We get that

(x —3)%(x — 1)(z +3)

)

f((E) - .T4 ’
_ (z—4)x

g(.T) - (1’—1)27

M) — E-DE+HI
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There are 18 systems having three polynomials in the Groebner basis, one of these is
as follows: (Sg,, Ss,, S3,) = ({1},{2,3},{4}) and(l1,13,13,14) = (2,1,1,2). The
system of equations is

ajap + ajaz — 2a1ay — 2apa3 + apag +agzay = 0
18 — o183 — 1/2a361 + 1/20583 — 1/203681 + 1/20383 + By —asB, = 0
2 2
azB1 — a3B3 + 2axa3B) — daxazfBr + 200303 — dapagfr+

2 2 2 2
+hapayfo + a3f1 — azf3 — dazaysfBy + dagayfBr + day Bl — dayfs 0.

The only solution where one can obtain appropriate rational functions is

—poy — agoay + 2003
@ = —= 7 7
ap + ag — 20y

a3 + 2020361 — dapazfs — dapasBy + dapagfs + a%ﬁl — 4oz + 4agaufs + 4By — 4030,

Bs = 2

(g — ag)

whereap, as, ag, 31, 32 are parameters such that # o, 5; # 5; andoo + oz —
204 # 0. Now we consider the example withv, as, a4, 51, 52) = (0,1,3,0,1). We
have thatv; = 2/3andfg; = —8. Letk; = k» = 1 andks = —2. We have that

(x —2/3)%(x — 1)x

fla) = EPE
_ (z—-Da
g() W,
T — 2
hiw) = (331; +2)4 '

5.3 Thecaser =4,t =4and S, =0

Here we have 24 systems to solve. We have the same remark as in tas@ot = 3
andS,, = 0. That is there are only trivial solutions here withgh = 1.

Since one has 24 very similar systems, we will deal with one of these only. Let
(58,158, 985:98,) = ({1}, {2}, {3}, {4}) and(l1,12,13,14) = (1,1,1,1). One gets
the system of equations

182 — 184 — a1 + a2fa + aafr — s =

0183 — o184 — 3P + azfa + asfr — asffz =
33 — a4 — a3l + a3fa + aaflr — Bz =

There are three solutions which do not correspond to appropriate rational functions,
the remaining solution has

a3l — azfa — aafr + sz
B3 — Ba ’
azfz — azfa — asfz + asf3

B3 — Ba

a1 =

a2
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Now let (0437 Qg, /Bla ﬁ27 ﬁ39 ﬁ4) = (07 17 37 27 17 0) andkl =k = 17 k3 = k4 = —1.
One obtains that

(x+1)(z+2)

flx) = w,

B (z —3)(z —2)
9(z) = i
h(z) = —x+1

6 Some examples witm € {5, 6, 7}

We computed all the varieties correspondingute- 5, the systems are getting more
and more complicated therefore we selected only three examples given below. All sys-
tems in case of = 5 can be downloaded from
http://www.math.unideb.hu/~tengely/CFunch.txt.tar.gz. We also consider
examples witlm = 6and 7.

« Consider the cas€S«, S, S3,) = ({1,5},{3,4},{2}) and(ly, (2,13, 1a,15) =
(3,1,1,3,1). One gets a system containing 5 equations

a1 — 204+ a5 =

ap —3/2a4+1/205 =

a3z — 3a4+ 205 =

o3 — 30505 + 3gaf —ad +1/2 =
fr—PBe+1 =

© o o o o

The solutions of this system of equations are given by

(o1, 01 5 VACH, 5 (V201 1)VACH, 3 (V2o 4 )VACH, 5 (V201 +2)VACH, o, 1),

where¢ = 1%\@ andk =0, 1, 2.
o Let (Soo, 5517 Sﬁz) = ({1, 2, 5}, {3}, {4}) and (ll, lz, l3, l4, l5) = (17 17 17 37 1).

We obtain the following system of equations

ay+ax— 34+ a5 =
a% — 3apay + apas + 304?1 — 3agas + oa% -1 =
a3 — a3 + 30305 — g0l + 0 — a5 =

fr—pF—1 =

o o o o
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The general solutions are given by

1P P P P—
ag= . —artazi2 4 a1 —az +2V3Bagay —2 a1 —az+2V3ak - oa;—az+2 2vV3Z+VE o+

1 1

— a1+ - o,
2T 2™

19— 5 1 1
ag=—- —a1+2a1a2—a2+4\/§+7011+7a2,

6 2 2

1P P 1 1
(15:75 —ay +ax+2 a17a2+2\/§+§a1+5a2
B1,
B2 =p1— 1

and

g,
a2,

1P P o) P
a3:—1—8 —agtax+2 4 al—a2+2\/§o¢1a2—2 al—a2+2\/§a§— aj —ap+2 2\/§a§+\/§ +
1 +1
-« — ag,
29T

19 1 1
a4:g 7a§+2a1a27a§+4\/§+5a1+5a2,

1P P 1 1
04515 —ay+ax+2 al—a2+2\/§+§a1+5az,
B1,
B2 =Py~ L

- Now, we provide an example where the zeroes and pol¢gdain an arithmetic
progression. LetSw, Sg,93,) = ({4,5},{2,3},{1}) and(l1, 2,13, la,15) =
(1,1,1,1,1). We get the following system of equations

a1 — 05 + 0304 + 0305 — a3 — au05 =
ap+oaz—as—as+1 =
fr—0B+1 =

Now assume thats, as, a1, aa, a2 form an arithmetic progression in this order.
We have that

as+ay1—2a3 = 0
ar1t+ar—2a4 = 0
0

as+ ap — 201 =
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The two systems of equations above simplify to

&1 = a5 — l,
ay = as— 2,
1

ag = a5 3,
_ 3

Q4 = 05— éa
fr = B2-1

Thus the rational functions are given by

(r—a5+1/2)(x —as+ 1) (z — a5 + 2)
(v — as)?(z — a5 + 3/2)?
g(x) = (z-P2)(x—P2+1)

B r—as+1
ha) = Bt (z — as)(z — as + 3/2)°

» Letn = 6 and we fix the vectofls, l2,...,ls) to be(1,1,2,1,1 1). The pro-
cedureCFunc(3,6,1:exptup:=[[1,1,2,1,1,11]1); yields that there are 30
systems to deal with. One of these is as follows. The partition is given by
[{4},{1, 2}, {5, 6}, {3}] and the system of equations is

a1 —agtas—ag—P1+P2 = 0

apfB1 — aB3 + l/4o¢i — agas + 1/20q05 — 1/20432 + 1/200483 + aé — asapg—
asfy + asfy + 1/4af — /2066, + 1/20603 + 1/485 — 1/2883 + 1/455 = 0,

a2y — 0B + 1/40f — /20406 — 1/204f + 1/20403 + 1/40 — 1/20682+

1/20603 +1/465 — 1/26265 + 1/485 = 0,
az — 1/2a4 — 1/206 +1/23, — 1/283 = 0,

%ztﬁl - aiﬁz +dagasfBy — dagasfz — 2040631 — 204006082+

Adagapf3 — 2048102 + 2043183 + 2045% — 2043283 — 401%52 + 4a§/33+
4asafz — 4asagfs + dasB1B2 — dasB1B3 — 4045522 + 453283+

abf1 — o§B2 — 206515, + 2066153 + 20655 — 206203 + B155—

2816203 + 165 — B + 20563 — 285 = O

« Finally, we show an example withh = 7. Using our Magma procedure

CFunc(3,7,1:PSet:=[[{1},{2,3},{4,5},{6,7}]] ,exptup:=[[1,1,1,1,1,1,111);
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we get the system of equations

181 — a1f3 + o — azap — azar — agfy + azfs + agaz = 0,
2

a1 — o133 + a5 — asae — asay — asfBe + asBz +agar = 0,

apt+az—ag—ar—pP1+p3 = 0,

562 — 303 — azae + azasls — azarfz + asarfa—

a3f1fBz + asfifs + asfafz — asfs — agfy + adfat

asaed1 — asaels + asarf1 — asarfls + asP102 — asB1B3—
asfB203 + asfs — agarfy + agarfe = O,

agt+oas—ag—ar—Po+ Bz =

We note that the above system has a solution

(a1, a2, a3, 04, 05, a6, 07, 1, B2, B3) =

- 1V 3 14—
(_170727_1_ _37_l+ _37 2 37 +2 3>0>_47_1)'

It corresponds to the example given by Ayad and Fleischmann, that is

f_:v4—8:zc _$2+4x h_x2—2:c
- 9= r1 T a1

34+1°
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