On a correlational clustering of integers ${ }^{\text {an }}$

László Aszalós ${ }^{\text {b }}$, Lajos Hajdu ${ }^{\text {a,* }}$, Attila Pethő ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary
${ }^{\mathrm{b}}$ Department of Computer Science, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary

Received 17 March 2015; received in revised form 17 September 2015; accepted 22 September 2015
Communicated by R. Tijdeman

Abstract

Let A be a finite set, and let a symmetric binary relation be given on A. The goal of correlation clustering is to find a partition of A, with minimal conflicts with respect to the relation given. In this paper we investigate correlation clustering of subsets of the positive integers, based upon a relation defined by the help of the greatest common divisor. (C) 2015 Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).

Keywords: Greatest common divisor; Pairs of coprime integers; Correlation clustering; Greedy algorithm

1. Introduction and setting the problem

Correlation clustering is a concept originated in machine learning. It was introduced in Bansal et al. [2]; that paper gives a good overview of the mathematical background of the topic, as well. In [2] the problem was introduced through a graph model. Here we use an equivalent formulation, which is more appropriate for our purposes.

Let A be a finite non-empty set, and let \sim be a symmetric binary relation on A. Consider a partition \mathbb{P} of A. Two distinct elements $a, b \in A$ are in conflict with respect to the partition \mathbb{P} either if they belong to the same class of \mathbb{P}, but $a \nsim b$, or they belong to different classes of \mathbb{P}, although

[^0]http://dx.doi.org/10.1016/j.indag.2015.09.004
0019-3577/C) 2015 Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
$a \sim b$. The goal of correlation clustering is to find a partition with minimal number of conflicts. Note the special feature of this clustering that the number of clusters is not specified in advance.

As one would expect, the structure of an optimal clustering should heavily depend on the relation \sim defined on A. Note that in particular, if we assume that \sim is transitive, then we may consider \sim to be an equivalence relation on A. (Since the reflexive property does not have any effect on the number of conflicts.) Then the partition induced by \sim is clearly an optimal clustering. The situation is much more interesting (and important) if \sim is not transitive.

Being motivated by the above remarks, in this paper we work with subsets of the set of positive integers, and we choose \sim to be a relation based upon the greatest common divisor. More precisely, for $n \geq 2$ let A_{n} be the set of positive integers between 2 and n, and for $a, b \in A_{n}$ with $a \neq b$ let $a \sim b$ if and only if $\operatorname{gcd}(a, b)>1$. (Obviously, it would have no point to include 1 into A_{n}.) Note that the behavior of the gcd among the first n positive integers has been investigated from many aspects; see e.g. the paper of Nymann [3].

Bakó and Aszalós [1] have made several experiments on the set A_{n} under \sim. They discovered that the classes of a certain "locally optimal" clustering have regular structures. In the sequel denote by p_{i} the i th prime, i.e., $p_{1}=2, p_{2}=3, \ldots$. Set

$$
S_{i, n}=\left\{m: 2 \leq m \leq n, \quad p_{i} \mid m, p_{j} \nmid m(j<i)\right\} .
$$

That is, $S_{i, n}$ is the set of integers between 2 and n, which are divisible by p_{i}, but coprime to the smaller primes.

Remark 1. For any indices i and i^{\prime} with $1 \leq i<i^{\prime}$ we have $\left|S_{i, n}\right| \geq\left|S_{i^{\prime}, n}\right|$, for every n with $n \geq 2$. Indeed, if $m \in S_{i^{\prime}, n}$, then we can write $m=t p_{i^{\prime}}^{\alpha}$ with some positive integers t and α such that $p_{j} \nmid t$ for $1 \leq j \leq i^{\prime}$. Since $p_{i}<p_{i^{\prime}}$, by $m \leq n$ we have that $t p_{i}^{\alpha} \in S_{i, n}$. Thus the mapping $f: S_{i^{\prime}, n} \rightarrow S_{i, n}$ defined by $f\left(t p_{i^{\prime}}^{\alpha}\right)=t p_{i}^{\alpha}$ is an injection. Hence the assertion follows.

Bakó and Aszalós found that

$$
\begin{equation*}
A_{n}=\bigcup_{j=1}^{\infty} S_{j, n} \tag{1}
\end{equation*}
$$

is highly likely to be an optimal correlation clustering for $n \leq 500$. For brevity, here and later on we use the symbol \cup for the standard union of sets, while \bigcup is used for building clusterings from sets. That is, A_{n} above is a set whose elements are the sets $S_{j, n}$. Notice that $S_{j, n}=\emptyset$ for all j large enough, so A_{n} is actually finite.

The aim of this paper is to show that for $n_{0}=3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23=111546435$ the decomposition (1) is not optimal. We prove that the number of conflicts in

$$
\begin{equation*}
A_{n}=\left(S_{1, n_{0}} \cup\left\{n_{0}\right\}\right) \bigcup\left(S_{2, n_{0}} \backslash\left\{n_{0}\right\}\right) \bigcup_{j=3}^{\infty} S_{j, n} \tag{2}
\end{equation*}
$$

is less than in (1) with $n=n_{0}$. Unfortunately, we are not able to verify that (1) is optimal for $n<n_{0}$. However, we can prove that a natural greedy algorithm (Algorithm 1), presented in the next section, produces the clustering (1) for $n<n_{0}$, but (2) for $n=n_{0}$. Thus our results shed some light on the difficulty to find optimal clusterings of large sets.

Applying Algorithm 1 for A_{n} and \sim, the results behave regularly until a certain large point, but then the regularity disappears. From our construction it will be clear that n_{0} is the first, but not at all the last integer, which behaves irregularly in this sense. For example the numbers
$3 n_{0}, 5 n_{0}, 9 n_{0}, \ldots$ are odd and are divisible by 3 , but adjoining them to $S_{1, n}$ causes less conflicts than adjoining them to $S_{2, n}$, with $n=3 n_{0}-1,5 n_{0}-1,9 n_{0}-1$, respectively. Denote by $S_{i, n}^{*}$ the class, which contains p_{i} and is produced by Algorithm 1. We have no idea whether these sets have some structure and what is their asymptotic behavior. For example, we do not know whether the limit $\lim _{n \rightarrow \infty}\left|S_{1, n}^{*}\right| / n$ exists, and if so, whether $\lim _{n \rightarrow \infty}\left|S_{1, n}^{*}\right| / n=1$.

The paper is organized as follows. In Section 2 we present Algorithm 1 and the main theorem. Section 3 is devoted to the proof of combinatorial lemmata and in the last section we prove the theorem. In our proofs, besides certain combinatorial considerations, we apply arguments and estimates from prime number theory, e.g. we use bounds of Rosser and Schoenfeld [4].

2. Main result

Since the number of partitions of n elements grows exponentially, it is not surprising that to find an optimal correlational clustering is an NP-hard problem (see [2]). To find an approximation of the optimal solution, it is natural to use some greedy algorithm. Working with $A_{n}=\{2,3, \ldots, n\}$ and \sim, we use the following strategy. The optimal clustering for $\{2\}$ is itself. Assume that we have a partition of $A_{n-1}(n>2)$, and adjoin n to that class, which causes the least number of new conflicts. The result is a "locally optimal" clustering, which is not necessarily optimal globally. We formulate this method as Algorithm 1.

```
Algorithm 1 Natural greedy algorithm
Require: an integer \(n \geq 2\)
Ensure: a partition \(\mathcal{P}\) of \(A_{n}\)
    \(\mathcal{P} \leftarrow\{\{2\}\} ;\)
    if \(n=2\) then return \(\mathcal{P}\)
    end if
    \(m \leftarrow 3\)
    while \(m \leq n\) do
        \(\mathcal{P}_{M} \leftarrow \mathcal{P} \cup\{\{m\}\}\)
        \(M \leftarrow \operatorname{CONFLICTS}\left(\mathcal{P}_{M}, m\right) \quad \triangleright\) the number of conflicts with respect to the partition \(\mathcal{P}_{M}\)
    caused by the pairs ( \(m, a\) ), \(a<m\)
        \(C \leftarrow\) number of classes in \(\mathcal{P}\)
        \(j \leftarrow 1\)
        while \(j \leq C\) do
            \(O \leftarrow \mathrm{OP}(j, \mathcal{P}) \quad \triangleright \mathrm{OP}(j, \mathcal{P})\) denotes the \(j\) th class in the partition \(\mathcal{P}\).
            \(\mathcal{P}_{1} \leftarrow \mathcal{P} \backslash\{O\}\)
            \(\mathcal{P}_{1} \leftarrow \mathcal{P}_{1} \cup\{O \cup\{m\}\}\)
            \(M_{1} \leftarrow \operatorname{NUPAIR}\left(\mathcal{P}_{1}, m\right) \triangleright\) the number of pairs ( \(m, a\) ) with \(a<m\) causing a conflict
    in the partition \(\mathcal{P}_{1}\)
            if \(M_{1}<M\) then
                    \(M \leftarrow M_{1}\)
                    \(\mathcal{P}_{M} \leftarrow \mathcal{P}_{1}\)
            end if
        end while
    end while
    return \(\mathcal{P}_{M}\)
```


ARTCLE IN PRESS

Starting with a partition of A_{n-1} this algorithm establishes a partition of A_{n} such that the conflicts caused by n is minimal. The output of Algorithm 1 on the input n is denoted by $G(n)$. It is a partition of A_{n}. It is easy to see that

$$
\begin{aligned}
& G(2)=\{\{2\}\} \\
& G(3)=\{\{2\},\{3\}\} \\
& G(4)=\{\{2,4\},\{3\}\} \\
& G(5)=\{\{2,4\},\{3\},\{5\}\} \\
& G(6)=\{\{2,4,6\},\{3\},\{5\}\} \\
& \vdots \\
& G(15)=\{\{2,4,6,8,10,12,14\},\{3,9,15\},\{5\},\{7\},\{11\},\{13\}\} .
\end{aligned}
$$

Moreover, one can also check that these partitions are optimal clusterings of A_{n} for $n=$ $2,3, \ldots, 15$.

Our main result is the following.
Theorem 1. If $n<n_{0}=3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23=111546435$ then

$$
\begin{equation*}
G(n)=\bigcup_{j=1}^{\infty} S_{j, n} \tag{3}
\end{equation*}
$$

holds. However, we have

$$
\begin{equation*}
G\left(n_{0}\right)=\left(S_{1, n_{0}} \cup\left\{n_{0}\right\}\right) \bigcup\left(S_{2, n_{0}} \backslash\left\{n_{0}\right\}\right) \bigcup_{j=3}^{\infty} S_{j, n_{0}} . \tag{4}
\end{equation*}
$$

We shall prove Theorem 1 inductively. We explain our method of proof in the beginning of Section 4.

3. Auxiliary results

To prove the main theorem we need some preparation. Throughout this paper the number of elements of a set A will be denoted by $|A|$. In the first lemma we characterize that class of $G(n-1)$ to which Algorithm 1 adjoins n.

Lemma 1. Let $n>2$ be an integer. Write $G(n-1)=\left\{P_{1}, \ldots, P_{M}\right\}$ and set $P_{M+1}=\emptyset$. For $1 \leq j \leq M$ let

$$
U_{j}=\left\{m: m \in P_{j}, \operatorname{gcd}(m, n)=1\right\}
$$

and

$$
V_{j}=\left\{m: m \in P_{j}, \operatorname{gcd}(m, n)>1\right\} .
$$

Define $U_{M+1}=V_{M+1}=\emptyset$. Let J be the smallest index for which the difference $\left|U_{j}\right|-\left|V_{j}\right|(j=$ $1, \ldots, M+1)$ is maximal. Then $G(n)=\left\{P_{1}^{\prime}, \ldots, P_{M+1}^{\prime}\right\}$ such that

$$
P_{j}^{\prime}= \begin{cases}P_{j} \cup\{n\}, & \text { if } j=J, \\ P_{j}, & \text { otherwise } .\end{cases}
$$

Proof. Let K_{j} denote the number of new conflicts, which arise adjoining n to $P_{j}(j=1, \ldots$, $M+1)$. Then

$$
K_{j}=\left|U_{j}\right|+\sum_{\substack{k=1 \\ k \neq j}}^{M+1}\left|V_{k}\right|
$$

Algorithm 1 adjoins n to that $P_{\hat{J}}$ for which $K_{\hat{J}}$ is minimal and if there are more indices j with minimal K_{j} then \hat{J} is minimal among them. This is equivalent to

$$
\left|V_{\hat{J}}\right|-\left|U_{\hat{J}}\right| \geq\left|V_{m}\right|-\left|U_{m}\right| \quad(m=1, \ldots, M+1) .
$$

Thus $\left|V_{m}\right|-\left|U_{m}\right|(m=1, \ldots, M+1)$ assumes its maximal value at $m=\hat{J}$ with $\hat{J} \leq m$ if the equality sign holds. Hence $J=\hat{J}$ and the lemma is proved.

For positive integers j and $n \geq 2$ put

$$
B_{j, n}=\left\{m: m \in S_{j, n-1}, \operatorname{gcd}(m, n)>1\right\}
$$

and

$$
E_{j, n}=\left\{m: m \in S_{j, n-1}, \operatorname{gcd}(m, n)=1\right\} .
$$

Note that by the definition of $S_{j, n-1}$, the sets $B_{j, n}$ and $E_{j, n}$ are subsets of $\{1, \ldots, n-1\}$ for all j and n. The elements of $B_{j, n}$ and $E_{j, n}$ are called the friends and enemies of n in $S_{j, n-1}$, respectively.

Corollary 1. Let $n \geq 2$. If $n>2$, then suppose that for all $i=1, \ldots, M$ we have $S_{i, n-1}^{*}=$ $S_{i, n-1}$, that is

$$
G(n-1)=\left\{S_{1, n-1}, \ldots, S_{M, n-1}\right\}
$$

Here p_{M} is the largest prime $\leq n-1$. Then the following assertions are true.
(i) Algorithm 1 adjoins n to that S_{J} with minimal J for which $\left|B_{J, n}\right|-\left|E_{J, n}\right| \geq\left|B_{j, n}\right|-$ $\left|E_{j, n}\right|(j=1, \ldots, M+1)$.
(ii) If n is even, then $S_{1, n}^{*}=S_{1, n}$.
(iii) If n is a prime, then $\{n\} \in G(n)$.
(iv) Let p_{i} be the smallest prime factor of n. Then $n \in S_{j, n}^{*}$ implies $j \leq i$.

Proof. The assertions hold for $n=2$. For $n>2$ by our assumption we can write

$$
G(n-1)=\left\{S_{1}, \ldots, S_{M}\right\},
$$

where, for simplicity, we set $S_{j}=S_{j, n-1}(j=1, \ldots, M)$. Put $S_{M+1}=\emptyset$.
(i) Observe that now the sets U_{j} and V_{j} defined in the proof of Lemma 1 coincide with $E_{j, n}$ and $B_{j, n}$, respectively. Hence the statement immediately follows.
(ii) If n is even with $n>2$, then $B_{1, n}=S_{1}$, thus $\left|B_{1, n}\right| \geq n / 2-1$. If $2 \leq j \leq M$ then $\left|B_{j, n}\right| \leq\left[(n-1) / p_{j}\right]<n / 3$. As $n / 2-1>n / 3$ for $n \geq 8$ we have

$$
\left|B_{1, n}\right|-\left|E_{1, n}\right|>\left|B_{j, n}\right|-\left|E_{j, n}\right| \quad(j=2, \ldots, M+1)
$$

Hence Algorithm 1 adjoins n to S_{1}, i.e., to the class of even numbers.
(iii) Let n be an odd prime. By part (i) of Corollary 1 Algorithm 1 adjoins n to that S_{J} with minimal J for which $\left|B_{j, n}\right|-\left|E_{j, n}\right|(j=1, \ldots, M+1)$ is maximal.

Since n is a prime, $B_{j, n}=\emptyset$ for all $j=1, \ldots, M$. Thus $\left|B_{j, n}\right|-\left|E_{j, n}\right|<0(j=1, \ldots, M)$, but $\left|B_{M+1, n}\right|-\left|E_{M+1, n}\right|=0$. Hence n will be adjoined to the empty set, so it will form a class in $G(n)$ alone.
(iv) We may assume that n is odd and composite. Let $n=q_{1}^{\alpha_{1}} \cdots q_{t}^{\alpha_{t}}$, where $q_{1}<\cdots<$ q_{t} are odd primes and $\alpha_{1}, \ldots, \alpha_{t}$ are positive integers. We obviously have $\left\{q_{1}, \ldots, q_{t}\right\} \subseteq$ $\left\{p_{1}, \ldots, p_{M}\right\}$.

Suppose that $q_{1}=p_{i}$. Then, since we assumed that $S_{i, n-1}^{*}=S_{i, n-1}=S_{i}$, we have $B_{i, n}=S_{i}$ and $E_{i, n}=\emptyset$. Hence $\left|B_{i, n}\right|-\left|E_{i, n}\right|=\left|S_{i}\right|$.

If $j>i$ then $\left|B_{j, n}\right|-\left|E_{j, n}\right| \leq\left|S_{j}\right| \leq\left|S_{i}\right|$. (The latter inequality follows from Remark 1 after the definition of the $S_{i, n}$.) Thus, by part (iv) of Corollary 1 , if n will be adjoined to S_{j} then $j \leq i$.

The next lemma describes a simple, but useful property of the integer part function.
Lemma 2. Let q_{1}, \ldots, q_{t} be pairwise different odd primes, $\alpha_{1}, \ldots, \alpha_{t}$ positive integers. Let u be a positive integer coprime to $q_{i}(i=1, \ldots, t)$ and $n=q_{1}^{\alpha_{1}} \cdots q_{t}^{\alpha_{t}}$. If $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, t\}$ then

$$
\begin{equation*}
\left[\frac{n-1}{u q_{i_{1}} \cdots q_{i_{k}}}\right]=\left[\frac{\frac{n}{q_{i_{1}} \cdots q_{i_{k}}}-1}{u}\right] . \tag{5}
\end{equation*}
$$

In particular, if $u=2$ then

$$
\begin{equation*}
\left[\frac{n-1}{2 q_{i_{1}} \cdots q_{i_{k}}}\right]=\frac{n-q_{i_{1}} \cdots q_{i_{k}}}{2 q_{i_{1}} \cdots q_{i_{k}}}=\frac{n}{2 q_{i_{1}} \cdots q_{i_{k}}}-\frac{1}{2} . \tag{6}
\end{equation*}
$$

Proof. We have

$$
\left[\frac{n-1}{u q_{i_{1}} \cdots q_{i_{k}}}\right]=\frac{n-m}{u q_{i_{1}} \cdots q_{i_{k}}},
$$

where m is the smallest positive integer such that the fraction on the right hand side is an integer. As $q_{i_{j}} \mid n$, we must have $q_{i_{j}} \mid m(j=1, \ldots, k)$ as well, which implies $q_{i_{1}} \cdots q_{i_{k}} \mid m$. This proves (5).

If $u=2$ then $m=q_{i_{1}} \cdots q_{i_{k}}$ is the smallest positive integer with the required property, because $n-m$ is even.

The next lemma gives a good approximation for the size of $S_{i, u}$.
Lemma 3. Let u be an odd integer. Then we have $\left|S_{1, u}\right|=\frac{u-1}{2}$. Further, if p_{i} is an odd prime, then

$$
\left|\left|S_{i, u}\right|-\frac{u}{p_{i}} \prod_{\ell=1}^{i-1}\left(1-\frac{1}{p_{\ell}}\right)\right| \leq 2^{i-2} .
$$

Proof. The first statement is obvious. To prove the second one we start with the identity

$$
\begin{aligned}
S_{i, u} & =\left\{m: m \leq u, p_{i} \mid m, p_{\ell} \nmid m \text { for all } 1 \leq \ell<i\right\} \\
& =\left\{m: m \leq u, p_{i} \mid m\right\} \backslash \bigcup_{\ell=1}^{i-1}\left\{m: m \leq u, p_{i} \cdot p_{\ell} \mid m\right\} .
\end{aligned}
$$

In the rest of the proof we assume that the elements of the occurring sets are at most u. The law of inclusion and exclusion implies

$$
\left|S_{i, u}\right|=\sum_{\ell=0}^{i-1}(-1)^{\ell} \sum_{1 \leq i_{1}<\cdots<i_{\ell}<i}\left|\left\{m: p_{i} \cdot p_{i_{1}} \cdots p_{i_{\ell}} \mid m\right\}\right| .
$$

Thus

$$
\begin{equation*}
\left|S_{i, u}\right|=\sum_{\ell=0}^{i-1}(-1)^{\ell} \sum_{1 \leq i_{1}<\cdots<i_{\ell}<i}\left[\frac{u}{p_{i} \cdot p_{i_{1}} \cdots p_{i_{\ell}}}\right] . \tag{7}
\end{equation*}
$$

Using $x-1<[x] \leq x$ we obtain

$$
-\sum_{\substack{\ell=0 \\ \ell \text { is even }}}^{i-1}\binom{i-1}{\ell} \leq\left|S_{i, u}\right|-\frac{u}{p_{i}} \prod_{\ell=0}^{i-1}\left(1-\frac{1}{p_{\ell}}\right)<\sum_{\substack{\ell=0 \\ \ell \text { is odd }}}^{i-1}\binom{i-1}{\ell}
$$

As

$$
\sum_{\substack{\ell=0 \\ \ell \text { is even }}}^{i-1}\binom{i-1}{\ell}=\sum_{\substack{\ell=0 \\ \ell \text { is odd }}}^{i-1}\binom{i-1}{\ell}=2^{i-2}
$$

the lemma is proved.
In the next lemma we prove an estimate for $\left|B_{j, n}\right|-\left|E_{j, n}\right|$.
Lemma 4. Let $q_{1}<\cdots<q_{t}$ be odd primes, $\alpha_{1}, \ldots, \alpha_{t}$ positive integers and $n=q_{1}^{\alpha_{1}} \cdots q_{t}^{\alpha_{t}}$. Let $j \geq 2$ be such that $p_{j}<q_{1}$. Then

$$
\left|\left|B_{j, n}\right|-\left|E_{j, n}\right|-\frac{n-1}{p_{j}} \prod_{\ell=1}^{j-1}\left(1-\frac{1}{p_{\ell}}\right)\left(1-2 \prod_{k=1}^{t}\left(1-\frac{1}{q_{k}}\right)\right)\right| \leq 2^{t+j-1}+2^{j-2} .
$$

Proof. As $\left|B_{j, n}\right|+\left|E_{j, n}\right|=\left|S_{j, n-1}\right|$ we have

$$
\begin{equation*}
\left|B_{j, n}\right|-\left|E_{j, n}\right|=2\left|B_{j, n}\right|-\left|S_{j, n-1}\right|=\left|S_{j, n-1}\right|-2\left(\left|S_{j, n-1}\right|-\left|B_{j, n}\right|\right) . \tag{8}
\end{equation*}
$$

For $\left|S_{j, n-1}\right|$ we can use the estimations of Lemma 3, thus we have to deal only with the second summand. As $p_{j}<q$ for all prime factors q of n, we have

$$
B_{j, n}=\bigcup_{\ell=1}^{t}\left\{m: m \in S_{j, n-1}, q_{\ell} \mid m\right\}
$$

Using again the law of inclusion and exclusion we get

$$
\left|B_{j, n}\right|=\sum_{\ell=1}^{t}(-1)^{\ell-1} \sum_{1 \leq j_{1}<\cdots<j_{\ell} \leq t}\left|\left\{m: m \in S_{j, n-1}, q_{j_{1}} \cdots q_{j_{\ell}} \mid m\right\}\right| .
$$

Set $U_{j, \ell}\left(q_{j_{1}}, \ldots, q_{j_{\ell}}\right)=U_{j, \ell}=\left\{m: m \in S_{j, n-1}, q_{j_{1}} \cdots q_{j_{\ell}} \mid m\right\}$. Then

$$
U_{j, \ell}=\left\{m: m \leq n-1, p_{j} \cdot q_{j_{1}} \cdots q_{j_{\ell}} \mid m\right\} \backslash \bigcup_{i=1}^{j-1}\left\{m: p_{i} p_{j} q_{j_{1}} \cdots q_{j_{\ell}} \mid m\right\}
$$

For the number of elements of $U_{j, \ell}$ by the law of inclusion and exclusion we obtain

$$
\left|U_{j, \ell}\right|=\sum_{i=0}^{j-1}(-1)^{i} \sum_{1 \leq h_{1}<\cdots<h_{i}<j}\left[\frac{n-1}{p_{j} \cdot q_{j_{1}} \cdots q_{j_{\ell}} p_{h_{1}} \cdots p_{h_{i}}}\right]
$$

Combining these formulae we get

$$
\left|B_{j, n}\right|=\sum_{\ell=1}^{t}(-1)^{\ell-1} \sum_{1 \leq j_{1}<\cdots<j_{\ell} \leq t} \sum_{i=0}^{j-1}(-1)^{i} \sum_{1 \leq h_{1}<\cdots<h_{i}<j}\left[\frac{n-1}{p_{j} \cdot q_{j_{1}} \cdots q_{j_{\ell}} p_{h_{1}} \cdots p_{h_{i}}}\right]
$$

The last formula together with (7) implies

$$
\begin{aligned}
\left|S_{j, n-1}\right|-\left|B_{j, n}\right|= & \sum_{\ell=0}^{t}(-1)^{\ell} \sum_{1 \leq j_{1}<\cdots<j_{\ell} \leq t} \sum_{i=0}^{j-1}(-1)^{i} \\
& \times \sum_{1 \leq h_{1}<\cdots<h_{i}<j}\left[\frac{n-1}{p_{j} \cdot q_{j_{1}} \cdots q_{j_{\ell}} p_{h_{1}} \cdots p_{h_{i}}}\right] .
\end{aligned}
$$

Changing the order of the summation we get

$$
\begin{aligned}
\left|S_{j, n-1}\right|-\left|B_{j, n}\right|= & \sum_{i=0}^{j-1}(-1)^{i} \sum_{1 \leq h_{1}<\cdots<h_{i}<j} \sum_{\ell=0}^{t}(-1)^{\ell} \\
& \times \sum_{1 \leq j_{1}<\cdots<j_{\ell} \leq t}\left[\frac{n-1}{p_{j} \cdot q_{j_{1}} \cdots q_{j_{\ell}} p_{h_{1}} \cdots p_{h_{i}}}\right]
\end{aligned}
$$

Put

$$
\begin{aligned}
C_{1}:= & \sum_{\ell=0}^{t}(-1)^{\ell} \sum_{1 \leq j_{1}<\cdots<j_{\ell} \leq t}\left[\frac{n-1}{p_{j} \cdot q_{j_{1}} \cdots q_{j_{\ell}} p_{h_{1}} \cdots p_{h_{i}}}\right] \\
& -\frac{n-1}{p_{j} \cdot p_{h_{1}} \cdots p_{h_{i}}} \prod_{k=1}^{t}\left(1-\frac{1}{q_{k}}\right)
\end{aligned}
$$

and observe that $\left|C_{1}\right| \leq 2^{t-1}$. We can write

$$
\left|S_{j, n-1}\right|-\left|B_{j, n}\right|=\frac{n-1}{p_{j}} \prod_{k=1}^{t}\left(1-\frac{1}{q_{k}}\right) \prod_{\ell=1}^{j-1}\left(1-\frac{1}{p_{\ell}}\right)+C_{2}
$$

where

$$
C_{2}=\sum_{i=0}^{j-1}(-1)^{i} \sum_{1 \leq h_{1}<\cdots<h_{i}<j} C_{1}
$$

Hence $\left|C_{2}\right| \leq 2^{t+j-2}$. This together with Lemma 3 and (8) gives

$$
\left|B_{j, n}\right|-\left|E_{j, n}\right|=\frac{n-1}{p_{j}} \prod_{\ell=1}^{j-1}\left(1-\frac{1}{p_{\ell}}\right)-2 \frac{n-1}{p_{j}} \prod_{k=1}^{t}\left(1-\frac{1}{q_{k}}\right) \prod_{\ell=1}^{j-1}\left(1-\frac{1}{p_{\ell}}\right)+C_{3},
$$

where $\left|C_{3}\right| \leq 2^{t+j-1}+2^{j-2}$. Thus the statement follows.

The next lemma plays a key role in the proof of Theorem 1. In contrast to the classes of odd numbers, it is possible to give the exact values of the difference of the number of friends and enemies of n in $S_{1, n-1}$.

Lemma 5. Let $n=q_{1}^{\alpha_{1}} \cdots q_{t}^{\alpha_{t}}$ with $q_{1}<\cdots<q_{t}$ odd primes and $\alpha_{1}, \ldots, \alpha_{t}$ positive integers. Then

$$
\begin{aligned}
& \left|E_{1, n}\right|=\frac{\varphi(n)}{2}=\frac{n}{2}\left(1-\frac{1}{q_{1}}\right) \cdots\left(1-\frac{1}{q_{t}}\right), \\
& \left|B_{1, n}\right|=\frac{n-1}{2}-\left|E_{1, n}\right| .
\end{aligned}
$$

Proof. The statement could be proved by repeating the proof of Lemma 4 and using Lemma 2. However, there is a much more direct and simple way, which we present.

Let $H_{1}=\left\{h: 1 \leq h \leq \frac{n-1}{2}, \operatorname{gcd}(h, n)=1\right\}$ and $H_{2}=\left\{h: \frac{n+1}{2} \leq h<n, \operatorname{gcd}(h, n)=1\right\}$. Then H_{1} and H_{2} are disjoint and their union is $H=\{h: 1 \leq h<n, \operatorname{gcd}(h, n)=1\}$. Plainly $|H|=\varphi(n)$. The mapping $\psi: h \mapsto n-h$ is bijective between H_{1} and H_{2}. Moreover, $\psi(h)$ is odd if and only if h is even. Thus the number of even positive integers, which are coprime to n is $\varphi(n) / 2$. As $E_{1, n}$ is exactly the set of even integers, less than and coprime to n, the proof is complete.

4. Proof of Theorem 1

Despite of the lengthy preparation, the proof of Theorem 1 is complicated. The hard part is to prove that (3) is true for $n<n_{0}$. This is done by a combination of comparison of the estimates of Lemmata 3 and 4, some computer search and finally application of a tool from prime number theory.

To prove Theorem 1, we apply induction. We shall always assume, without any further mentioning, that n is a positive integer with $n \leq n_{0}$, and that Theorem 1 holds for all m with $2 \leq m<n$. (Note that the theorem is valid for $n=2$.) That is, assuming that for all such m we have

$$
G(m)=\left\{S_{1, m}, \ldots, S_{u, m}\right\},
$$

we prove that $S_{i, n}^{*}=S_{i, n}$ for all i too, i.e.

$$
G(n)=\left\{S_{1, n}, \ldots, S_{v, n}\right\}
$$

is also valid (with the appropriate u and v). In many cases it will be sufficient to use the induction hypothesis only for $m=n-1$.

By part (ii) of Corollary 1, Theorem 1 is true for even n. In case of odd n, we start with the easy part, by showing that Theorem 1 holds if $3 \mid n$. Hence, in particular, we check (4) in the next subsection.

4.1. The case where n is odd and $3 \mid n$

Suppose that the smallest prime factor of n is $q_{1}=3$. Then by Lemma 5 we have $\left|B_{1, n}\right|-$ $\left|E_{1, n}\right|=\frac{n-1}{2}-\varphi(n)$. A simple computation shows that $\left|S_{2}\right|=\frac{n-3}{6}$.

ARTCLE IN PRESS

By part (i) of Corollary $1, n$ is adjoined to S_{1} precisely when $\left|S_{2}\right| \leq\left|B_{1, n}\right|-\left|E_{1, n}\right|$. This inequality implies $\frac{n-3}{6} \leq \frac{n-1}{2}-\varphi(n)$, which is equivalent to $\varphi(n)<\frac{n}{3}$. Using the explicit form of $\varphi(n)$ and dividing by n we get $\left(1-\frac{1}{3}\right) \cdot\left(1-\frac{1}{q_{2}}\right) \cdots\left(1-\frac{1}{q_{t}}\right) \leq \frac{1}{3}$. Thus Algorithm 1 adjoins n to S_{1} if and only if

$$
\begin{equation*}
\left(1-\frac{1}{q_{2}}\right) \cdots\left(1-\frac{1}{q_{t}}\right) \leq \frac{1}{2} \tag{9}
\end{equation*}
$$

Inequality (9) is independent of the exponents $\alpha_{1}, \ldots, \alpha_{t}$, and for fixed t the left hand side of (9) is minimal if q_{1}, \ldots, q_{t} are consecutive odd primes starting with $q_{1}=3$. Using these observations, a simple computation shows that (9) does not hold for odd $n<n_{0}$ such that $3 \mid n$, however, n_{0} satisfies (9).

Hence the induction step is proved for odd n with $3 \mid n$.
Remark 2. An analogous computation shows that $n_{1}=5 \cdot p_{4} \cdots p_{14}=2180460221945005$ is a candidate to be the smallest odd integer, which is not divisible by 3 and is adjoined to S_{1}. However, as n_{1} is much larger than n_{0} and many odd integers between n_{0} and n_{1}, e.g. $3 n_{0}, 5 n_{0}, 9 n_{0}, \ldots$ are adjoined to $S_{1,3 n_{0}-1}, S_{1,5 n_{0}-1}, S_{1,9 n_{0}-1}$, respectively, we are not sure whether for example $n_{1}^{\prime}=5 \cdot p_{4} \cdots p_{13}$ will belong to $S_{1, n_{1}^{\prime}}^{*}, S_{2, n_{1}^{\prime}}^{*}$ or $S_{3, n_{1}^{\prime}}^{*}$.

4.2. The case where n has middle sized prime factors

Let $n<n_{0}$ and denote by p and t the smallest prime divisor of n and the number of distinct prime divisors of n, respectively. Note that if $p \geq 37$ then since $37 \cdot 41 \cdot 43 \cdot 47 \cdot 53>n_{0}$, the number of distinct prime factors of n is at most four. In this subsection we prove the induction step for the cases where

- $p \leq 11$ and $t \geq 3$ or
- $p \leq 37$ and $t \geq 4$.

By our remark above, in the second case this establishes the validity of the induction step for all n with $t \geq 5$.

Let $n=q_{1}^{\alpha_{1}} \cdots q_{t}^{\alpha_{t}}<n_{0}$ be such that $p_{i}=q_{1}<q_{2} \cdots<q_{t}$. For $i \leq 2$ the induction step is already proved, so we may assume that $i \geq 3$. By part (i) of Corollary 1 , Algorithm 1 adjoins n to $S_{i, n-1}$ if and only if

$$
\begin{equation*}
\left|B_{j, n}\right|-\left|E_{j, n}\right|<\left|S_{i, n-1}\right| \tag{10}
\end{equation*}
$$

holds for all $1 \leq j<i$. (In view of part (iv) of Corollary $1, n$ cannot be adjoined to $\left|S_{i^{\prime}, n-1}\right|$ with $i^{\prime}>i$.) By Lemmata 3 and 4 we have

$$
\left|S_{i, n-1}\right| \geq \frac{n-1}{p_{i}} \prod_{\ell=1}^{i-1}\left(1-\frac{1}{p_{\ell}}\right)-2^{i-2}
$$

and

$$
\left|B_{j, n}\right|-\left|E_{j, n}\right| \leq \frac{n-1}{p_{j}} \prod_{\ell=1}^{j-1}\left(1-\frac{1}{p_{\ell}}\right)\left(1-2 \prod_{k=1}^{t}\left(1-\frac{1}{q_{k}}\right)\right)+2^{t+j-1}+2^{j-2} .
$$

Thus if

$$
\begin{aligned}
& \frac{n-1}{p_{i}} \prod_{\ell=1}^{i-1}\left(1-\frac{1}{p_{\ell}}\right)+\frac{n-1}{p_{j}} \prod_{\ell=1}^{j-1}\left(1-\frac{1}{p_{\ell}}\right) \\
& \quad \times\left(2 \prod_{k=1}^{t}\left(1-\frac{1}{q_{k}}\right)-1\right)>2^{t+j-1}+2^{j-2}+2^{i-2}
\end{aligned}
$$

then (10) holds. For fixed t and i the product $\prod_{k=1}^{t}\left(1-\frac{1}{q_{k}}\right)$ assumes its smallest value if the q_{k}-s are the t consecutive primes starting with p_{i}. Thus if $n_{1}=n_{1}(i, j, t)$ denotes the smallest n satisfying

$$
n>1+\left(2^{t+j-1}+2^{j-2}+2^{i-2}\right) / T
$$

where

$$
T=\frac{1}{p_{i}} \prod_{\ell=1}^{i-1}\left(1-\frac{1}{p_{\ell}}\right)+\frac{1}{p_{j}} \prod_{\ell=1}^{j-1}\left(1-\frac{1}{p_{\ell}}\right)\left(2 \prod_{k=0}^{t-1}\left(1-\frac{1}{p_{i+k}}\right)-1\right),
$$

then (10) holds for all $n \geq n_{1}$ having exactly t distinct prime factors, of which the smallest is p_{i}.
We computed $n_{1}(i, j, t)$ for all triplets (i, j, t) with $3 \leq i \leq 19,3 \leq j \leq i-1,1 \leq t \leq t_{i}$, where t_{i} is the largest t such that $\prod_{k=0}^{t-1} p_{i+k} \leq n_{0}$. Note that we have $n_{1}(i, j, t)>n_{0}$ for $i \geq 19$. According to our computation $n_{1}(i, j, t)$ is a monotone increasing function of j for fixed (i, t), thus we displayed in Table 1 only the values $n_{1}(i, i-1, t)$. The italic values in Table 1 indicate that the corresponding inequality $n \geq n_{1}$ is valid for all n with smallest prime factor p_{i}, having t distinct prime divisors. For example, the smallest n with $i=5$ (with smallest prime factor $p_{i}=p_{5}=11$) and with $t=3$ distinct prime factors is $11 \cdot 13 \cdot 17=2431$. So the smaller number 1773 in row $\left(i, p_{i}\right)=(5,11)$ and column $t=3$ is in italics. Finally, if all integers n with smallest prime factor p_{i} and exactly t distinct prime factors are $>n_{0}$, then the corresponding box in Table 1 is empty.

In particular, checking the boxes of Table 1 corresponding to the primes $p \leq 11$ with $t \geq 3$, and $p \leq 37$ with $t \geq 4$, we see that for these cases the induction step is established. Further, as we mentioned in the beginning of this subsection, the latter assertion implies that the induction step is also proved for all $n<n_{0}$ with $t \geq 5$.

4.3. The case where n has at most two distinct prime factors

The following lemma verifies Theorem 1 if n is a prime power.
Lemma 6. Let $p=p_{i}$ be a prime and $n=p^{\alpha}(\alpha>0)$. Then $S_{i, n}^{*}=S_{i, n}$.
Proof. We already know that the assertion is valid for $p=2,3$. So we may assume that $p=p_{i} \geq 5$. If $\alpha=1$ then the statement follows from part (iii) of Corollary 1.

To treat the cases $\alpha>1$, we show that for any $j<i$

$$
\begin{equation*}
B_{j, p^{\alpha}}=\bigcup_{k=1}^{\alpha-1} p^{k} E_{j, p^{\alpha-k}} \tag{11}
\end{equation*}
$$

Table 1
Values of $n_{1}(i, i-1, t)$.

$\left(i, p_{i}\right)$	t								
	1		2	3	4	5	6		
$(3,5)$	42	85	176	381	832	1844	4073		
$(4,7)$	163	292	564	1134	2353	4922			
$(5,11)$	539	943	1773	3527	7201	14830			
$(6,13)$	1668	2810	5168	10027	20004	40659			
$(7,17)$	4411	7394	13473	25897	51602				
$(8,19)$	11430	18856	33849	64646	127553				
$(9,23)$	27807	45465	81511	154920	305065				
$(10,29)$	71314	116355	207415	393138	773398				
$(11,31)$	172771	279447	495419	935583	1832178				
$(12,37)$	400411	646688	1146625	2163465					
$(13,41)$	948529	1528461	2701477	5078938					
$(14,43)$	2098084	3371377	5939601	11137433					
$(15,47)$	4590463	7360443	12945781	24269102					
$(16,53)$	10391079	16631063	29240976	54743149					
$(17,59)$	23720841	37937473	66587159						
$(18,61)$	51847427	82741135							

holds. Indeed, if $m \in B_{j, p^{\alpha}}$, then either m is divisible only by the first power of p, thus $m / p \in E_{j, p^{\alpha-1}}$ or m is divisible by a higher power of p, in which case $m / p \in B_{j, p^{\alpha-1}}$, thus

$$
B_{j, p^{\alpha}}=p E_{j, p^{\alpha-1}} \cup p B_{j, p^{\alpha-1}} .
$$

Using this identity we get (11) by induction.
Now we split the proof of the lemma into four cases.
Case $\alpha=2$. Then $\left|B_{j, p^{2}}\right|=\left|E_{j, p}\right|$ for $j<i$. By Bertrand's postulate there exists at least one prime q with $p / p_{j}<q<p$. Hence $p_{j} q \in E_{j, p^{2}} \backslash E_{j, p}$, which implies $\left|E_{j, p^{2}}\right|>\left|B_{j, p^{2}}\right|=\left|E_{j, p}\right|$. Thus $S_{i, p^{2}}^{*}=S_{i, n}^{*}=S_{i, n}$.

Case $\alpha=3$. Then for $j<i$, there exists a prime q with $p^{2} / p_{j}<q<p^{2}$, hence $p_{j} q \notin E_{j, p^{2}}$. If $m \in E_{j, p}$ then $q m \leq q p<p^{3}$, thus

$$
\left|E_{j, p^{3}}\right| \geq\left|B_{j, p^{3}}\right|=\left|E_{j, p^{2}}\right|+\left|E_{j, p}\right|,
$$

and this case is proved.
Case $\alpha=4$. Identity (11) implies that for $j<i$,

$$
\left|B_{j, p^{4}}\right|=\left|E_{j, p^{3}}\right|+\left|E_{j, p^{2}}\right|+\left|E_{j, p}\right| .
$$

We plainly have $E_{j, p^{2}}=E_{j, p} \cup E_{2} \cup E_{3}$, where the sets E_{2}, E_{3} on the right-hand side include all elements of $E_{j, p^{2}}$ belonging to the intervals $\left(p, p^{2} / p_{j}\right.$] and ($\left.p^{2} / p_{j}, p^{2}\right]$, respectively. Since $p \geq 5$, by a simple calculation based upon formulas of Rosser and Schoenfeld [4] concerning $\pi(x)$ (see also (12)), we get that there exist at least two different primes q_{1}, q_{2} with $p^{3} / p_{j}<q_{1}, q_{2}<p^{3}$. Hence

$$
q_{k} E_{j, p} \cap E_{j, p^{3}}=q_{1} E_{j, p} \cap q_{2} E_{j, p}=\emptyset \quad(k=1,2) .
$$

Further, there exist primes q_{3}, q_{4} with $p^{2}<q_{3}<2 p^{2}$ and $p^{2} / 2<q_{4}<p^{2}$. By the construction we have

$$
q_{k} E_{j, p} \cap q_{3} E_{2}=q_{k} E_{j, p} \cap q_{4} E_{3}=\emptyset \quad(k=1,2) .
$$

Table 2
Values of $N(p)$.

p	13	17	19	23	29	31	37	41	43	47	53	59	61	67
$N(p)$	2	7	29	77	203	566	1246	2964	6722	14129	29518	62521	101975	89277

If $m \in q_{3} E_{2} \cap q_{4} E_{3}$ then m is divisible by the pairwise different primes q_{3}, q_{4}, p_{j}, thus $m \geq p_{j} q_{3} q_{4}>p_{j} p^{4} / 2 \geq p^{4}$, which is a contradiction. Finally, it is clear that

$$
E_{j, p^{3}} \cap q_{3} E_{2}=E_{j, p^{3}} \cap q_{4} E_{3}=\emptyset .
$$

Summarizing the above facts, we obtain that the sets

$$
q_{1} E_{j, p}, q_{2} E_{j, p}, q_{3} E_{2}, q_{4} E_{3}, E_{j, p^{3}}
$$

are pairwise disjoint subsets of $E_{j, p^{4}}$. This implies that $\left|B_{j, p^{4}}\right|-\left|E_{j, p^{4}}\right| \leq 0$, and our claim is verified also in this case.

Case $\alpha \geq 5$. Since $n=p^{\alpha}<n_{0}$, this case may occur only for $p=p_{i} \leq 37$, i.e. $i \leq 12$. Now the assertion follows by the first column of Table 1.

The next lemma verifies the induction step for integers, which have two different prime divisors and the smaller is at most 53.

Lemma 7. Let $p=p_{i}$ and $q>p$ be primes. If $p \leq 53$ and $n=p^{\alpha} q^{\beta}<n_{0}(\alpha, \beta>0)$, then $S_{i, n}^{*}=S_{i, n}$.

Proof. The idea of the proof is similar to the proof of Lemma 6. We omit the technical details. We remark that an alternative proof can also be given following the method of the next section.

So altogether, in this subsection we have proved the induction step for prime powers and for integers with at most two distinct prime divisors, such that the smaller is at most 53.

4.4. The case where n has three distinct prime factors

Unfortunately, we could not find any meaningful generalization of Lemmata 6 and 7 to integers with at least three prime divisors. By Table 1 the smallest prime factor of a candidate n which could violate Theorem 1 is at least 13 . For each prime $13 \leq p \leq 67$ we computed all integers, which are divisible by p, lie below the bound $\min \left\{n_{0}, n_{1}\right\}$, where n_{1} is given in Table 1 and have three different prime divisors, which are at least p. Their number, $N(p)$ is given in Table 2.

Fix $p=p_{i}$. For each candidate n we computed $\left|B_{i-1, n}\right|-\left|E_{i-1, n}\right|$. For this purpose we used a variant of the wheel algorithm, see e.g. [5]. In our case this listed efficiently the elements of $S_{i-1, n}$ because we know that they are divisible by p_{i} and, on the other hand, relative prime to $2,3,5,7$. For each m produced by the wheel algorithm we computed $\operatorname{gcd}\left(m, \prod_{j=5}^{i-2} p_{j}\right)$. If this is not 1 , then m does not belong to $S_{i-1, n}$, otherwise we added one to the counter of $\left|E_{i-1, n}\right|$ or $\left|B_{i-1, n}\right|$ according as $\operatorname{gcd}(m, n)=1$ or not. We found in each case that $\left|B_{i-1, n}\right|-\left|E_{i-1, n}\right|<0$, which means that n cannot be adjoined to $S_{i-1, n}$. The total computational time on a notebook was about two days, from which one and a half was spent for 61 and 67 and the rest for the other ten primes.

After these calculations, the induction step is established for values of n having three distinct prime divisors such that the smallest is at most 67.

ARTCLE IN PRESS

4.5. The case where n has four distinct prime factors

For later use, we push forward the results obtained in Table 1 also in case of $t=4$. Namely, in this subsection we establish the induction step for those n having $t=4$ distinct prime factors, from which the smallest is 41 or 43 .

So let n be of the form $n=p q_{1} q_{2} q_{3}$, where $p<q_{1}<q_{2}<q_{3}$ are distinct primes, and $p=41$ or 43 . Note that the exponents of these primes in n are necessarily equal to one, otherwise $n>n_{0}$ would hold. In view of the values in the corresponding boxes of Table 1, we may assume that

$$
n \leq \begin{cases}5078938, & \text { if } p=41 \\ 11137433, & \text { if } p=43\end{cases}
$$

since otherwise the induction step works for n. Thus by a simple calculation we obtain that $q_{3} \leq 61$ for $p=41$, and $q_{3} \leq 103$ for $p=43$. For the possible values of n, we check whether it is possible adjoin n to $S_{j, n-1}$ for some j with $2 \leq p_{j}<p$ (p_{j} prime). For this, first we apply the estimates for $S_{i, n-1}$ and $\left|B_{j, n}\right|-\left|E_{j, n}\right|$ given by Lemmata 3 and 4. After this check we are left only with 43 pairs (n, j) such that it is still possible that n gets adjoined to the class $S_{j, n-1}$. There are only 3 such pairs with $p=41$, when we always have $j=12$ (i.e. $p_{j}=37$) and 40 such pairs with $p=43$, when we have 13 (i.e. $p_{j}=41$). Then, for each of the remaining cases, using Maple we count the number of friends and enemies in the class $S_{j, n-1}$ (with $j=12$ and 13 for $p=41$ and 43, respectively). In each case, we find $\left|B_{j, n}\right|-\left|E_{j, n}\right|<0$. This shows that Algorithm 1 cannot adjoin n to the class $S_{j, n-1}$. So the induction step works for the values of n having $t=4$ distinct prime factors, the smallest of which being 41 or 43 .

4.6. Handling the remaining cases

So far we proved the induction step if n has one or at least five different prime factors or

- n has two different prime factors, from which the smaller is at most 53 or
- n has three different prime factors, from which the smallest is at most 67 or
- n has four different prime factors, from which the smallest is at most 43 .

Now we shall consider the remaining values of $n<n_{0}$.

4.6.1. Lower bounds for j with $n \in S_{j, n}^{*}$

Let $n=q_{1}^{\alpha_{1}} \cdots q_{t}^{\alpha_{t}}<n_{0}$ be such that $p_{i}=q_{1}<q_{2} \cdots<q_{t}$ and assume that Algorithm 1 adjoins n to $S_{j, n-1}$. Then $j \leq i$ by part (iv) of Corollary 1 . We give here a lower bound for j provided $t=4$ and $q_{1}>43$, or $t=3$ and $q_{1}>67$. As $\left|S_{i, n-1}\right|>0$ we must have

$$
\left|B_{j, n}\right|-\left|E_{j, n}\right|>0
$$

by part (i) of Corollary 1. By Lemma 4 we have

$$
\left|B_{j, n}\right|-\left|E_{j, n}\right|<\frac{n-1}{p_{j}} \prod_{\ell=1}^{j-1}\left(1-\frac{1}{p_{\ell}}\right)\left(1-2 \prod_{k=1}^{t}\left(1-\frac{1}{q_{k}}\right)\right)+2^{t+j-1}+2^{j-2} .
$$

Thus if

$$
\frac{n-1}{p_{j}} \prod_{\ell=1}^{j-1}\left(1-\frac{1}{p_{\ell}}\right)\left(2 \prod_{k=1}^{t}\left(1-\frac{1}{q_{k}}\right)-1\right)>2^{t+j-1}+2^{j-2}
$$

then $\left|B_{j, n}\right|-\left|E_{j, n}\right|<0$ and n cannot be adjoined to $S_{j, n-1}$. The product $\prod_{\ell=1}^{j-1}\left(1-\frac{1}{p_{\ell}}\right)$ decreases with j and for fixed t the expression $2 \prod_{k=1}^{t}\left(1-\frac{1}{q_{k}}\right)-1$ takes the smallest value if the distinct primes q_{1}, \ldots, q_{t} are as small as permitted. This means

$$
2 \prod_{k=1}^{t}\left(1-\frac{1}{q_{k}}\right)-1 \geq \begin{cases}376783 / 409457, & \text { if } \quad t=3 \\ 7683211 / 8965109, & \text { if } \quad t=4\end{cases}
$$

We have $\prod_{\ell=1}^{11}\left(1-\frac{1}{p_{\ell}}\right)=\frac{13271040}{86822723}$. Thus if $n>9544582$ and $t=4$ then n cannot be adjoined to $S_{j, n-1}$ provided $j \leq 12$. As $47 \cdot 53 \cdot 59 \cdot 67=9846923>9544581$ we proved that if $n \neq n^{\prime}:=47 \cdot 53 \cdot 59 \cdot 61$ has four prime factors then Algorithm 1 may adjoin n to $S_{j, n-1}$ only if $j>12$, i.e. $p_{j} \geq 41$. In the particular case of $n=n^{\prime}$, the above considerations yield that

$$
\left|B_{j, n^{\prime}}\right|-\left|E_{j, n^{\prime}}\right|< \begin{cases}0, & \text { for } j=1, \ldots, 11 \\ 2052, & \text { for } j=12\end{cases}
$$

However, the class of 47, i.e. $S_{14, n-1}$ has more elements than 2052. Indeed, it contains all the numbers of the form $47 q$, with $47 \leq q \leq 53 \cdot 59 \cdot 61, q$ prime. The number of such elements is already 17209 . This shows that for any n having four distinct prime factors all greater than 43 can be adjoined to $S_{j, n-1}$ by Algorithm 1 only if $j>12$, i.e. $p_{j} \geq 41$.

Similarly, we obtain that if $n>318015$ and has three distinct prime factors, then Algorithm 1 may adjoin n to $S_{j, n-1}$ only if $j>9$, i.e. $p_{j} \geq 29$. As $71 \cdot 73 \cdot 79>318015$, we get that this assertion is valid whenever the smallest prime factor of n is at least 71. However, we want to make one step further. Suppose that n is as above, and it is attached to $S_{10, n-1}$. Then similarly as before, we get that $n>838402$ implies that if n has three prime factors, it cannot be adjoined to $S_{10, n-1}$ by Algorithm 1 . Suppose that n has three distinct prime factors from which the smallest is at least 71 , and $n \leq 838402$. This implies that n is of the form $n=q_{1} q_{2} q_{3}$ with $71 \leq q_{1}<q_{2}<q_{3} \leq 157$ primes. There are 128 such values for n. A simple calculation with Maple yields that in case of each such n we have

$$
\left|B_{10, n}\right|-\left|E_{10, n}\right|<S_{i, n-1},
$$

where p_{i} is the smallest prime divisor of n. This, altogether with what we have proved previously, shows that if n has three distinct prime factors from which the smallest is at least 71, then Algorithm 1 may adjoin n to $S_{j, n-1}$ only if $j>10$, i.e. $p_{j} \geq 31$.

4.6.2. Completing the proof of Theorem 1

Proposition 1. Assume that one of the following properties is valid:

- n has two different prime factors, from which the smallest is at least 59 ,
- n has three different prime factors, from which the smallest is at least 71,
- n has four different prime factors, from which the smallest is at least 47 .

Then (3) is valid for n.
Proof. Assume first that n has precisely four prime divisors, i.e. n is of the form $n=$ $q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} q_{3}^{\alpha_{3}} q_{4}^{\alpha_{4}}$ with $47 \leq q_{1}<q_{2}<q_{3}<q_{4}$, and positive integers $\alpha_{1}, \ldots, \alpha_{4}$. Then by what we have proved in Section 4.6.1, it is sufficient to show that $n \notin S_{\ell, n}^{*}$ with $41 \leq p_{\ell}<q_{1}$. A simple check shows that then $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=1$ must be valid, and any friend of n in $S_{\ell, n-1}$ has
at most four prime factors, counted with multiplicity. Further, we must have $p_{\ell} \leq 89$, otherwise $n>n_{0}$ would hold. We shall split the set of friends of n in $S_{\ell, n-1}$ into two parts. Write t_{1} and t_{2} for the first two primes $>p_{\ell}$, distinct from the q_{i}. First consider the friends of n of the form $p_{\ell} q_{i} r_{1} r_{2}$ such that r_{1}, r_{2} are primes with $p_{\ell}<r_{1} \leq r_{2}$, distinct from the q_{i} and t_{1}, t_{2}. Further, we also require that

$$
p_{\ell} p_{\ell+6} r_{1} r_{2} \leq n
$$

To such friends of n in $S_{\ell, n-1}$, we can adjoin the four enemies

$$
p_{\ell} r_{1} r_{2}, p_{\ell}^{2} r_{1} r_{2}, p_{\ell} t_{1} r_{1} r_{2}, p_{\ell} t_{2} r_{1} r_{2}
$$

of n in $S_{\ell, n-1}$. Indeed, observe that by our assumptions, all the four numbers above are distinct elements of $S_{\ell, n-1}$. Further, for distinct friends of n of the shape $p_{\ell} q_{i} r_{1} r_{2}$, these four numbers are also distinct.

Now we estimate the number of friends of n in $S_{\ell, n-1}$ not of the above shape. For this, write x_{1} for the number of friends of n in $S_{\ell, n-1}$ of the form $p_{\ell} q_{i} r_{1} r_{2}$, where r_{1}, r_{2} are primes $\geq p_{\ell}$, violating one of the above requirements. First observe that the number of such friends with one of r_{1}, r_{2} in $\left\{p_{\ell}, t_{1}, t_{2}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$ is at most $28\left(\pi\left(n / p_{\ell}^{3}\right)-\ell+1\right)$. Further, for any $i=1,2,3,4$ the number of friends of n of the form $p_{\ell} q_{i} r_{1} r_{2}$ with $p_{\ell} p_{\ell+6} r_{1} r_{2}>n$, in view of

$$
p_{\ell}^{2} r_{1} r_{2} \leq n
$$

is bounded by the number of integers in the interval ($n / p_{\ell} p_{\ell+6}, n / p_{\ell}^{2}$], not divisible by 2 and 3 . So we obtain that

$$
x_{1} \leq 28\left(\pi\left(n / p_{\ell}^{3}\right)-\ell+1\right)+4\left(n / p_{\ell}^{2}-n / p_{\ell} p_{\ell+6}\right) / 3+6
$$

Putting x_{2} for the number of friends of n in $S_{\ell, n-1}$ of the form $p_{\ell} q_{i} r_{1}$, where r_{1} is a prime with $r_{1} \geq p_{\ell}$, in view of $r_{1} \leq n / p_{\ell}^{2}$ we get

$$
x_{2} \leq 4\left(\pi\left(n / p_{\ell}^{2}\right)-\ell+1\right)
$$

Finally, n also has the four friends $p_{\ell} q_{i}(i=1,2,3,4)$ in $S_{\ell, n-1}$.
So to prove our claim in this case, it is sufficient to show that

$$
x_{1}+x_{2}+4
$$

is less than the number of enemies of n in $S_{\ell, n-1}$ of the form $p_{\ell q}$, where q is a prime distinct from the q_{i}. The number of such enemies of n is clearly at least $\pi\left(n / p_{\ell}\right)-\ell-3$. So in view of the inequalities

$$
\begin{equation*}
\frac{x}{\log (x)}\left(1+\frac{1}{2 \log (x)}\right)<\pi(x)<\frac{x}{\log (x)}\left(1+\frac{3}{2 \log (x)}\right) \tag{12}
\end{equation*}
$$

holding for any $x \geq 59$ (see Rosser and Schoenfeld [4]), we only need to check that

$$
\begin{aligned}
f(n):= & \frac{4}{3}\left(\frac{n}{p_{\ell}^{2}}-\frac{n}{p_{\ell} p_{\ell+6}}\right)+10+28\left(\frac{u_{1}}{\log \left(u_{1}\right)}\left(1+\frac{3}{2 \log \left(u_{1}\right)}\right)-\ell+1\right) \\
& +4\left(\frac{u_{2}}{\log \left(u_{2}\right)}\left(1+\frac{3}{2 \log \left(u_{2}\right)}\right)-\ell+1\right) \\
& -\frac{v_{1}}{\log \left(v_{1}\right)}\left(1+\frac{1}{2 \log \left(v_{1}\right)}\right)+\ell+3<0
\end{aligned}
$$

holds with $u_{1}=n / p_{\ell}^{3}, u_{2}=n / p_{\ell}^{2}, v_{1}=n / p_{\ell}$ for $41 \leq p_{\ell} \leq 89$. (Note that we have $u_{1}, u_{2}, v_{1} \geq 59$.) We used Maple to check the assertion. It turned out that for any possible value of p_{ℓ}, the function $f(n)$ is monotone decreasing on the interval [n_{1}, n_{0}] with $n_{1}=$ $p_{\ell+1} p_{\ell+2} p_{\ell+3} p_{\ell+4}$, and $f\left(n_{1}\right)<0$. This proves our claim in this case.

Assume next that n has precisely three prime divisors, i.e. n is of the form $n=q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} q_{3}^{\alpha_{3}}$ with distinct primes q_{1}, q_{2}, q_{3}, and positive integers $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Then by what we have proved in Section 4.6.1, it is sufficient to show that $n \notin S_{\ell, n}^{*}$ with $31 \leq p_{\ell}<q_{1}$. A simple check shows that then any friend of n in $S_{\ell, n-1}$ has at most five prime factors, counted with multiplicity. Further, we must have $p_{\ell} \leq 463$, otherwise $n>n_{0}$ would hold. We shall split the set of friends of n in $S_{\ell, n-1}$ into two parts. Write t_{1} for the first prime $>p_{\ell}$, distinct from the q_{i}. First consider the friends of n in $S_{\ell, n-1}$ of the form $p_{\ell} q_{i} r_{1} r_{2}$ such that r_{1}, r_{2} are primes with $p_{\ell}<r_{1} \leq r_{2}$, distinct from the q_{i} and t_{1}. Further, we also require that

$$
p_{\ell} p_{\ell+4} r_{1} r_{2} \leq n .
$$

To such friends of n in $S_{\ell, n-1}$, we can adjoin the three enemies

$$
p_{\ell} r_{1} r_{2}, p_{\ell}^{2} r_{1} r_{2}, p_{\ell} t_{1} r_{1} r_{2}
$$

of n in $S_{\ell, n-1}$. Indeed, observe that by our assumptions, all the three numbers above are distinct elements of $S_{\ell, n-1}$. Further, for distinct friends of n of the shape $p_{\ell} q_{i} r_{1} r_{2}$, these three numbers are also distinct.

Now we estimate the number of friends of n in $S_{\ell, n-1}$ not of the above shape. For this, write x_{1} for the number of friends of n in $S_{\ell, n-1}$ of the form $p_{\ell} q_{i} r_{1} r_{2}$, where r_{1}, r_{2} are primes $\geq p_{\ell}$, violating one of the above requirements. First observe that the number of such friends with one of r_{1}, r_{2} in $\left\{p_{\ell}, t_{1}, q_{1}, q_{2}, q_{3}\right\}$ is at most $15\left(\pi\left(n / p_{\ell}^{3}\right)-\ell+1\right)$. Further, for each $i=1,2,3,4$ the number of friends of n of the form $p_{\ell} q_{i} r_{1} r_{2}$ with $p_{\ell} p_{\ell+4} r_{1} r_{2}>n$, in view of

$$
p_{\ell}^{2} r_{1} r_{2} \leq n,
$$

is bounded by the number of integers in the interval ($n / p_{\ell} p_{\ell+4}, n / p_{\ell}^{2}$], not divisible by 2 and 3 . So we obtain that

$$
x_{1} \leq 15\left(\pi\left(n / p_{\ell}^{3}\right)-\ell+1\right)+n / p_{\ell}^{2}-n / p_{\ell} p_{\ell+4}+4 .
$$

Write now x_{2} for the number of friends of n in $S_{\ell, n-1}$ of the form $p_{\ell} q_{i} r_{1} r_{2} r_{3}$, where $r_{1} \leq r_{2} \leq r_{3}$ are primes $\geq p_{\ell}$. As one can easily check, such friends of n may exist only if $p_{\ell}=31,37$ and $q_{i} \leq n_{0} / p_{\ell}^{4}(i=1,2,3,4)$. Then since $r_{3} \leq n / p_{\ell}^{4}$, we can easily bound x_{2} in these cases. By checking the possibilities with Maple, we get

$$
x_{2} \leq y_{\ell}:= \begin{cases}83, & \text { if } p_{\ell}=31, \\ 11, & \text { if } p_{\ell}=37 \\ 0, & \text { otherwise }\end{cases}
$$

Putting x_{3} for the number of friends of n in $S_{\ell, n-1}$ of the form $p_{\ell} q_{i} r_{1}$, where r_{1} is a prime with $r_{1} \geq p_{\ell}$, in view of $r_{1} \leq n / p_{\ell}^{2}$ we get

$$
x_{3} \leq 3\left(\pi\left(n / p_{\ell}^{2}\right)-\ell+1\right) .
$$

Finally, n also has the three friends $p_{\ell} q_{i}(i=1,2,3)$ in $S_{\ell, n-1}$.
So to prove our claim in this case, it is sufficient to show that

$$
x_{1}+x_{2}+x_{3}+3
$$

is less than the number of enemies of n in $S_{\ell, n-1}$ of the form $p_{\ell} q$, where q is a prime distinct from the q_{i}. The number of such enemies of n is clearly at least $\pi\left(n / p_{\ell}\right)-\ell-3$. So in view of the inequalities (12), we only need to check that

$$
\begin{aligned}
g(n):= & \frac{n}{p_{\ell}^{2}}-\frac{n}{p_{\ell} p_{\ell+4}}+7+15\left(\frac{u_{1}}{\log \left(u_{1}\right)}\left(1+\frac{3}{2 \log \left(u_{1}\right)}\right)-\ell+1\right)+y_{\ell} \\
& +3\left(\frac{u_{2}}{\log \left(u_{2}\right)}\left(1+\frac{3}{2 \log \left(u_{2}\right)}\right)-\ell+1\right) \\
& -\frac{v_{1}}{\log \left(v_{1}\right)}\left(1+\frac{1}{2 \log \left(v_{1}\right)}\right)+\ell+3<0
\end{aligned}
$$

holds with $u_{1}=n / p_{\ell}^{3}, u_{2}=n / p_{\ell}^{2}, v_{1}=n / p_{\ell}$ for $31 \leq p_{\ell} \leq 463$. (One can readily verify that $u_{1}, u_{2}, v_{1} \geq 59$, so we can apply (12) without any problem.) This assertion can be checked by Maple, in a similar way as before. We obtain that the statement is valid also in this case.

Finally, assume that n is of the form $q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}}$ with $q_{2}>q_{1} \geq 59$, and positive integers α_{1}, α_{2}. Let $p_{\ell}<q_{1}$. Then the number of friends of n in $S_{\ell, n-1}$ is at most

$$
\frac{n / p_{\ell}}{59}+\frac{n / p_{\ell}}{61} .
$$

On the other hand, every number of the form $p_{\ell} q$ with $q \geq p_{\ell}$ prime, distinct from q_{1}, q_{2}, is an enemy of n in $S_{\ell, n-1}$, provided that $p_{\ell} q<n$. By (12) and $p_{\ell} \nmid n$ we get that the number of such enemies of n is at least

$$
\pi\left(n / p_{\ell}\right)-\ell-1>\frac{n / p_{\ell}}{\log \left(n / p_{\ell}\right)}\left(1+\frac{1}{2 \log \left(n / p_{\ell}\right)}\right)-\ell-1 .
$$

Put $x=n / p_{\ell}$. Observe that we have $59 \leq x \leq n_{0}$. Note that Theorem 3 of [4] implies $\ell \leq 2 \log \left(p_{\ell}\right)$, which by $n>p_{\ell}^{2}$ gives $\ell<2 \log (x)$. Consider the function

$$
h(x):=\frac{x}{59}+\frac{x}{61}+2 \log (x)+1-\frac{x}{\log (x)}\left(1+\frac{1}{2 \log (x)}\right) .
$$

A simple calculation with Maple assures that $h(x)$ is negative on the interval [59, n_{0}]. This shows that $S_{\ell, n-1}$ contains more enemies than friends of n, implying $n \notin S_{\ell, n}^{*}$. Hence our claim follows also in this case.

Since Proposition 1 covers all the cases not considered in the preceding subsections, the proof of Theorem 1 is now complete.

Acknowledgment

The authors are very much grateful to the referee for the careful reading and for the many helpful suggestions, which helped to improve the quality of the presentation considerably.

References

[1] M. Bakó, L. Aszalós, Combinatorial optimization methods for correlation clustering, in: D. Dumitrescu, Rodica Ioana Lung, Ligia Cremene (Eds.), Coping with Complexity, Casa Cartii de Stiinta, Cluj-Napoca, 2011, pp. 2-12.
[2] N. Bansal, A. Blum, S. Chawla, Correlational clustering, Mach. Learn. 56 (2004) 89-113.

ARTICLE IN PRESS

[3] J.E. Nymann, On the probability that k positive integers are relatively prime, J. Number Theory 4 (1972) 469-473.
[4] J.B. Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962) 64-94.
[5] H.C. Williams, Primality testing on a computer, Ars Combin. 5 (1978) 127-185.

[^0]: ${ }^{*}$ Research supported in part by the OTKA grants NK104208, NK101680, K100339 and K115479.

 * Corresponding author.

 E-mail addresses: Aszalos.Laszlo@inf.unideb.hu (L. Aszalós), hajdul@science.unideb.hu (L. Hajdu), Petho.Attila@inf.unideb.hu (A. Pethő).

