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1. Introduction

In 1999 Bremner [1] considered arithmetic progressions on elliptic curves. Bremner constructed
elliptic curves with arithmetic progressions of length 7, i.e. rational points (X, Y ) whose X-
coordinates are in arithmetic progression. In a following paper Bremner, Silverman and Tzanakis
[2] showed that a subgroup Γ of the elliptic curve E(Q) with E : Y 2 = X(X2−n2) of rank 1 does
not have non-trivial integral arithmetic progressions, provided n ≥ 1.

Contrary to the results of Bremner, Silverman and Tzanakis [2], Campbell [3] found an infinite
family of elliptic curves with 9 integral points in arithmetic progressions. This result was improved
by Ulas [12], where an infinite family was found with an arithmetic progression consisting of 12
integral points.

In this paper we consider curves of genus 0, in particular hyperbola, with integral arithmetic
progressions. Inspired by the results of Bremner [1], Bremner, Silverman and Tzanakis [2], Camp-
bell [3] and Ulas [12] the aim of this paper is to prove the following theorems.

Theorem 1. Let 0 < d ∈ Z, d not a square and 0 6= m ∈ Z. If there are three solutions
(X1, Y1), (X2, Y2) and (X3, Y3) to the Pell equation

(1) X2 − dY 2 = m

such that X1 < X2 < X3 respectively Y1 < Y2 < Y3 form a non-trivial arithmetic progression, i.e.
X2 6= 0 respectively Y2 6= 0, then maxi{|Xi|} ≤ max{17.015|m|2

√
d, 12.911|m|

√
d3} respectively

maxi{|Yi|} ≤ 21.055 |m|
2

√
d

. For more details see table 1.

Table 1. Upper bounds for maxi=1,2,3{|Xi|} resp. maxi=1,2,3{|Yi|}.

X |m|/d |m| B := max{|Xi|} Y |m|/d |m| B := max{|Yi|}
|m|/d ≥ 1 |m| ≥ 1 B ≤ 17.015|m|2

√
d |m|/d ≥ 1 |m| ≥ 1 B ≤ 21.055 |m|

2
√

d

|m|/d ≥ 1 |m| ≥ 2 B ≤ 15.368|m|2
√

d |m|/d ≥ 1 |m| ≥ 2 B ≤ 18.047 |m|
2

√
d

|m|/d < 1 |m| ≥ 1 B ≤ 12.911|m|
√

d3 |m|/d < 1 |m| ≥ 1 B ≤ 20.217 |m|
2

√
d

|m|/d < 1 |m| ≥ 2 B ≤ 12.696|m|
√

d3 |m|/d < 1 |m| ≥ 2 B ≤ 18.047 |m|
2

√
d

By Theorem 1 we deduce an upper bound for the length of an arithmetic progression.

Corollary 1. Let d,m ∈ Z with d > 0 not a square and m 6= 0. An arithmetic progression on
X2 − dY 2 = m has length at most c(d,m)τd(m). Where τd(·) is following arithmetic function

τd(m) =
∏

pα‖m

p splits in Q(
√

d)

(α + 1)
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2 A. PETHŐ AND V. ZIEGLER

and the product runs over all primes. Furthermore one can compute

c(d,m) =

{
2 log(|m|3d)+15.94

log d + 3
2 if d/|m| ≥ 1,

2 log(|m|d3)+14.83
log d + 3

2 if d/|m| < 1.

Since Theorem 1 we know that there are only finitely many non-trivial arithmetic progressions
for fixed d,m. This leads to several questions: Are there for fixed d only finitely many m resp.
for fixed m only finitely many d such that (1) admits non-trivial arithmetic progressions. In the
second case the answer is yes (see Theorem 2).

Theorem 2. Let 0 6= m ∈ Z be fixed. Then there are only finitely many 0 < d ∈ Z such that there
are three solutions (X1, Y1), (X2, Y2) and (X3, Y3) to the Pell equation

(2) X2 − dY 2 = m

such that X1 < X2 < X3 or Y1 < Y2 < Y3 is an arithmetic progression, except the trivial
cases (Y1, Y2, Y3) = (−y, 0, y), (X1, X2, X3) = (−x, 0, x). Moreover if a non-trivial arithmetic
progression X1 < X2 < X3 exists then we have d ≤ 3|m| if m is not a perfect square and d ≤ 9|m|
otherwise. In the case of Y1 < Y2 < Y3 we obtain d ≤ 9|m|2.

Note that in the second case of the theorem above, we do not get better estimates if we assume
m is not a square. In the special case m = ±1 we obtain

Corollary 2. Let 0 < d ∈ Z be not a perfect square. Then there are no three solutions (X1, Y1),
(X2, Y2) and (X3, Y3) to the Pell equation

X2 − dY 2 = ±1

such that X1 < X2 < X3 or Y1 < Y2 < Y3 is an arithmetic progression, except the trivial case
(Y1, Y2, Y3) = (−y, 0, y) and the progressions (X1, X2, X3) = (−3,−1, 1), (−1, 1, 3) in the case of
m = 1 and d = 2 or d = 8.

Let us reverse the questions stated above. Given an arithmetic progression Y1 < Y2 < Y3 does
there exist a hyperbola such that Y1, Y2, Y3 are solutions? The answer is given by

Theorem 3. For every arithmetic progression Y1 < Y2 < Y3 there exist infinitely many d,m ∈ Z
such that d is not a square, m 6= 0 and gcd(d,m) is square-free such that Y1, Y2 and Y3 are the
Y -components of solutions to X2 − dY 2 = m.

The next problem we consider is, whether there are d, m ∈ Z with 0 < d not a square and
m 6= 0, such that there exists a certain arithmetic progression of length four on X2−dY 2 = m. In
particular we are interested in the arithmetic progression 1 < 3 < 5 < 7 respectively 0 < 1 < 2 < 3.

Theorem 4. There are d,m ∈ Z such that d > 0 is not a perfect square and m 6= 0, such that
1, 3, 5 and 7 are the Y -components of solutions to X2 − dY 2 = m. We may choose (d,m) =
(570570, 4406791). In particular there exist arithmetic progressions of length 8.

On the other hand there are no d,m ∈ Z with d not a perfect square, such that 0, 1, 2 and 3 are
the Y -components of solutions to X2 − dY 2 = m.

We also prove a converse to Theorem 3:

Theorem 5. Let Y1 < Y2 < Y3 < Y4 < Y5 be an arithmetic progression such that |Yi| 6= |Yj |
for any i 6= j. Then there are at most finitely many d, m ∈ Z such that d is not a square,
m 6= 0 and gcd(d,m) is square-free such that Y1, Y2, Y3, Y4, Y5 are the Y -components of solutions
to X2 − dY 2 = m.

In the next section (section 2) we prove two simple auxiliary results that will help us to prove
our theorems. In the following sections 3, 4, 5 and 6 we prove the theorems stated above. The
proof of Theorems 1-3 are elementary (but technical). However the proof of Theorem 4 needs
some basic knowledge on elliptic curves and the proof of Theorem 5 needs some basic knowledge
on algebraic geometry, i.e. we apply a theorem of Faltings [5] (Mordell’s conjecture). In Section 7
we consider the dual question to Theorems 3, 4 and 5 and show that the situation is much more
simple for the X-component. In the last section we discuss some open questions that arise by
studying this paper.
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2. Auxiliary Results

Since with X1 < X2 < X3 also −X3 < −X2 < −X1 respectively with Y1 < Y2 < Y3 also
−Y3 < −Y2 < −Y1 is an arithmetic progression, we assume X2 > 0 respectively Y2 > 0 in the
following.

We call the number X + Y
√

d a solution to (1) if (X, Y ) ∈ Z2 is a solution to (1). We start
with the following lemma:

Lemma 1. Let α1 = X1 + Y1

√
d, α2 = X2 + Y2

√
d and α3 = X3 + Y3

√
d be solutions to (1) such

that α1 + α3 = 2α2. Then α1 = α2 = α3.
In other words not both X1 < X2 < X3 and Y1 < Y2 < Y3 can be arithmetic progressions.

Proof. Since 1 and
√

d are linear independent over Q we deduce, that both (X1, X2, X3) and
(Y1, Y2, Y3) form arithmetic progressions. Therefore we write X1 = x − k1, X2 = x, X3 = x + k1

and similarly Y1 = y − k2, Y2 = y, Y3 = y + k2. Subtracting X2
2 − dY 2

2 = m two times from
X2

1 + X2
3 − d(Y 2

1 + Y 2
3 ) = 2m yields k2

1 − dk2
2 = 0. But the Diophantine equation X2 − dY 2 = 0

has no solution except (X,Y ) = (0, 0), if d is not a perfect square, hence X1 = X2 = X3 and
Y1 = Y2 = Y3.

The lemma also follows from Bézout’s theorem, i.e. a quadratic curve with a line has at most
two intersections. ¤

Let us assume X1 < X2 < X3 is an arithmetic progression, i.e. X1+X3
2 = X2, on the hyperbola

(1) then the corresponding Y -components cannot fulfill the equation Y1+Y3
2 = Y2. Therefore we

have Y2− Y1+Y3
2 = ∆Y with ∆Y ∈ 1

2Z and ∆Y 6= 0. Similarly we define ∆X := X2− X1+X3
2 ∈ 1

2Z,
if Y1 < Y2 < Y3 is an arithmetic progression. Because of Lemma 1 we have ∆X 6= 0. In any case
we have the lower bound |∆| ≥ 1/2, where ∆ = ∆X , ∆Y depending on which component is an
arithmetic progression. The next lemma yields an upper bound for |∆|.
Lemma 2. Let X1 < X2 < X3 be an arithmetic progression on the hyperbola (1) such that no
Yi = 0 for i = 1, 2, 3, then

|∆Y | ≤ 3|m|
2d

.

If one (or more) Yi = 0 then we have

|∆Y | ≤
{

3|m|
2d if |m|

d ≥ 1,
3
√
|m|

2
√

d
if |m|

d < 1.

Now let Y1 < Y2 < Y3 be an arithmetic progression. Then

|∆X | ≤ 3|m|
2
√

d
,

if no Yi = 0 (i.e. Y1 6= 0) and

|∆X | ≤
√
|m|
2

+
|m|√

d
otherwise.

Proof. Let us consider the case where X1 < X2 < X3 is an arithmetic progression. Then

(Xi −
√

dYi)(Xi +
√

dYi) = m, i = 1, 2, 3.

Let us choose Yi such that |Xi −
√

dYi| ≤ |Xi +
√

dYi| i.e. both Xi and Yi are non-negative or
non-positive integers. We obtain

Xi −
√

dYi =
m

Xi +
√

dYi

, i = 1, 2, 3,

which implies

(3)
∣∣∣Xi −

√
dYi

∣∣∣ ≤ |m|√
d|Yi|

≤ |m|√
d

,
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if Yi 6= 0. If Yi = 0 we obviously have

(4)
∣∣∣Xi −

√
dYi

∣∣∣ =
√
|m|.

Further, we obtain

X1 + X3

2
−
√

d
Y1 + Y3

2
=

m

2

(
1

X1 +
√

dY1

+
1

X3 +
√

dY3

)
,

which together with X2 = X1+X3
2 implies

(5)
√

d

(
Y2 − Y1 + Y3

2

)
=
√

d∆Y =
m

2

(
1

X1 +
√

dY1

+
1

X3 +
√

dY3

− 2
X2 +

√
dY2

)
.

Similar we obtain in the case of Y1 < Y2 < Y3 is an arithmetic progression

(6)
(

X2 − X1 + X3

2

)
= ∆X =

m

2

(
1

X1 +
√

dY1

+
1

X3 +
√

dY3

− 2
X2 +

√
dY2

)
.

We remark that only X1 +
√

dY1 and X3 +
√

dY3 resp. X1 +
√

dY1 and −X2 −
√

dY2 can have
the same sign. Using the estimation (3) if Yi 6= 0 and the identity (4) otherwise we obtain the
lemma if we also distinguish between the cases |m|

d ≥ 1 and |m|
d < 1. ¤

3. Proof of Theorem 1

We have four different cases. We distinguish whether X1 < X2 < X3 or Y1 < Y2 < Y3 is
an arithmetic progression and whether |X1| < |X2| or |X2| < |X1| respectively |Y1| < |Y2| or
|Y2| < |Y1|. Because the idea for all four cases is the same, we give the details only for the case
X1 < X2 < X3 and |X1| < |X2| and sketch only the proofs of the other cases.

We claim that min{|X1|, |X2|} > 3|m|√
d

is impossible. This is easy to see if one estimates from

above the right side of (5) by 3|m|
2 min{|X1|,|X2|} and reminds that |∆Y | ≥ 1/2. Similarly we obtain

min{|Y1|, |Y2|} ≤ 3|m|√
d

(in the case of X1 < X2 < X3 is an arithmetic progression) by utilizing
inequality (6).

Now we claim that min{|Y1|, |Y2|} ≤ 3|m|
d + 1

6 . We know X2 − dY 2 = m, hence

Y 2 ≤ X2 + |m|
d

≤ 9|m|2
d2

+
|m|
d
≤

(
3|m|

d
+

1
6

)2

.

Similarly we obtain min{|X1|, |X2|} ≤ 3|m|+ 1
6 in the other case.

Let us consider the equation X2
2 − dY 2

2 = m and let us insert the expressions for X2 and Y2.
We obtain (

X1 + X3

2

)2

− d

(
Y1 + Y3

2
+ ∆Y

)2

= m.

Using the other two equations this implies

X1X3 = dY1Y3 + 2d∆Y (Y1 + Y3 + ∆Y ) + m.

On the other hand
(X1X3)2 = (m + dY 2

1 )(m + dY 2
3 ).

Inserting the expression for X1X3 we get a2Y
2
3 + a1Y3 + a0 = 0, where

a2 =4d∆2 + 4dY1∆−m,

a1 =8d∆3 + 4∆m + 4dY 2
1 ∆ + 12dY1∆2 + 2Y1m

=a2(Y1 + 2∆) + 3m(Y1 + 2∆),

a0 =− Y 2
1 m + 4d∆4 + 4∆2m + 4Y1∆m + 8dY1∆3 + 4dY 2

1 ∆2

=
a2
2

4d
+

3a2m

2d
+

5m2

4d
−mY 2

1 ,
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and we write ∆ for ∆Y . In the case of |X2| < |X1| we use the equation X2
1 − dY 2

1 = m and insert
Y1 = 2Y2−Y3 +2∆ respectively X1 = 2X2−X3. Similar as above we obtain a2Y

2
3 +a1Y3 +a0 = 0

with

a2 =m + 2dY2∆− d∆2,

a1 =− 2mY2 + 2m∆− 4dY 2
2 ∆ + 6dY2∆2 − 2d∆3

=a2(−2Y2 + 2∆),

a0 =mY 2
2 − 4mY2∆ + 2m∆2 − 4dY 2

2 ∆2 + 4dY2∆3 − d∆4

=− a2
2

d
+

m2

d
+ mY 2

2 .

In the case of Y1 < Y2 < Y3 forms an arithmetic progression we obtain

a2 =m + 4X1∆ + 4∆2,

a1 =− 2mX1 − 4m∆ + 4X2
1∆ + 12X1∆2 + 8∆3

=a2(X1 + 2∆) + 3m(X1 + 2∆),

a0 =mX2
1 − 4mX1∆− 4m∆2 + 4X2

1∆2 + 8X1∆3 + 4∆4

=
a2
2

4
+

3a2m

2
+

5m2

4
−mX2

1 ,

provided |Y1| ≤ |Y2| respectively

a2 =m− 2X2∆ + ∆2,

a1 =− 2mX2 + 2m∆ + 4X2
2∆− 6X2∆2 + 2∆3

=a2(−2X2 + 2∆),

a0 =mX2
2 − 4mX2∆ + 2m∆2 + 4X2

2∆2 − 4X2∆3 + ∆4

=a2
2 −m2 + mX2

2 ,

in the case of |Y2| < |Y1|.
We have a2 = 0 in the cases discussed above if and only if m = 4d∆(Y1 + ∆),−2dY2∆ +

d∆2,−4X1∆− 4∆2 and 2X2∆−∆2 respectively. Then

X2
1 = m + dY 2

1 = d(Y1 + 2∆)2,

X2
2 = m + dY 2

2 = d(Y2 −∆)2,

dY 2
1 = X2

1 −m = (X1 + 2∆)2 and

dY 2
2 = X2

2 −m = (X2 −∆)2

respectively. These relations are absurd, as d is not a square, thus a2 6= 0.
Now we solve the quadratic equation a2Y

2
3 + a1Y3 + a0 = 0 and distinguish whether m ≥ 1 or

m ≥ 2 and whether m/d ≥ 1 or m/d < 1. Taking care of all these different cases we can estimate

now Y3 by using the formula Y3 = −a1±
√

a2
1−4a2a0

2a2
. The estimates for the worst cases are given in

table 2.

Table 2. Upper bounds for |Y3| resp. |X3|.

Y |m|/d |m| B := |Y3| X |m|/d |m| B := |X3|
|m|/d ≥ 1 |m| ≥ 1 B ≤ 17|m|2 |m|/d ≥ 1 |m| ≥ 1 B ≤ 21.032|m|2
|m|/d ≥ 1 |m| ≥ 2 B ≤ 15.366|m|2 |m|/d ≥ 1 |m| ≥ 2 B ≤ 18.044|m|2
|m|/d < 1 |m| ≥ 1 B ≤ 12.906|m|d |m|/d < 1 |m| ≥ 1 B ≤ 20.192|m|2
|m|/d < 1 |m| ≥ 2 B ≤ 12.694|m|d |m|/d < 1 |m| ≥ 2 B ≤ 18.044|m|2

We use once more the equation X2 − dY 2 = m to obtain Theorem 1. ¤
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The idea for the proof of Corollary 1 is to compute the number of solutions to X2 − dY 2 = m
with X ≤ M resp. Y ≤ M . Therefore we have to discuss first properties of the solutions to
X2 − dY 2 = m. We prove following lemma:

Lemma 3. Let M be given. Then the equation X2 − dY 2 = m has at most c(ε,m,M)τd(m)
solutions with |X| ≤ M respectively |Y | ≤ M , with

c(ε,m, M) =


log

(
Mε

√
2

(ε−2)
√
|m|

)

log ε
+

1
2

 +


log

(
Mε2

(ε2−1)
√
|m|

)

log ε

 + 1

and ε > 1 is the fundamental solution to X2 − dY 2 = 1.

We start with some general remarks on Diophantine equation (1). If α = u + v
√

d is a solution
to (1) and ε = x + y

√
d is a solution to

(7) X2 − dY 2 = 1,

then also αε = (ux + vyd) + (uy + vx)
√

d is a solution to (1). We say that two solutions α1 =
u1 + v1

√
d and α2 = u2 + v2

√
d belong to the same class of solutions if there exists a solution

ε = x + y
√

d to (7), such that α1 = εα2. Let α1, . . . , αl be representatives for each class (note
that there are only finitely many classes, see [10]). Then we obtain by the formula αεk, where
0 ≤ k ∈ Z, ε is a fundamental solution to (7) and α runs through the representative system
α1, . . . , αl, a set of solutions L− which can be extended to the set of all solutions by adjoining
(±x,±y) to L− for all (x, y) ∈ L−.

Let α = u + v
√

d be a solution to (1) in a certain class C, such that v is non-negative and least
possible, then we call α the fundamental solution of the class C (if u is not uniquely determined
then choose u positive). Note that every solution can be written uniquely as αεk where α is a
fundamental solution and k ∈ Z. We call |k| the exponent of the solution.

We use following notation: Let α = x + y
√

d be a solution to (1), then we call ᾱ := x− y
√

d its
conjugate solution. Warning: Do not disturb this notation with the complex conjugation!

A theorem due to Nagell states (see [10] or [9]).

Theorem 6 (Nagell). Let α = u + v
√

d be a fundamental solution to (2) and ε = x + y
√

d a
fundamental solution to (7) with x, y > 0. Then

0 < |u| ≤
√

1
2
(x + 1)m,

0 ≤ v ≤ y√
2(x + 1)

√
m,

if m > 0 and
0 ≤ |u| ≤

√
−1

2
(x− 1)m,

0 < v ≤ y√
2(x− 1)

√−m,
if m < 0.

As a corollary we prove following lemma:

Lemma 4. Let α be a fundamental solution and ε the fundamental solution to (7). Then

(8)

√
|m|
2ε

≤ |α| ≤
√

2ε|m|.

Proof. We write α = u + v
√

d and ε = x + y
√

d. Since α = u + v
√

d ≤ u + |v|
√

d we may assume
u, v ≥ 0. By Nagell’s Theorem 6 we have

u ≤
√

1
2
(x + 1)|m|, v ≤ y√

2(x− 1)

√
|m|.

Obviously ε = x + y
√

d ≥ x + 1. Since x2 − dy2 = 1 we have y2

x−1 = x+1
d ≤ ε

d . These estimations
yield

α = u + v
√

d ≤
√

1
2
ε|m|+

√
ε|m|
2d

√
d =

√
2ε|m|.
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For the proof of the lower bound we may assume u,−v ≥ 0, since α = u + v
√

d > u − |v|
√

d.
The upper bound yields |ᾱ| ≤

√
2ε|m|. Multiplication by |α| yields |m| ≤

√
2ε|m||α|, hence the

lower bound for |α|. ¤

Let us count first the possibilities for the exponents. Let αεk be a solution, where α is a
fundamental solution and k ∈ Z. Since αᾱ = m and αεk = ᾱε−k, we may assume |α| ≤

√
|m|.

We claim

|ᾱε−k| ≤ |2
ε
αεk| if k ≥ 1,

and

|αεk| ≤ |ε−2ᾱε−k| if k ≤ −1.

These statements are easily verified using Lemma 4 and the relation αᾱ = m. Now we consider
for k ≥ 1

M ≥ max{|αεk + ᾱε−k|, |αεk − ᾱε−k|} ≥
∣∣∣∣αεk

(
1− 2

ε

)∣∣∣∣
and for k ≤ −1

M ≥ max{|αεk + ᾱε−k|, |αεk − ᾱε−k|} ≥ |ᾱε−k(1− ε−2)|.
Solving these inequalities with respect to k an integer and taking into account the possibility of
k = 0. We obtain that there are at most

c(ε,m, M) :=


log

(
Mε

√
2

(ε−2)
√
|m|

)

log ε
+

1
2

 +


log

(
Mε2

(ε2−1)
√
|m|

)

log ε

 + 1

possible k’s.
Next we want to count the possible classes of solutions. Therefore we write

m = ±
l∏

i=1

pαi
i

m∏

i=1

qβi

i

n∏

i=1

rγi

i

such that the prime ideals (pi) = pip̄i split, the (qi) = q2
i ramify and the (ri) = ri are inert. The

following relations are well known or are easy to see:

pN
i |(α) ⇔ p̄N

i |(ᾱ),

qN
i |(α) ⇔ qN

i |(ᾱ),

rN
i |(α) ⇔ rN

i |(ᾱ),

where N is an integer. This means that the exponents of the primes ri and qi in (α) respectively
(ᾱ) are fixed. Only the exponents of the pi can vary. This means that we have

∏l
i=1(αi + 1)

possibilities for α, which proves Lemma 3.
Now using ε >

√
d Corollary 1 follows from Lemma 3, Theorem 1 and some estimations.

4. Proof of Theorem 2

The proof of Theorem 2 is rather easy, if we use Lemma 2. If m is not a square then Y = 0
is impossible and we obtain ∆Y ≤ 3|m|

2d respectively ∆X ≤ 3|m|
2
√

d
. By Lemma 1 we know ∆X and

∆Y are non-zero and therefore their absolute value is at least 1/2. This yields immediately the
theorem in this case.

If m is a square then the case Y = 0 is possible. Let us consider first the case of X1 < X2 < X3

is an arithmetic progression. Then by Lemma 2 we have ∆Y ≤ 3
√

m

2
√

d
. The same argument as

above yields Theorem 2 in this case.
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Now we investigate the case of Y1 < Y2 < Y3 is an arithmetic progression, Y1 = 0 and m = c2,
with c ∈ Z. This yields X1 = c, Y3 = 2Y2 and

∆X =
c

2
+

δ:=︷ ︸︸ ︷
m

2

(
1

X3 + 2Y2

√
d
− 2

X2 + Y2

√
d

)
.

Since ∆X ∈ 1
2Z also δ ∈ 1

2Z. Let us exclude the case δ = 0. In this case we would obtain

2X3 + 4Y2

√
d = X2 + Y2

√
d,

hence 4Y2 = Y2, i.e. Y2 = 0 which is a contradiction. On the other hand we get

|δ| ≤ |m|
2

(
2√
d

+
1

2
√

d

)
=

5|m|
4
√

d
.

By a similar argument as above we obtain d ≤ 6.25|m|2 < 9|m|2.

Now we can prove Corollary 2. We only have to check for d = 2, 3, 5, 6, 7, 8 if there are any
solutions with absolute value at most 12.911d3 that form an arithmetic progression. This can
easily be done by a computer.

5. Proof of Theorem 3

Let Y1 = a, Y2 = a + k, Y3 = a + 2k with a, k ∈ Z be the given arithmetic progression. Since
d2
0X

2 − (dd2
0)Y

2 = md2
0 is equivalent to the equation X2 − dY 2 = m we may assume a, k are

coprime. If there are d,m ∈ Z that fulfill Theorem 3 then the system

X2
1 − da2 = m,

X2
2 − d(a + k)2 = m,

X2
3 − d(a + 2k)2 = m,

(9)

of Diophantine equations has a solution. But then also the system

X2
2 −X2

1 = dk(2a + k), X2
3 −X2

2 = dk(2a + 3k),

has the same solution and also the equation

(10) C : X2
2 (4a + 4k) = X2

1 (2a + 3k) + X2
3 (2a + k)

has this solution. It is not hard to see that this projective curve C has genus 0 and can be
parameterized by a line. The projective point P = (1, 1, 1) ∈ P2 lies on C and let Q = (p, q, 0)
lie on the line L : X3 = 0. By Bézout’s theorem the straight line from P to Q has only two
intersections (with multiplicities) with C. One intersection is P and let the other intersection be
R. Because the genus of C is 0 the point R must be rational if Q was rational. Let us compute R
in dependance of Q to obtain all rational points.

Of course d and m depend on the representative of the projective solution (X1, X2, X3) but since
d(λX1, λX2, λX3) = λ2d(X1, X2, X3) and similarly m(λX1, λX2, λX3) = λ2m(X1, X2, X3). We
can derive for each rational projective solution to (10) exactly one pair (d, m) such that gcd(d,m) is
square-free. Therefore every pair (d,m) that fulfills the properties stated in Theorem 3 corresponds
to exactly one rational point on the projective curve C.

The line from P to Q is given by the equation

qX1 − pX2 + (p− q)X3 = 0.

Inserting this in equation (10) yields

(p2(2a + 3k)− 4q2(a + k))X2
2 + (p(q − p)(2a + 3k))2X2X3

+ (4q2(a + k) + p(p− 2q)(2a + 3k))X2
3 = 0.
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This equation has two solutions for X2. The first solution is X2 = X3 and the second solution is

X2 =
2a(p2 − 2pq + 2q2) + k(3p2 − 6pq + 4q2)

p2(2a + 3k)− 4q2(a + k)
X3.

The first solution yields X1 = X2 = X3, which implies |Y1| = |Y2| = |Y3|. But this has been
excluded. In the other case we get

X1 = −2a(p2 − 4pq + 2q2) + k(3p2 − 8pq + 4q2)
p2(2a + 3k)− 4q2(a + k)

X3.

Let X3 = k(p2(2a + 3k)− 4q2(a + k)), then we obtain by system (9)

d =4kp(p− q)q((2a + 3k)p− 4(a + k)q),

m =k(p− 2q)((2a + 3k)p− 2kq)(kp− 2(a + k)q)((2a + 3k)p− 2(a + k)q).

Let us keep p fixed, non-zero and choose q such that q is square-free and

gcd(q, 2) = gcd(q, p) = gcd(q, a) = gcd(q, k) = gcd(q, 2a + 3k) = 1.

Let us note that for such q’s d is not a perfect square. Moreover, also gcd(q,m) = 1. Note that
there are infinitely many q’s with the properties stated above, hence we can construct infinitely
many pairs (d,m) that satisfy the conditions of Theorem 3. The condition d > 0 is fulfilled
whenever we choose p > 0 and q large enough.

6. Proof of Theorem 5 and 4

The first part of the proof of Theorem 4 is rather easy. One has to check that 1, 3, 5, 7 are
part of the solutions of the Pell equations given in Theorem 4. In this section we want to show
how to find a pair (d,m) that fulfills the conditions of Theorem 4 or to prove that there does not
exists such a pair. Similar as in the proof of Theorem 3 we are led to projective curves lying in P3

respectively P4 (Theorem 5). In the case of Theorem 4 we will get an elliptic curve for which we
will find some rational points. One of these rational points will yield a pair (d,m) such that d is
positive and square-free. In the case of Theorem 5 the curve will have genus 5 and will therefore
have only finitely many rational points. Therefore we obtain at most finitely many pairs (d,m).

Let us start with the proof of Theorem 5. As mentioned in the section above we may assume
that a and k are relative prime. Similar as in the proof of Theorem 3 we obtain from

X2
1 − da2 = m, X2

2 − d(a + k)2 = m,

X2
3 − d(a + 2k)2 = m, X2

4 − d(a + 3k)2 = m,

X2
5 − d(a + 4k)2 = m,

(11)

the system

X2
2 −X2

1 = dk(2a + k), X2
3 −X2

2 = dk(2a + 3k),

X2
4 −X2

3 = dk(2a + 5k), X2
5 −X2

4 = dk(2a + 7k)
(12)

respectively

X2
2 (4a + 4k) = X2

1 (2a + 3k) + X2
3 (2a + k),

X2
3 (4a + 8k) = X2

2 (2a + 5k) + X2
4 (2a + 3k),

X2
4 (4a + 12k) = X2

3 (2a + 7k) + X2
5 (2a + 5k).

(13)

which defines a curve X in the projective space P4. By the conditions of Theorem 5 we have to
exclude the cases a = −k,−2k,−3k, k/2, 3k/2, 5k/2, 7k/2, i.e. none of the coefficients in (13) is
zero.

Lemma 5. Let ai,j be non-zero integers, and let the curve X be defined by

X2
1a1,1 + X2

2a1,2 + X2
3a1,3 = 0,

X2
2a2,1 + X2

3a2,2 + X2
4a2,3 = 0,

X2
3a3,1 + X2

4a3,2 + X2
5a3,3 = 0.

(14)
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Let

F1 = a2,2a3,2 − a2,3a3,1,

F2 = a1,2a2,2 − a1,3a2,1,

F3 = a2,2a3,2a1,2 − a2,3a1,2a3,1 − a3,2a1,3a2,1.

If F1F2F3 6= 0 then the genus of X is 5.

Proof. We use Hurwitz’s formula (see [6, Corollary IV.2.4] or any other book on algebraic geom-
etry) in order to prove Lemma 5. Let X be the curve defined by (14) and Y the curve given by
(14) where the last equation is replaced by X5 = 0. Let f : X → Y be the morphism, given by

(X1, X2, X3, X4, X5) 7→ (X1, X2, X3, X4, 0).

We see that a point P = (X1, X2, X3, X4, 0) ∈ Y has two distinct points as preimage, if and only
if X5 is not zero. Otherwise P has only one point as preimage and is therefore ramified with
ramification index eP = 2. Let p1 be the number of ramification points. Then we obtain

2gX − 2 = 2(2gY − 2) + p1.

We apply this reduction also to the curves Y ⊆ P3 and Z ⊆ P3, where Y is given by

X2
1a1,1 + X2

2a1,2 + X2
3a1,3 = 0,

X2
2a2,1 + X2

3a2,2 + X2
4a2,3 = 0,

(15)

and Z is given by
X2

1a1,1 + X2
2a1,2 + X2

3a1,3 = 0 and X4 = 0.

Note that the curve Y in this paragraph is the same as in the paragraph above just imbedded into
P3 where P3 ⊂ P4 and P = (X1, X2, X3, X4, X5) ∈ P3 if and only if X5 = 0. Obviously the curve
Z has genus 0. Let now f : Y → Z be the morphism given by (X1, X2, X3, X4) 7→ (X1, X2, X3, 0).
In this case P is ramified if and only if X4 = 0. Let p2 be the number of points on Y that are
ramified. By Hurwitz’s formula we obtain

2gY − 2 = 2(0− 2) + p2,

hence gX = p2 + p1/2− 3. In order to prove the lemma we have to compute p1 and p2.
Let us compute first p1. Note that if X5 = 0 then X4 6= 0, since otherwise X3 = X2 = X1 =

0 = X4 = X5, which does not yield an element of P4. We obtain

X2
3

X2
4

= −a3,2

a3,1
.

Since a3,2 and a3,1 are not zero we have for fixed X4 exactly two possibilities to choose X3. Now
we insert this relation into the second line of (14) and obtain

X2
2

X2
4

=
a2,2a3,2 − a2,3a3,1

a2,1a3,1
=

F1

a2,1a3,1
.

Therefore we have exactly two possibilities for X2 if F1 6= 0 for fixed X4. Next we compute by the
formulae above and the first equation of (14)

X2
1

X2
4

=
−a2,2a3,2a1,2 + a2,3a1,2a3,1 + a3,2a1,3a2,1

a2,1a3,1a1,1
= − F3

a2,1a3,1a1,1
.

Since this formula there are exactly two possibilities for X1 if F3 6= 0 for fixed X4. Now we have
p1 = 8, if F1F3 6= 0.

Similar we obtain in the case of (15) that if X4 = 0 there are exactly two possibilities for X2 if
X3 is fixed. There are exactly two possibilities for X1 if F2 6= 0. Therefore p2 = 4, if F1 6= 0.

Sticking together these results yields the lemma. ¤

Corollary 3. The curve defined by (13) under the assumption a 6= −k,−2k,−3k, k/2, 3k/2, 5k/2, 7k/2
has genus g = 5.
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Proof. We have only to show that F1F2F3 6= 0. Some computations show

F1 =3(2a + 5k)2 6= 0,

F2 =3(2a + 3k)3 6= 0,

F3 =8(a + 2k)(2a + 3k)(2a + 5k) 6= 0.

¤

Because of Falting’s theorem [5] (Mordell’s conjecture) the curve given by (13) has at most
finitely many rational solutions, hence there are only finitely many pairs (d, m), which satisfy the
conditions of Theorem 5 and therefore we have proved this theorem.

The proof of Lemma 5 shows that to find the examples given in Theorem 4 one has to deal
with curves of genus 1, i.e. elliptic curves. First we want to transform the curve X given by

X2
2 (4a + 4k) = X2

1 (2a + 3k) + X2
3 (2a + k),

X2
3 (4a + 8k) = X2

2 (2a + 5k) + X2
4 (2a + 3k),

(16)

into a plane curve. Similar as in Section 5 we project X onto the plane X4 = 0 from the point
P = (1, 1, 1, 1) ∈ X. The line from P to Q = (x, y, z, 0) is given by the system

zX2 − yX3 + (y − z)X4 = 0,

zX1 − xX3 + (x− z)X4 = 0.

If we solve the system

X2
3 (4a + 8k)−X2

2 (2a + 5k)−X2
4 (2a + 3k) = 0,

zX2 − yX3 + (y − z)X4 = 0,

zX1 − xX3 + (x− z)X4 = 0,

(17)

we obtain

X1 =
k(−10xy + 5y2 + 16xz − 8z2) + a(−4xy + 2y2 + 8xz − 4z2)

(2a + 5k)y2 − 4(a + 2k)z2
X4,

X2 =
−(2a + 5k)y2 + 8(a + 2k)yz − 4(a + 2k)z2

(2a + 5k)y2 − 4(a + 2k)z2
X4,

X3 =
(2a + 5k)y2 − 2(2a + 5k)yz + 4(a + 2k)z2

(2a + 5k)y2 − 4(a + 2k)z2
X4.

(18)

Since we are working with projective coordinates we may choose

X1 =k(−10xy + 5y2 + 16xz − 8z2) + a(−4xy + 2y2 + 8xz − 4z2),

X2 =− (2a + 5k)y2 + 8(a + 2k)yz − 4(a + 2k)z2,

X3 =(2a + 5k)y2 − 2(2a + 5k)yz + 4(a + 2k)z2,

X4 =(2a + 5k)y2 − 4(a + 2k)z2.

Note that X4 = 0 would yield a + 2k and 2a + 5k are both squares, which is a contradiction if
a = 1 and k = 2 respectively a = 0 and k = 1. If we insert the expressions for X1, X2, X3 and X4

into the first equation of (16) we obtain

(19) 4(2a + 3k)((2a + 5k)y − 4(a + 2k)z)×
(xy(x− y)(2a + 5k) + 4xz(z − x)(a + 2k) + 3yz(y − z)(2a + 3k)) = 0.

The first factor 2a+3k of (19) cannot be zero because of our assumption a 6= 3
2k. Also the second

factor (2a + 5k)y − 4(a + 2k)z is not zero, since otherwise

d =
4(y − x)((2a + 5k)y − 4(a + 2k)z)((2a + 5k)xy − 4(a + 2k)(x + y)z + 4(a + 2k)z2)

k(2a + k)
= 0
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which is a contradiction. Now let us insert the special values for a and k. Then we obtain from
(19)

3x2y − 3xy2 + 5xz2 − 5x2z + 6y2z − 6yz2 = 0, (a = 1, k = 2),(20)

5x2y − 5xy2 + 8xz2 − 8x2z + 9y2z − 9yz2 = 0, (a = 0, k = 1).(21)

Using Hoeij’s algorithm (see [7]) we transform these elliptic curves into Weierstrass normal
form, with the substitutions

x := 3(2ξ2 + 6ξζ + 6ηζ − 108ζ2),

y := (−6ξ + 36ζ − η)(−ξ − 9ζ),

z := (3ξ2 − 243ζ2),

in the case of a = 1, k = 2, respectively

x := 81ξ′2 + 594ξ′ζ ′ + 324η′ζ ′ − 19647ζ ′2,

y := (−3ξ′ − 59ζ ′)(−27ξ′ − 3η′ + 333ζ ′),

z := 45ξ′2 + 150ξ′ζ ′ − 14455ζ ′2,

in the case of a = 0, k = 1. With these relations we are led to

0 =54(ξ + η + 9ζ)(ξ2 − 81ζ2)(ξ3 − η2ζ − 63ξζ2 + 162ζ3),

0 =180(3ξ′ − 49ζ ′)(3ξ′ + 59ζ ′)(3(ξ′ + η′) + 59ζ ′)(27ξ′3 − 27η′2ζ ′ − 8001ξ′ζ ′2 + 48026ζ ′3).

If ξ + η + 9ζ = 0 or ξ2 − 81ζ2 = 0, then also d = 0 in the first case. Similarly if (3ξ′ − 49ζ ′)(3ξ′ +
59ζ ′)(3(ξ′ + η′) + 59ζ ′) = 0, then also d = 0. Indeed, if we compute d as a function in ξ, η and ζ,
respectively ξ′, η′ and ζ ′ we obtain

d =− 72η(ξ + 9ζ)(ξ + η + 9ζ)(ξ2 − 81ζ2)

× (9ξ3 − 9(2η − 27ζ)ζ(η + 27ζ)− ξ2(η + 117ζ)− 9ξζ(4η + 117ζ)),

d =− 300η′(3ξ′ − 49ζ ′)(3ξ′ + 59ζ ′)2(3(ξ′ + η′) + 59ζ ′)

× (621ξ′3 − 27ξ′2(η′ + 371ζ ′)− 9ξ′ζ ′(226η′ + 30529ζ ′)− ζ ′(972η′2 + 29559η′ζ ′ − 3194437ζ ′2)).

Therefore we are reduced to consider the elliptic curves

η2ζ = ξ3 − 63ξζ2 + 162ζ3,(22)

ξ′2ζ ′ = ξ′3 − 889
3

ξ′ζ ′2 +
48026

27
ζ ′3.(23)

A computation in PARI [11] shows that the elliptic curve (22) is a minimal integral model of an
elliptic curve (see [8, Section X.1]). On the other hand the elliptic curve (23) can be transformed
into its minimal integral model by the transformation

ξ′ =4ξ +
ζ

3
, η′ =8η + 4ξ + 4ζ, ζ ′ =ζ.

So we have to consider

η2ζ =ξ3 − 63ξζ2 + 162ζ3 (a = 1, k = 2),(24)

η2ζ + ξηζ + ηζ2 =ξ3 − 19ξζ2 + 26ζ3 (a = 0, k = 1),(25)

the minimal integral models of the elliptic curves (22) and (23). Further computations in PARI
show that the torsion group of (24) is isomorphic to Z/2Z×Z/2Z with generators (ξ, η, ζ) = (3, 0, 1)
and (6, 0, 1). The torsion group of (25) is isomorphic to Z/6Z × Z/2Z with generators (−2, 8, 1)
and (3,−2, 1). A look on Cremona’s tables [4] shows that the curve (25) has rank 0 and the curve
(24) has rank 1 and its free group is generated by (−3, 18, 1). With this information we may
compute all rational points of (25) and sufficient many rational points on (24).

If we go back all substitutions for all rational points on (25) we get all solutions for (16). But no
solution yields a pair (d,m) that satisfies the conditions of Theorem 4. Therefore we have proved
this theorem.
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At the end of this section we want to show some examples of pairs (d,m) for which 1, 3, 5 and
7 are the Y -components of solutions to the Pell equation X2 − dY 2 = m. Let T1 = (3, 0, 1),
T2 = (6, 0, 1) and P = (−3, 18, 1), then −2P = (7, 8, 1) yields the pair (d,m) = (−105, 5434). This
is almost an example for Theorem 4, but is also remarkable, since the corresponding Diophantine
equation X2 + 105Y 2 = 5434 has only finitely many solutions. The smallest example we have
found is T2− 3P =

(− 71
9 ,− 350

27 , 1
)
, which yields d = 570570 and m = 4406791. The next example

is T1 − 4P =
(− 369

361 ,− 102960
6859 , 1

)
which yields d = 23946502294 and m = 374134995675.

7. Dual Theorem

Theorems 3, 4 and 5 only take care on the case for which the Y -component forms an arithmetic
progression. In this section we consider the dual case, when the X-component forms an arithmetic
progression. It turns out that this time the situation is much more simple. We prove the following
theorem.

Theorem 7. Let X1 < X2 < X3 be an arithmetic progression such that |Xi| 6= |Xj | for any i 6= j.
Then there are at most finitely many d,m ∈ Z such that X1, X2, X3 are the X-components of
solutions to X2 − dY 2 = m.

Proof. The proof of this theorem starts in the same way as the proof of the dual Theorems 3, 4
and 5. As in Section 6 we have

a2 − dY 2
1 = m, (a + k)2 − dY 2

2 = m,

(a + 2k)2 − dY 2
3 = m,

which implies the system

Y 2
2 − Y 2

1 = k(2a + k)/d, Y 2
3 − Y 2

2 = k(2a + 3k)/d.

We may assume Y1, Y2, Y3 > 0. If k 6= −2a then k(2a + k) 6= 0. As Y1, Y2 ∈ Z the integer d has to
divide the fixed integer k(2a + k), i.e. there are finitely many possibilities for d. Keeping d fixed
too, Y1 + Y2 is a positive integer divisor of k(2a + k)/d, i.e. it is bounded, thus there are only
finitely many possibilities for Y1 and Y2. Hence there are only finitely many possibilities for m
too. If k = −2a then we apply the same consideration to the second equation. ¤

8. Open Questions

There are a lot of questions that arise reading this paper. In this section we want to discuss
some of them.

• Is there an absolute constant C such that there is no Pell equation with arithmetic pro-
gression of length ≥ C. Although Theorem 1 and Corollary 1 suggest that C depends on
d and m, Theorem 5 indicates that only exceptional curves will have a certain arithmetic
progression of length 5. So we guess that such a constant C exists.

• Can one find an arithmetic progression of length at least 5 such that Yi 6= −Yj for i 6= j?

• Can one proof or disprove that there are d and m with d > 0 and not a perfect square
such that Y = 1, 3, 5, 7, 9 is an arithmetic progression on the curve X2 − dY 2 = m?

• We have shown that the elliptic curve which is linked with the arithmetic progression
1, 3, 5, 7 has rank 1, hence has infinitely many rational solutions. Can one show that these
solutions yield infinitely many pairs d,m which satisfy the conditions of Theorem 4? We
conjecture the answer is yes!

• We have found an arithmetic progression of length 4 that lies on some curve X2−dY 2 = m
and we have found an arithmetic progression such that there does not exist such a curve.
Arise both cases with the same probability or is one of these cases an exception? Are there
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simple criteria for a and k such that the arithmetic progression a, a + k, a + 2k, a + 3k lies
on a hyperbola? Or is there a criteria for which the associated elliptic curve has rank ≥ 1?
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