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a Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary
b Department of Computer Science, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary

Received 17 March 2015; received in revised form 17 September 2015; accepted 22 September 2015

Communicated by R. Tijdeman

Abstract

Let A be a finite set, and let a symmetric binary relation be given on A. The goal of correlation clustering
is to find a partition of A, with minimal conflicts with respect to the relation given. In this paper we
investigate correlation clustering of subsets of the positive integers, based upon a relation defined by the
help of the greatest common divisor.
c⃝ 2015 Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
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1. Introduction and setting the problem

Correlation clustering is a concept originated in machine learning. It was introduced in Bansal
et al. [2]; that paper gives a good overview of the mathematical background of the topic, as well.
In [2] the problem was introduced through a graph model. Here we use an equivalent formulation,
which is more appropriate for our purposes.

Let A be a finite non-empty set, and let∼ be a symmetric binary relation on A. Consider a par-
tition P of A. Two distinct elements a, b ∈ A are in conflict with respect to the partition P either
if they belong to the same class of P, but a � b, or they belong to different classes of P, although
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a ∼ b. The goal of correlation clustering is to find a partition with minimal number of conflicts.
Note the special feature of this clustering that the number of clusters is not specified in advance.

As one would expect, the structure of an optimal clustering should heavily depend on the
relation ∼ defined on A. Note that in particular, if we assume that ∼ is transitive, then we
may consider ∼ to be an equivalence relation on A. (Since the reflexive property does not have
any effect on the number of conflicts.) Then the partition induced by ∼ is clearly an optimal
clustering. The situation is much more interesting (and important) if ∼ is not transitive.

Being motivated by the above remarks, in this paper we work with subsets of the set of
positive integers, and we choose∼ to be a relation based upon the greatest common divisor. More
precisely, for n ≥ 2 let An be the set of positive integers between 2 and n, and for a, b ∈ An with
a ≠ b let a ∼ b if and only if gcd(a, b) > 1. (Obviously, it would have no point to include 1 into
An .) Note that the behavior of the gcd among the first n positive integers has been investigated
from many aspects; see e.g. the paper of Nymann [3].

Bakó and Aszalós [1] have made several experiments on the set An under∼. They discovered
that the classes of a certain “locally optimal” clustering have regular structures. In the sequel
denote by pi the i th prime, i.e., p1 = 2, p2 = 3, . . . . Set

Si,n = {m : 2 ≤ m ≤ n, pi |m, p j - m ( j < i)}.

That is, Si,n is the set of integers between 2 and n, which are divisible by pi , but coprime to the
smaller primes.

Remark 1. For any indices i and i ′ with 1 ≤ i < i ′ we have |Si,n| ≥ |Si ′,n|, for every n with
n ≥ 2. Indeed, if m ∈ Si ′,n , then we can write m = tpαi ′ with some positive integers t and α such
that p j - t for 1 ≤ j ≤ i ′. Since pi < pi ′ , by m ≤ n we have that tpαi ∈ Si,n . Thus the mapping
f : Si ′,n → Si,n defined by f (tpαi ′) = tpαi is an injection. Hence the assertion follows.

Bakó and Aszalós found that

An =

∞
j=1

S j,n (1)

is highly likely to be an optimal correlation clustering for n ≤ 500. For brevity, here and later
on we use the symbol ∪ for the standard union of sets, while


is used for building clusterings

from sets. That is, An above is a set whose elements are the sets S j,n . Notice that S j,n = ∅ for
all j large enough, so An is actually finite.

The aim of this paper is to show that for n0 = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 = 111 546 435 the
decomposition (1) is not optimal. We prove that the number of conflicts in

An = (S1,n0 ∪ {n0})

(S2,n0 \ {n0})

∞
j=3

S j,n (2)

is less than in (1) with n = n0. Unfortunately, we are not able to verify that (1) is optimal for
n < n0. However, we can prove that a natural greedy algorithm (Algorithm 1), presented in the
next section, produces the clustering (1) for n < n0, but (2) for n = n0. Thus our results shed
some light on the difficulty to find optimal clusterings of large sets.

Applying Algorithm 1 for An and ∼, the results behave regularly until a certain large point,
but then the regularity disappears. From our construction it will be clear that n0 is the first,
but not at all the last integer, which behaves irregularly in this sense. For example the numbers
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3n0, 5n0, 9n0, . . . are odd and are divisible by 3, but adjoining them to S1,n causes less conflicts
than adjoining them to S2,n , with n = 3n0 − 1, 5n0 − 1, 9n0 − 1, respectively. Denote by S∗i,n
the class, which contains pi and is produced by Algorithm 1. We have no idea whether these
sets have some structure and what is their asymptotic behavior. For example, we do not know
whether the limit limn→∞ |S∗1,n|/n exists, and if so, whether limn→∞ |S∗1,n|/n = 1.

The paper is organized as follows. In Section 2 we present Algorithm 1 and the main theorem.
Section 3 is devoted to the proof of combinatorial lemmata and in the last section we prove the
theorem. In our proofs, besides certain combinatorial considerations, we apply arguments and
estimates from prime number theory, e.g. we use bounds of Rosser and Schoenfeld [4].

2. Main result

Since the number of partitions of n elements grows exponentially, it is not surprising that
to find an optimal correlational clustering is an NP-hard problem (see [2]). To find an ap-
proximation of the optimal solution, it is natural to use some greedy algorithm. Working with
An = {2, 3, . . . , n} and ∼, we use the following strategy. The optimal clustering for {2} is itself.
Assume that we have a partition of An−1 (n > 2), and adjoin n to that class, which causes the
least number of new conflicts. The result is a “locally optimal” clustering, which is not necessar-
ily optimal globally. We formulate this method as Algorithm 1.

Algorithm 1 Natural greedy algorithm
Require: an integer n ≥ 2
Ensure: a partition P of An

1: P ← {{2}};
2: if n = 2 then return P
3: end if
4: m ← 3
5: while m ≤ n do
6: P M ← P ∪ {{m}}
7: M ← CONFLICTS(P M ,m) ◃ the number of conflicts with respect to the partition P M

caused by the pairs (m, a), a < m
8: C ← number of classes in P
9: j ← 1

10: while j ≤ C do
11: O ← OP( j,P) ◃ OP( j,P) denotes the j th class in the partition P .
12: P1 ← P \ {O}
13: P1 ← P1 ∪ {O ∪ {m}}
14: M1 ← NUPAIR(P1,m) ◃ the number of pairs (m, a) with a < m causing a conflict

in the partition P1
15: if M1 < M then
16: M ← M1
17: P M ← P1
18: end if
19: end while
20: end while
21: return P M
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Starting with a partition of An−1 this algorithm establishes a partition of An such that the
conflicts caused by n is minimal. The output of Algorithm 1 on the input n is denoted by G(n).
It is a partition of An . It is easy to see that

G(2) = {{2}}

G(3) = {{2}, {3}}

G(4) = {{2, 4}, {3}}

G(5) = {{2, 4}, {3}, {5}}

G(6) = {{2, 4, 6}, {3}, {5}}
...

G(15) = {{2, 4, 6, 8, 10, 12, 14}, {3, 9, 15}, {5}, {7}, {11}, {13}}.

Moreover, one can also check that these partitions are optimal clusterings of An for n =
2, 3, . . . , 15.

Our main result is the following.

Theorem 1. If n < n0 = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 = 111 546 435 then

G(n) =
∞
j=1

S j,n (3)

holds. However, we have

G(n0) = (S1,n0 ∪ {n0})

(S2,n0 \ {n0})

∞
j=3

S j,n0 . (4)

We shall prove Theorem 1 inductively. We explain our method of proof in the beginning of
Section 4.

3. Auxiliary results

To prove the main theorem we need some preparation. Throughout this paper the number
of elements of a set A will be denoted by |A|. In the first lemma we characterize that class of
G(n − 1) to which Algorithm 1 adjoins n.

Lemma 1. Let n > 2 be an integer. Write G(n − 1) = {P1, . . . , PM } and set PM+1 = ∅. For
1 ≤ j ≤ M let

U j = {m : m ∈ Pj , gcd(m, n) = 1}

and

V j = {m : m ∈ Pj , gcd(m, n) > 1}.

Define UM+1 = VM+1 = ∅. Let J be the smallest index for which the difference |U j |−|V j | ( j =
1, . . . ,M + 1) is maximal. Then G(n) = {P ′1, . . . , P ′M+1} such that

P ′j =


Pj ∪ {n}, if j = J,
Pj , otherwise.
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Proof. Let K j denote the number of new conflicts, which arise adjoining n to Pj ( j = 1, . . . ,
M + 1). Then

K j = |U j | +

M+1
k=1
k≠ j

|Vk |.

Algorithm 1 adjoins n to that PĴ for which K Ĵ is minimal and if there are more indices j with

minimal K j then Ĵ is minimal among them. This is equivalent to

|VĴ | − |U Ĵ | ≥ |Vm | − |Um | (m = 1, . . . ,M + 1).

Thus |Vm | − |Um | (m = 1, . . . ,M + 1) assumes its maximal value at m = Ĵ with Ĵ ≤ m if the
equality sign holds. Hence J = Ĵ and the lemma is proved. �

For positive integers j and n ≥ 2 put

B j,n = {m : m ∈ S j,n−1, gcd(m, n) > 1}

and

E j,n = {m : m ∈ S j,n−1, gcd(m, n) = 1}.

Note that by the definition of S j,n−1, the sets B j,n and E j,n are subsets of {1, . . . , n − 1} for
all j and n. The elements of B j,n and E j,n are called the friends and enemies of n in S j,n−1,
respectively.

Corollary 1. Let n ≥ 2. If n > 2, then suppose that for all i = 1, . . . ,M we have S∗i,n−1 =

Si,n−1, that is

G(n − 1) = {S1,n−1, . . . , SM,n−1}.

Here pM is the largest prime ≤ n − 1. Then the following assertions are true.

(i) Algorithm 1 adjoins n to that SJ with minimal J for which |BJ,n| − |E J,n| ≥ |B j,n| −

|E j,n| ( j = 1, . . . ,M + 1).
(ii) If n is even, then S∗1,n = S1,n .

(iii) If n is a prime, then {n} ∈ G(n).
(iv) Let pi be the smallest prime factor of n. Then n ∈ S∗j,n implies j ≤ i .

Proof. The assertions hold for n = 2. For n > 2 by our assumption we can write

G(n − 1) = {S1, . . . , SM },

where, for simplicity, we set S j = S j,n−1 ( j = 1, . . . ,M). Put SM+1 = ∅.
(i) Observe that now the sets U j and V j defined in the proof of Lemma 1 coincide with E j,n

and B j,n , respectively. Hence the statement immediately follows.
(ii) If n is even with n > 2, then B1,n = S1, thus |B1,n| ≥ n/2 − 1. If 2 ≤ j ≤ M then

|B j,n| ≤ [(n − 1)/p j ] < n/3. As n/2− 1 > n/3 for n ≥ 8 we have

|B1,n| − |E1,n| > |B j,n| − |E j,n| ( j = 2, . . . ,M + 1).

Hence Algorithm 1 adjoins n to S1, i.e., to the class of even numbers.
(iii) Let n be an odd prime. By part (i) of Corollary 1 Algorithm 1 adjoins n to that SJ with

minimal J for which |B j,n| − |E j,n| ( j = 1, . . . ,M + 1) is maximal.
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Since n is a prime, B j,n = ∅ for all j = 1, . . . ,M . Thus |B j,n| − |E j,n| < 0 ( j = 1, . . . ,M),
but |BM+1,n| − |EM+1,n| = 0. Hence n will be adjoined to the empty set, so it will form a class
in G(n) alone.

(iv) We may assume that n is odd and composite. Let n = qα1
1 · · · q

αt
t , where q1 < · · · <

qt are odd primes and α1, . . . , αt are positive integers. We obviously have {q1, . . . , qt } ⊆

{p1, . . . , pM }.
Suppose that q1 = pi . Then, since we assumed that S∗i,n−1 = Si,n−1 = Si , we have Bi,n = Si

and Ei,n = ∅. Hence |Bi,n| − |Ei,n| = |Si |.
If j > i then |B j,n| − |E j,n| ≤ |S j | ≤ |Si |. (The latter inequality follows from Remark 1

after the definition of the Si,n .) Thus, by part (iv) of Corollary 1, if n will be adjoined to S j then
j ≤ i . �

The next lemma describes a simple, but useful property of the integer part function.

Lemma 2. Let q1, . . . , qt be pairwise different odd primes, α1, . . . , αt positive integers. Let u be
a positive integer coprime to qi (i = 1, . . . , t) and n = qα1

1 · · · q
αt
t . If {i1, . . . , ik} ⊆ {1, . . . , t}

then 
n − 1

uqi1 · · · qik


=

 n
qi1 ···qik

− 1

u


. (5)

In particular, if u = 2 then
n − 1

2qi1 · · · qik


=

n − qi1 · · · qik

2qi1 · · · qik

=
n

2qi1 · · · qik

−
1
2
. (6)

Proof. We have
n − 1

uqi1 · · · qik


=

n − m

uqi1 · · · qik

,

where m is the smallest positive integer such that the fraction on the right hand side is an integer.
As qi j |n, we must have qi j |m ( j = 1, . . . , k) as well, which implies qi1 · · · qik |m. This proves
(5).

If u = 2 then m = qi1 · · · qik is the smallest positive integer with the required property,
because n − m is even. �

The next lemma gives a good approximation for the size of Si,u .

Lemma 3. Let u be an odd integer. Then we have |S1,u | =
u−1

2 . Further, if pi is an odd prime,
then  |Si,u | −

u

pi

i−1
ℓ=1


1−

1
pℓ

 ≤ 2i−2.

Proof. The first statement is obvious. To prove the second one we start with the identity

Si,u = {m : m ≤ u, pi |m, pℓ - m for all 1 ≤ ℓ < i}

= {m : m ≤ u, pi |m} \
i−1
ℓ=1

{m : m ≤ u, pi · pℓ|m}.
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In the rest of the proof we assume that the elements of the occurring sets are at most u. The law
of inclusion and exclusion implies

|Si,u | =

i−1
ℓ=0

(−1)ℓ


1≤i1<···<iℓ<i

|{m : pi · pi1 · · · piℓ |m}|.

Thus

|Si,u | =

i−1
ℓ=0

(−1)ℓ


1≤i1<···<iℓ<i


u

pi · pi1 · · · piℓ


. (7)

Using x − 1 < [x] ≤ x we obtain

−

i−1
ℓ=0

ℓ is even


i − 1
ℓ


≤ |Si,u | −

u

pi

i−1
ℓ=0


1−

1
pℓ


<

i−1
ℓ=0

ℓ is odd


i − 1
ℓ


.

As
i−1
ℓ=0

ℓ is even


i − 1
ℓ


=

i−1
ℓ=0

ℓ is odd


i − 1
ℓ


= 2i−2,

the lemma is proved. �

In the next lemma we prove an estimate for |B j,n| − |E j,n|.

Lemma 4. Let q1 < · · · < qt be odd primes, α1, . . . , αt positive integers and n = qα1
1 · · · q

αt
t .

Let j ≥ 2 be such that p j < q1. Then |B j,n| − |E j,n| −
n − 1

p j

j−1
ℓ=1


1−

1
pℓ


1− 2

t
k=1


1−

1
qk

 ≤ 2t+ j−1
+ 2 j−2.

Proof. As |B j,n| + |E j,n| = |S j,n−1| we have

|B j,n| − |E j,n| = 2|B j,n| − |S j,n−1| = |S j,n−1| − 2(|S j,n−1| − |B j,n|). (8)

For |S j,n−1| we can use the estimations of Lemma 3, thus we have to deal only with the second
summand. As p j < q for all prime factors q of n, we have

B j,n =

t
ℓ=1

{m : m ∈ S j,n−1, qℓ|m}.

Using again the law of inclusion and exclusion we get

|B j,n| =

t
ℓ=1

(−1)ℓ−1


1≤ j1<···< jℓ≤t

|{m : m ∈ S j,n−1, q j1 · · · q jℓ |m}|.

Set U j,ℓ(q j1 , . . . , q jℓ) = U j,ℓ = {m : m ∈ S j,n−1, q j1 · · · q jℓ |m}. Then

U j,ℓ = {m : m ≤ n − 1, p j · q j1 · · · q jℓ |m} \
j−1
i=1

{m : pi p j q j1 · · · q jℓ |m}.
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For the number of elements of U j,ℓ by the law of inclusion and exclusion we obtain

|U j,ℓ| =

j−1
i=0

(−1)i


1≤h1<···<hi< j


n − 1

p j · q j1 · · · q jℓ ph1 · · · phi


.

Combining these formulae we get

|B j,n| =

t
ℓ=1

(−1)ℓ−1


1≤ j1<···< jℓ≤t

j−1
i=0

(−1)i


1≤h1<···<hi< j


n − 1

p j · q j1 · · · q jℓ ph1 · · · phi


.

The last formula together with (7) implies

|S j,n−1| − |B j,n| =

t
ℓ=0

(−1)ℓ


1≤ j1<···< jℓ≤t

j−1
i=0

(−1)i

×


1≤h1<···<hi< j


n − 1

p j · q j1 · · · q jℓ ph1 · · · phi


.

Changing the order of the summation we get

|S j,n−1| − |B j,n| =

j−1
i=0

(−1)i


1≤h1<···<hi< j

t
ℓ=0

(−1)ℓ

×


1≤ j1<···< jℓ≤t


n − 1

p j · q j1 · · · q jℓ ph1 · · · phi


.

Put

C1 :=

t
ℓ=0

(−1)ℓ


1≤ j1<···< jℓ≤t


n − 1

p j · q j1 · · · q jℓ ph1 · · · phi



−
n − 1

p j · ph1 · · · phi

t
k=1


1−

1
qk


and observe that |C1| ≤ 2t−1. We can write

|S j,n−1| − |B j,n| =
n − 1

p j

t
k=1


1−

1
qk

 j−1
ℓ=1


1−

1
pℓ


+ C2,

where

C2 =

j−1
i=0

(−1)i


1≤h1<···<hi< j

C1.

Hence |C2| ≤ 2t+ j−2. This together with Lemma 3 and (8) gives

|B j,n| − |E j,n| =
n − 1

p j

j−1
ℓ=1


1−

1
pℓ


− 2

n − 1
p j

t
k=1


1−

1
qk

 j−1
ℓ=1


1−

1
pℓ


+ C3,

where |C3| ≤ 2t+ j−1
+ 2 j−2. Thus the statement follows. �
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The next lemma plays a key role in the proof of Theorem 1. In contrast to the classes of odd
numbers, it is possible to give the exact values of the difference of the number of friends and
enemies of n in S1,n−1.

Lemma 5. Let n = qα1
1 · · · q

αt
t with q1 < · · · < qt odd primes and α1, . . . , αt positive integers.

Then

|E1,n| =
ϕ(n)

2
=

n

2


1−

1
q1


· · ·


1−

1
qt


,

|B1,n| =
n − 1

2
− |E1,n|.

Proof. The statement could be proved by repeating the proof of Lemma 4 and using Lemma 2.
However, there is a much more direct and simple way, which we present.

Let H1 = {h : 1 ≤ h ≤ n−1
2 , gcd(h, n) = 1} and H2 = {h : n+1

2 ≤ h < n, gcd(h, n) = 1}.
Then H1 and H2 are disjoint and their union is H = {h : 1 ≤ h < n, gcd(h, n) = 1}. Plainly
|H | = ϕ(n). The mapping ψ : h → n − h is bijective between H1 and H2. Moreover, ψ(h) is
odd if and only if h is even. Thus the number of even positive integers, which are coprime to n
is ϕ(n)/2. As E1,n is exactly the set of even integers, less than and coprime to n, the proof is
complete. �

4. Proof of Theorem 1

Despite of the lengthy preparation, the proof of Theorem 1 is complicated. The hard part is to
prove that (3) is true for n < n0. This is done by a combination of comparison of the estimates
of Lemmata 3 and 4, some computer search and finally application of a tool from prime number
theory.

To prove Theorem 1, we apply induction. We shall always assume, without any further
mentioning, that n is a positive integer with n ≤ n0, and that Theorem 1 holds for all m with
2 ≤ m < n. (Note that the theorem is valid for n = 2.) That is, assuming that for all such m we
have

G(m) = {S1,m, . . . , Su,m},

we prove that S∗i,n = Si,n for all i too, i.e.

G(n) = {S1,n, . . . , Sv,n}

is also valid (with the appropriate u and v). In many cases it will be sufficient to use the induction
hypothesis only for m = n − 1.

By part (ii) of Corollary 1, Theorem 1 is true for even n. In case of odd n, we start with the
easy part, by showing that Theorem 1 holds if 3 | n. Hence, in particular, we check (4) in the
next subsection.

4.1. The case where n is odd and 3 | n

Suppose that the smallest prime factor of n is q1 = 3. Then by Lemma 5 we have |B1,n| −

|E1,n| =
n−1

2 − ϕ(n). A simple computation shows that |S2| =
n−3

6 .
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By part (i) of Corollary 1, n is adjoined to S1 precisely when |S2| ≤ |B1,n| − |E1,n|. This
inequality implies n−3

6 ≤
n−1

2 − ϕ(n), which is equivalent to ϕ(n) < n
3 . Using the explicit form

of ϕ(n) and dividing by n we get


1− 1
3


·


1− 1

q2


· · ·


1− 1

qt


≤

1
3 . Thus Algorithm 1 adjoins

n to S1 if and only if
1−

1
q2


· · ·


1−

1
qt


≤

1
2
. (9)

Inequality (9) is independent of the exponents α1, . . . , αt , and for fixed t the left hand side
of (9) is minimal if q1, . . . , qt are consecutive odd primes starting with q1 = 3. Using these
observations, a simple computation shows that (9) does not hold for odd n < n0 such that 3 | n,
however, n0 satisfies (9).

Hence the induction step is proved for odd n with 3 | n.

Remark 2. An analogous computation shows that n1 = 5 · p4 · · · p14 = 2 180 460 221 945 005
is a candidate to be the smallest odd integer, which is not divisible by 3 and is adjoined
to S1. However, as n1 is much larger than n0 and many odd integers between n0 and n1,
e.g. 3n0, 5n0, 9n0, . . . are adjoined to S1,3n0−1, S1,5n0−1, S1,9n0−1, respectively, we are not sure
whether for example n′1 = 5 · p4 · · · p13 will belong to S∗1,n′1

, S∗2,n′1
or S∗3,n′1

.

4.2. The case where n has middle sized prime factors

Let n < n0 and denote by p and t the smallest prime divisor of n and the number of distinct
prime divisors of n, respectively. Note that if p ≥ 37 then since 37 · 41 · 43 · 47 · 53 > n0, the
number of distinct prime factors of n is at most four. In this subsection we prove the induction
step for the cases where

• p ≤ 11 and t ≥ 3 or
• p ≤ 37 and t ≥ 4.

By our remark above, in the second case this establishes the validity of the induction step for all
n with t ≥ 5.

Let n = qα1
1 · · · q

αt
t < n0 be such that pi = q1 < q2 · · · < qt . For i ≤ 2 the induction step is

already proved, so we may assume that i ≥ 3. By part (i) of Corollary 1, Algorithm 1 adjoins n
to Si,n−1 if and only if

|B j,n| − |E j,n| < |Si,n−1| (10)

holds for all 1 ≤ j < i . (In view of part (iv) of Corollary 1, n cannot be adjoined to |Si ′,n−1|

with i ′ > i .) By Lemmata 3 and 4 we have

|Si,n−1| ≥
n − 1

pi

i−1
ℓ=1


1−

1
pℓ


− 2i−2

and

|B j,n| − |E j,n| ≤
n − 1

p j

j−1
ℓ=1


1−

1
pℓ


1− 2

t
k=1


1−

1
qk


+ 2t+ j−1

+ 2 j−2.
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Thus if

n − 1
pi

i−1
ℓ=1


1−

1
pℓ


+

n − 1
p j

j−1
ℓ=1


1−

1
pℓ



×


2

t
k=1


1−

1
qk


− 1


> 2t+ j−1

+ 2 j−2
+ 2i−2

then (10) holds. For fixed t and i the product
t

k=1


1− 1

qk


assumes its smallest value if the

qk-s are the t consecutive primes starting with pi . Thus if n1 = n1(i, j, t) denotes the smallest n
satisfying

n > 1+ (2t+ j−1
+ 2 j−2

+ 2i−2)/T

where

T =
1
pi

i−1
ℓ=1


1−

1
pℓ


+

1
p j

j−1
ℓ=1


1−

1
pℓ


2

t−1
k=0


1−

1
pi+k


− 1


,

then (10) holds for all n ≥ n1 having exactly t distinct prime factors, of which the smallest is pi .
We computed n1(i, j, t) for all triplets (i, j, t) with 3 ≤ i ≤ 19, 3 ≤ j ≤ i − 1, 1 ≤ t ≤ ti ,

where ti is the largest t such that
t−1

k=0 pi+k ≤ n0. Note that we have n1(i, j, t) > n0 for i ≥ 19.
According to our computation n1(i, j, t) is a monotone increasing function of j for fixed (i, t),
thus we displayed in Table 1 only the values n1(i, i − 1, t). The italic values in Table 1 indicate
that the corresponding inequality n ≥ n1 is valid for all n with smallest prime factor pi , having
t distinct prime divisors. For example, the smallest n with i = 5 (with smallest prime factor
pi = p5 = 11) and with t = 3 distinct prime factors is 11 · 13 · 17 = 2431. So the smaller
number 1773 in row (i, pi ) = (5, 11) and column t = 3 is in italics. Finally, if all integers n with
smallest prime factor pi and exactly t distinct prime factors are > n0, then the corresponding
box in Table 1 is empty.

In particular, checking the boxes of Table 1 corresponding to the primes p ≤ 11 with t ≥ 3,
and p ≤ 37 with t ≥ 4, we see that for these cases the induction step is established. Further, as
we mentioned in the beginning of this subsection, the latter assertion implies that the induction
step is also proved for all n < n0 with t ≥ 5.

4.3. The case where n has at most two distinct prime factors

The following lemma verifies Theorem 1 if n is a prime power.

Lemma 6. Let p = pi be a prime and n = pα (α > 0). Then S∗i,n = Si,n .

Proof. We already know that the assertion is valid for p = 2, 3. So we may assume that
p = pi ≥ 5. If α = 1 then the statement follows from part (iii) of Corollary 1.

To treat the cases α > 1, we show that for any j < i

B j,pα =

α−1
k=1

pk E j,pα−k (11)
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Table 1
Values of n1(i, i − 1, t).

(i, pi ) t
1 2 3 4 5 6 7

(3, 5) 42 85 176 381 832 1 844 4073
(4, 7) 163 292 564 1 134 2 353 4 922
(5, 11) 539 943 1 773 3 527 7 201 14 830
(6, 13) 1 668 2 810 5 168 10 027 20 004 40 659
(7, 17) 4 411 7 394 13 473 25 897 51 602
(8, 19) 11 430 18 856 33 849 64 646 127 553
(9, 23) 27 807 45 465 81 511 154 920 305 065
(10, 29) 71 314 116 355 207 415 393 138 773 398
(11, 31) 172 771 279 447 495 419 935 583 1 832 178
(12, 37) 400 411 646 688 1 146 625 2 163 465
(13, 41) 948 529 1 528 461 2 701 477 5 078 938
(14, 43) 2 098 084 3 371 377 5 939 601 11 137 433
(15, 47) 4 590 463 7 360 443 12 945 781 24 269 102
(16, 53) 10 391 079 16 631 063 29 240 976 54 743 149
(17, 59) 23 720 841 37 937 473 66 587 159
(18, 61) 51 847 427 82 741 135

holds. Indeed, if m ∈ B j,pα , then either m is divisible only by the first power of p, thus
m/p ∈ E j,pα−1 or m is divisible by a higher power of p, in which case m/p ∈ B j,pα−1 , thus

B j,pα = pE j,pα−1 ∪ pB j,pα−1 .

Using this identity we get (11) by induction.
Now we split the proof of the lemma into four cases.
Case α = 2. Then |B j,p2 | = |E j,p| for j < i . By Bertrand’s postulate there exists

at least one prime q with p/p j < q < p. Hence p j q ∈ E j,p2 \ E j,p, which implies
|E j,p2 | > |B j,p2 | = |E j,p|. Thus S∗

i,p2 = S∗i,n = Si,n .

Case α = 3. Then for j < i , there exists a prime q with p2/p j < q < p2, hence p j q ∉ E j,p2 .
If m ∈ E j,p then qm ≤ qp < p3, thus

|E j,p3 | ≥ |B j,p3 | = |E j,p2 | + |E j,p|,

and this case is proved.
Case α = 4. Identity (11) implies that for j < i ,

|B j,p4 | = |E j,p3 | + |E j,p2 | + |E j,p|.

We plainly have E j,p2 = E j,p ∪ E2 ∪ E3, where the sets E2, E3 on the right-hand side in-
clude all elements of E j,p2 belonging to the intervals (p, p2/p j ] and (p2/p j , p2

], respectively.
Since p ≥ 5, by a simple calculation based upon formulas of Rosser and Schoenfeld [4] con-
cerning π(x) (see also (12)), we get that there exist at least two different primes q1, q2 with
p3/p j < q1, q2 < p3. Hence

qk E j,p ∩ E j,p3 = q1 E j,p ∩ q2 E j,p = ∅ (k = 1, 2).

Further, there exist primes q3, q4 with p2 < q3 < 2p2 and p2/2 < q4 < p2. By the construction
we have

qk E j,p ∩ q3 E2 = qk E j,p ∩ q4 E3 = ∅ (k = 1, 2).
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Table 2
Values of N (p).

p 13 17 19 23 29 31 37 41 43 47 53 59 61 67
N (p) 2 7 29 77 203 566 1246 2964 6722 14 129 29 518 62 521 101 975 89 277

If m ∈ q3 E2 ∩ q4 E3 then m is divisible by the pairwise different primes q3, q4, p j , thus
m ≥ p j q3q4 > p j p4/2 ≥ p4, which is a contradiction. Finally, it is clear that

E j,p3 ∩ q3 E2 = E j,p3 ∩ q4 E3 = ∅.

Summarizing the above facts, we obtain that the sets

q1 E j,p, q2 E j,p, q3 E2, q4 E3, E j,p3

are pairwise disjoint subsets of E j,p4 . This implies that |B j,p4 | − |E j,p4 | ≤ 0, and our claim is
verified also in this case.

Case α ≥ 5. Since n = pα < n0, this case may occur only for p = pi ≤ 37, i.e. i ≤ 12. Now
the assertion follows by the first column of Table 1. �

The next lemma verifies the induction step for integers, which have two different prime
divisors and the smaller is at most 53.

Lemma 7. Let p = pi and q > p be primes. If p ≤ 53 and n = pαqβ < n0 (α, β > 0), then
S∗i,n = Si,n .

Proof. The idea of the proof is similar to the proof of Lemma 6. We omit the technical details. We
remark that an alternative proof can also be given following the method of the next section. �

So altogether, in this subsection we have proved the induction step for prime powers and for
integers with at most two distinct prime divisors, such that the smaller is at most 53.

4.4. The case where n has three distinct prime factors

Unfortunately, we could not find any meaningful generalization of Lemmata 6 and 7 to
integers with at least three prime divisors. By Table 1 the smallest prime factor of a candidate
n which could violate Theorem 1 is at least 13. For each prime 13 ≤ p ≤ 67 we computed all
integers, which are divisible by p, lie below the bound min{n0, n1}, where n1 is given in Table 1
and have three different prime divisors, which are at least p. Their number, N (p) is given in
Table 2.

Fix p = pi . For each candidate n we computed |Bi−1,n| − |Ei−1,n|. For this purpose we used
a variant of the wheel algorithm, see e.g. [5]. In our case this listed efficiently the elements of
Si−1,n because we know that they are divisible by pi and, on the other hand, relative prime to
2, 3, 5, 7. For each m produced by the wheel algorithm we computed gcd(m,

i−2
j=5 p j ). If this

is not 1, then m does not belong to Si−1,n , otherwise we added one to the counter of |Ei−1,n| or
|Bi−1,n| according as gcd(m, n) = 1 or not. We found in each case that |Bi−1,n| − |Ei−1,n| < 0,
which means that n cannot be adjoined to Si−1,n . The total computational time on a notebook
was about two days, from which one and a half was spent for 61 and 67 and the rest for the other
ten primes.

After these calculations, the induction step is established for values of n having three distinct
prime divisors such that the smallest is at most 67.
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4.5. The case where n has four distinct prime factors

For later use, we push forward the results obtained in Table 1 also in case of t = 4. Namely,
in this subsection we establish the induction step for those n having t = 4 distinct prime factors,
from which the smallest is 41 or 43.

So let n be of the form n = pq1q2q3, where p < q1 < q2 < q3 are distinct primes, and
p = 41 or 43. Note that the exponents of these primes in n are necessarily equal to one, otherwise
n > n0 would hold. In view of the values in the corresponding boxes of Table 1, we may assume
that

n ≤


5 078 938, if p = 41,
11 137 433, if p = 43,

since otherwise the induction step works for n. Thus by a simple calculation we obtain that
q3 ≤ 61 for p = 41, and q3 ≤ 103 for p = 43. For the possible values of n, we check whether
it is possible adjoin n to S j,n−1 for some j with 2 ≤ p j < p (p j prime). For this, first we apply
the estimates for Si,n−1 and |B j,n| − |E j,n| given by Lemmata 3 and 4. After this check we are
left only with 43 pairs (n, j) such that it is still possible that n gets adjoined to the class S j,n−1.
There are only 3 such pairs with p = 41, when we always have j = 12 (i.e. p j = 37) and 40
such pairs with p = 43, when we have 13 (i.e. p j = 41). Then, for each of the remaining cases,
using Maple we count the number of friends and enemies in the class S j,n−1 (with j = 12 and
13 for p = 41 and 43, respectively). In each case, we find |B j,n| − |E j,n| < 0. This shows that
Algorithm 1 cannot adjoin n to the class S j,n−1. So the induction step works for the values of n
having t = 4 distinct prime factors, the smallest of which being 41 or 43.

4.6. Handling the remaining cases

So far we proved the induction step if n has one or at least five different prime factors or

• n has two different prime factors, from which the smaller is at most 53 or
• n has three different prime factors, from which the smallest is at most 67 or
• n has four different prime factors, from which the smallest is at most 43.

Now we shall consider the remaining values of n < n0.

4.6.1. Lower bounds for j with n ∈ S∗j,n
Let n = qα1

1 · · · q
αt
t < n0 be such that pi = q1 < q2 · · · < qt and assume that Algorithm 1

adjoins n to S j,n−1. Then j ≤ i by part (iv) of Corollary 1. We give here a lower bound for j
provided t = 4 and q1 > 43, or t = 3 and q1 > 67. As |Si,n−1| > 0 we must have

|B j,n| − |E j,n| > 0

by part (i) of Corollary 1. By Lemma 4 we have

|B j,n| − |E j,n| <
n − 1

p j

j−1
ℓ=1


1−

1
pℓ


1− 2

t
k=1


1−

1
qk


+ 2t+ j−1

+ 2 j−2.

Thus if

n − 1
p j

j−1
ℓ=1


1−

1
pℓ


2

t
k=1


1−

1
qk


− 1


> 2t+ j−1

+ 2 j−2
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then |B j,n| − |E j,n| < 0 and n cannot be adjoined to S j,n−1. The product
 j−1
ℓ=1


1− 1

pℓ


decreases with j and for fixed t the expression 2

t
k=1


1− 1

qk


− 1 takes the smallest value

if the distinct primes q1, . . . , qt are as small as permitted. This means

2
t

k=1


1−

1
qk


− 1 ≥


376 783/409 457, if t = 3,
7 683 211/8 965 109, if t = 4.

We have
11
ℓ=1


1− 1

pℓ


=

13 271 040
86 822 723 . Thus if n > 9 544 582 and t = 4 then n cannot be

adjoined to S j,n−1 provided j ≤ 12. As 47 · 53 · 59 · 67 = 9 846 923 > 9 544 581 we proved that
if n ≠ n′ := 47 · 53 · 59 · 61 has four prime factors then Algorithm 1 may adjoin n to S j,n−1 only
if j > 12, i.e. p j ≥ 41. In the particular case of n = n′, the above considerations yield that

|B j,n′ | − |E j,n′ | <


0, for j = 1, . . . , 11,
2052, for j = 12.

However, the class of 47, i.e. S14,n−1 has more elements than 2052. Indeed, it contains all the
numbers of the form 47q , with 47 ≤ q ≤ 53 · 59 · 61, q prime. The number of such elements is
already 17 209. This shows that for any n having four distinct prime factors all greater than 43
can be adjoined to S j,n−1 by Algorithm 1 only if j > 12, i.e. p j ≥ 41.

Similarly, we obtain that if n > 318 015 and has three distinct prime factors, then Algorithm
1 may adjoin n to S j,n−1 only if j > 9, i.e. p j ≥ 29. As 71 · 73 · 79 > 318 015, we get
that this assertion is valid whenever the smallest prime factor of n is at least 71. However, we
want to make one step further. Suppose that n is as above, and it is attached to S10,n−1. Then
similarly as before, we get that n > 838 402 implies that if n has three prime factors, it cannot be
adjoined to S10,n−1 by Algorithm 1. Suppose that n has three distinct prime factors from which
the smallest is at least 71, and n ≤ 838 402. This implies that n is of the form n = q1q2q3 with
71 ≤ q1 < q2 < q3 ≤ 157 primes. There are 128 such values for n. A simple calculation with
Maple yields that in case of each such n we have

|B10,n| − |E10,n| < Si,n−1,

where pi is the smallest prime divisor of n. This, altogether with what we have proved previously,
shows that if n has three distinct prime factors from which the smallest is at least 71, then
Algorithm 1 may adjoin n to S j,n−1 only if j > 10, i.e. p j ≥ 31.

4.6.2. Completing the proof of Theorem 1

Proposition 1. Assume that one of the following properties is valid:

• n has two different prime factors, from which the smallest is at least 59,
• n has three different prime factors, from which the smallest is at least 71,
• n has four different prime factors, from which the smallest is at least 47.

Then (3) is valid for n.

Proof. Assume first that n has precisely four prime divisors, i.e. n is of the form n =
qα1

1 qα2
2 qα3

3 qα4
4 with 47 ≤ q1 < q2 < q3 < q4, and positive integers α1, . . . , α4. Then by what we

have proved in Section 4.6.1, it is sufficient to show that n ∉ S∗ℓ,n with 41 ≤ pℓ < q1. A simple
check shows that then α1 = α2 = α3 = α4 = 1 must be valid, and any friend of n in Sℓ,n−1 has
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at most four prime factors, counted with multiplicity. Further, we must have pℓ ≤ 89, otherwise
n > n0 would hold. We shall split the set of friends of n in Sℓ,n−1 into two parts. Write t1 and
t2 for the first two primes > pℓ, distinct from the qi . First consider the friends of n of the form
pℓqir1r2 such that r1, r2 are primes with pℓ < r1 ≤ r2, distinct from the qi and t1, t2. Further,
we also require that

pℓ pℓ+6r1r2 ≤ n.

To such friends of n in Sℓ,n−1, we can adjoin the four enemies

pℓr1r2, p2
ℓr1r2, pℓt1r1r2, pℓt2r1r2

of n in Sℓ,n−1. Indeed, observe that by our assumptions, all the four numbers above are distinct
elements of Sℓ,n−1. Further, for distinct friends of n of the shape pℓqir1r2, these four numbers
are also distinct.

Now we estimate the number of friends of n in Sℓ,n−1 not of the above shape. For this, write
x1 for the number of friends of n in Sℓ,n−1 of the form pℓqir1r2, where r1, r2 are primes ≥ pℓ,
violating one of the above requirements. First observe that the number of such friends with one of
r1, r2 in {pℓ, t1, t2, q1, q2, q3, q4} is at most 28(π(n/p3

ℓ)− ℓ+ 1). Further, for any i = 1, 2, 3, 4
the number of friends of n of the form pℓqir1r2 with pℓ pℓ+6r1r2 > n, in view of

p2
ℓr1r2 ≤ n,

is bounded by the number of integers in the interval (n/pℓ pℓ+6, n/p2
ℓ ], not divisible by 2 and 3.

So we obtain that

x1 ≤ 28(π(n/p3
ℓ)− ℓ+ 1)+ 4(n/p2

ℓ − n/pℓ pℓ+6)/3+ 6.

Putting x2 for the number of friends of n in Sℓ,n−1 of the form pℓqir1, where r1 is a prime with
r1 ≥ pℓ, in view of r1 ≤ n/p2

ℓ we get

x2 ≤ 4(π(n/p2
ℓ)− ℓ+ 1).

Finally, n also has the four friends pℓqi (i = 1, 2, 3, 4) in Sℓ,n−1.
So to prove our claim in this case, it is sufficient to show that

x1 + x2 + 4

is less than the number of enemies of n in Sℓ,n−1 of the form pℓq , where q is a prime distinct
from the qi . The number of such enemies of n is clearly at least π(n/pℓ)− ℓ− 3. So in view of
the inequalities

x

log(x)


1+

1
2 log(x)


< π(x) <

x

log(x)


1+

3
2 log(x)


(12)

holding for any x ≥ 59 (see Rosser and Schoenfeld [4]), we only need to check that

f (n) :=
4
3


n

p2
ℓ

−
n

pℓ pℓ+6


+ 10+ 28


u1

log(u1)


1+

3
2 log(u1)


− ℓ+ 1


+ 4


u2

log(u2)


1+

3
2 log(u2)


− ℓ+ 1


−

v1

log(v1)


1+

1
2 log(v1)


+ ℓ+ 3 < 0
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holds with u1 = n/p3
ℓ , u2 = n/p2

ℓ , v1 = n/pℓ for 41 ≤ pℓ ≤ 89. (Note that we have
u1, u2, v1 ≥ 59.) We used Maple to check the assertion. It turned out that for any possible
value of pℓ, the function f (n) is monotone decreasing on the interval [n1, n0] with n1 =

pℓ+1 pℓ+2 pℓ+3 pℓ+4, and f (n1) < 0. This proves our claim in this case.
Assume next that n has precisely three prime divisors, i.e. n is of the form n = qα1

1 qα2
2 qα3

3
with distinct primes q1, q2, q3, and positive integers α1, α2, α3. Then by what we have proved in
Section 4.6.1, it is sufficient to show that n ∉ S∗ℓ,n with 31 ≤ pℓ < q1. A simple check shows that
then any friend of n in Sℓ,n−1 has at most five prime factors, counted with multiplicity. Further,
we must have pℓ ≤ 463, otherwise n > n0 would hold. We shall split the set of friends of n in
Sℓ,n−1 into two parts. Write t1 for the first prime > pℓ, distinct from the qi . First consider the
friends of n in Sℓ,n−1 of the form pℓqir1r2 such that r1, r2 are primes with pℓ < r1 ≤ r2, distinct
from the qi and t1. Further, we also require that

pℓ pℓ+4r1r2 ≤ n.

To such friends of n in Sℓ,n−1, we can adjoin the three enemies

pℓr1r2, p2
ℓr1r2, pℓt1r1r2

of n in Sℓ,n−1. Indeed, observe that by our assumptions, all the three numbers above are distinct
elements of Sℓ,n−1. Further, for distinct friends of n of the shape pℓqir1r2, these three numbers
are also distinct.

Now we estimate the number of friends of n in Sℓ,n−1 not of the above shape. For this, write
x1 for the number of friends of n in Sℓ,n−1 of the form pℓqir1r2, where r1, r2 are primes ≥ pℓ,
violating one of the above requirements. First observe that the number of such friends with one
of r1, r2 in {pℓ, t1, q1, q2, q3} is at most 15(π(n/p3

ℓ)− ℓ+ 1). Further, for each i = 1, 2, 3, 4 the
number of friends of n of the form pℓqir1r2 with pℓ pℓ+4r1r2 > n, in view of

p2
ℓr1r2 ≤ n,

is bounded by the number of integers in the interval (n/pℓ pℓ+4, n/p2
ℓ ], not divisible by 2 and 3.

So we obtain that

x1 ≤ 15(π(n/p3
ℓ)− ℓ+ 1)+ n/p2

ℓ − n/pℓ pℓ+4 + 4.

Write now x2 for the number of friends of n in Sℓ,n−1 of the form pℓqir1r2r3, where r1 ≤ r2 ≤ r3
are primes ≥ pℓ. As one can easily check, such friends of n may exist only if pℓ = 31, 37 and
qi ≤ n0/p4

ℓ (i = 1, 2, 3, 4). Then since r3 ≤ n/p4
ℓ , we can easily bound x2 in these cases. By

checking the possibilities with Maple, we get

x2 ≤ yℓ :=

83, if pℓ = 31,
11, if pℓ = 37,
0, otherwise.

Putting x3 for the number of friends of n in Sℓ,n−1 of the form pℓqir1, where r1 is a prime with
r1 ≥ pℓ, in view of r1 ≤ n/p2

ℓ we get

x3 ≤ 3(π(n/p2
ℓ)− ℓ+ 1).

Finally, n also has the three friends pℓqi (i = 1, 2, 3) in Sℓ,n−1.
So to prove our claim in this case, it is sufficient to show that

x1 + x2 + x3 + 3
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is less than the number of enemies of n in Sℓ,n−1 of the form pℓq, where q is a prime distinct
from the qi . The number of such enemies of n is clearly at least π(n/pℓ)− ℓ− 3. So in view of
the inequalities (12), we only need to check that

g(n) :=
n

p2
ℓ

−
n

pℓ pℓ+4
+ 7+ 15


u1

log(u1)


1+

3
2 log(u1)


− ℓ+ 1


+ yℓ

+ 3


u2

log(u2)


1+

3
2 log(u2)


− ℓ+ 1


−

v1

log(v1)


1+

1
2 log(v1)


+ ℓ+ 3 < 0

holds with u1 = n/p3
ℓ , u2 = n/p2

ℓ , v1 = n/pℓ for 31 ≤ pℓ ≤ 463. (One can readily verify that
u1, u2, v1 ≥ 59, so we can apply (12) without any problem.) This assertion can be checked by
Maple, in a similar way as before. We obtain that the statement is valid also in this case.

Finally, assume that n is of the form qα1
1 qα2

2 with q2 > q1 ≥ 59, and positive integers α1, α2.
Let pℓ < q1. Then the number of friends of n in Sℓ,n−1 is at most

n/pℓ
59
+

n/pℓ
61

.

On the other hand, every number of the form pℓq with q ≥ pℓ prime, distinct from q1, q2, is an
enemy of n in Sℓ,n−1, provided that pℓq < n. By (12) and pℓ - n we get that the number of such
enemies of n is at least

π(n/pℓ)− ℓ− 1 >
n/pℓ

log(n/pℓ)


1+

1
2 log(n/pℓ)


− ℓ− 1.

Put x = n/pℓ. Observe that we have 59 ≤ x ≤ n0. Note that Theorem 3 of [4] implies
ℓ ≤ 2 log(pℓ), which by n > p2

ℓ gives ℓ < 2 log(x). Consider the function

h(x) :=
x

59
+

x

61
+ 2 log(x)+ 1−

x

log(x)


1+

1
2 log(x)


.

A simple calculation with Maple assures that h(x) is negative on the interval [59, n0]. This shows
that Sℓ,n−1 contains more enemies than friends of n, implying n ∉ S∗ℓ,n . Hence our claim follows
also in this case. �

Since Proposition 1 covers all the cases not considered in the preceding subsections, the proof
of Theorem 1 is now complete.
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