Common expansions in noninteger bases

Vilmos Komornik Attila Pethő
Universit de Strasbourg Debreceni Egyetem

Numeration and Substitution 2014,
Debrecen, July 10, 2014.

A TÁMOP-4.2.2.C-11/1/KONV-2012-0001 projekt részleges támogatśával.

1. Prologue

The number $z \in \mathbb{R}$ has a common expansion

- in real bases $1<q_{1}<\cdots<q_{r}, r \geq 2$
- with the digit set $A=A_{m}=\{-m, \ldots, 0, \ldots, m\} \subset \mathbb{Z}$ if there exists $\left(c_{j}\right) \in A^{\infty}$ satisfying

$$
z=\sum_{j=1}^{\infty} \frac{c_{j}}{q_{1}^{j}}=\cdots=\sum_{j=1}^{\infty} \frac{c_{j}}{q_{r}^{j}}
$$

The existence of common expansions seems to be a rare event.

2. Simultaneous radix representations

Indlekofer, Kátai and Racskó (1992) called $\mathbf{a} \in \mathbb{Z}^{d}$ simultaneously representable by $\mathrm{q} \in \mathbb{Z}^{d}$, if there exist integers
$0 \leq m_{0}, \ldots, m_{\ell}<Q:=\left|q_{1} \cdots q_{d}\right|$ such that

$$
a_{i}=\sum_{j=0}^{\ell} m_{j} q_{i}^{j}, \quad i=1, \ldots, d
$$

If $q_{1}, \ldots, q_{d}>0$ then apart from the zero vector no integer vectors are simultaneously representable by q. If some of the base numbers are negative, then simultaneous representations may appear.

For example take $q_{1}=-2$ and $q_{2}=-3$ then $Q=2 \cdot 3=6$ and

$$
(101)_{10}=(1431335045)_{-2}=(1431335045)_{-3} .
$$

Changing the sign of the "digits" with odd position we get a common representation of 101 in bases 2 and 3 with digits from $A_{6}=\{-6, \ldots, 0, \ldots, 6\}$.

Pethő (2006) gave a criterion of simultaneous representability on the one hand with the Chinese reminder theorem and, on the other hand with CNS polynomials. A similar result was proved by Kane (2006), A. Chen (2008).

3. A construction of common expansions

No results on simultaneous representability of real numbers in noninteger bases seem to have appeared in the literature. Komornik and Pethő (201?) proved recently:

Theorem 1. Let r be a positive integer. There exists a positive integer m and an interval I such that for all $z \in I$ there exist continuum many $\left(q_{1}, \ldots, q_{r},\left(c_{j}\right)\right) \in \mathbb{R}^{r} \times A_{m}^{\infty}$ such that $1<q_{1}<\cdots<q_{r}$ and

$$
z=\sum_{j=1}^{\infty} \frac{c_{j}}{q_{1}^{j}}=\cdots=\sum_{j=1}^{\infty} \frac{c_{j}}{q_{r}^{j}}
$$

4. Basic steps of the proof

I. Choose a polynomial $P(x)=p_{d} x^{d}+\cdots+p_{1} x+p_{0} \in \mathbb{Z}[x]$ with r real roots $1<\alpha_{1}<\cdots<\alpha_{r}$. Put $m=H(P)=\max \left\{\left|p_{0}\right|, \ldots,\left|p_{d}\right|\right\}$. Then p_{d} admits a common expansion in $\alpha_{1}, \ldots, \alpha_{r}$ with digit set A_{m} because $P\left(\alpha_{i}\right) / \alpha_{i}^{d}=0$, i.e.

$$
p_{d}=\sum_{j=1}^{d}-p_{d-j} \alpha_{i}^{-j}, i=1 \ldots, r
$$

II. Let $\delta=\frac{\alpha_{1}-1}{2}, \alpha_{0}=1, \alpha_{r+1}=\alpha_{r}+1$ and

$$
M=\min _{j=0}^{r} \max _{i=1}^{r}\left\{\frac{|P(x)|}{x^{d}}: x \in\left[\frac{\alpha_{i}+\alpha_{i-1}}{2}, \frac{\alpha_{i}+\alpha_{i+1}}{2}\right]\right\} .
$$

III. Choose ℓ large enough such that

$$
\frac{M}{4}>m \sum_{j=\ell}^{\infty} \alpha_{0}^{-j}=\frac{m}{\alpha_{0}^{\ell-1}\left(\alpha_{0}-1\right)}
$$

If $\left(c_{j}\right) \in A_{m}^{\infty}$ with $c_{1}=\cdots=c_{\ell-1}=0$ and $\beta \in\left[\alpha_{0}, \alpha_{r+1}\right]$ then

$$
\left|\sum_{j=\ell}^{\infty} c_{j} \beta^{-j}\right| \leq m \sum_{j=\ell}^{\infty} \beta^{-j} \leq m \sum_{j=\ell}^{\infty} \alpha_{0}^{-j} \leq \frac{M}{4}
$$

IV. Take $I=\left[p_{d}-\frac{M}{4}, p_{d}+\frac{M}{4}\right], z \in I$ and $\left(c_{j}\right) \in A_{m}^{\infty}$ with $c_{1}=$
$\cdots=c_{\ell-1}=0$ such that III. holds. Let

$$
f_{z,\left(c_{j}\right)}(x)=\frac{P(x)}{x^{d}}-p_{d}+z-\sum_{j=0}^{\infty} c_{j} x^{-j} .
$$

$\frac{P(x)}{x^{d}}$ has the real roots $\alpha_{1}, \ldots, \alpha_{r}$ in $\left[\alpha_{0}, \alpha_{r+1}\right]$. Thus $\frac{P(x)}{x^{d}}$ changes its sign in $\left[\frac{\alpha_{i}+\alpha_{i-1}}{2}, \frac{\alpha_{i}+\alpha_{i+1}}{2}\right]$. Moreover

$$
\max \left\{\frac{|P(x)|}{x^{d}}: x \in\left[\frac{\alpha_{i}+\alpha_{i-1}}{2}, \frac{\alpha_{i}+\alpha_{i+1}}{2}\right]\right\} \geq M, i=1, \ldots r
$$

By the choice of z and $\left(c_{j}\right)$ we have

$$
\left|f_{z,\left(c_{j}\right)}(x)-\frac{P(x)}{x^{d}}\right| \leq\left|p_{d}-z\right|+\left|\sum_{j=0}^{\infty} c_{j} x^{-j}\right| \leq \frac{M}{2}
$$

for $x \in\left[\frac{\alpha_{0}+\alpha_{1}}{2}, \frac{\alpha_{r}+\alpha_{r+1}}{2}\right]$.

Thus $f_{z,\left(c_{j}\right)}(x)$ changes its sign in $\left[\frac{\alpha_{i}+\alpha_{i-1}}{2}, \frac{\alpha_{i}+\alpha_{i+1}}{2}\right]$ for $i=$ $1, \ldots, r$, i.e. it has r real roots, say q_{1}, \ldots, q_{r}. Hence

$$
f_{z,\left(c_{j}\right)}\left(q_{i}\right)=\frac{P\left(q_{i}\right)}{q_{i}^{d}}-p_{d}+z-\sum_{j=0}^{\infty} c_{j} q_{i}^{-j}=0, i=1, \ldots, r
$$

thus z admits the common expansions

$$
z=-\frac{P\left(q_{i}\right)}{q_{i}^{d}}+p_{d}+\sum_{j=0}^{\infty} c_{j} q_{i}^{-j}=0, i=1, \ldots, r
$$

There are continuum many possibilities for $\left(c_{j}\right) \in A_{m}^{\infty}$.
V. It remains to prove that we have for any r an appropriately polynomial $P(x)$. By Narkiewicz (1990) there are for any r (infinitely many) totally real number fields of degree r. Let $P_{1}(x)$ a defining polynomial of such a field. With appropriate choice of the integer t all roots of $P_{1}(x-t)$ will be larger than one.

5. Common expansions with small digit sets

The digit set A_{m} is in the above construction usually large. For example if $P_{1}(x)=x^{2}-x-1$, which has two real roots $\alpha_{1}=\frac{1+\sqrt{5}}{2}, \alpha_{2}=\frac{1-\sqrt{5}}{2}$ must translate by 2 to get an appropriate quadratic polynomial, which is $x^{2}-5 x+5$. Thus $m=5$.

Using interval filling sequences Komornik and Pethő (2014) proved results in the case $r=2$. In the sequel we use $q_{1}=$ $q, q_{2}=p$. Let $p>q>1, m \geq 1$ and denote by $C(p, q)$ the set of sequences $\left(c_{j}\right) \in A_{m}^{\infty}$ satisfying

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{c_{j}}{q^{j}}=\sum_{j=1}^{\infty} \frac{c_{j}}{p^{j}} . \tag{1}
\end{equation*}
$$

We call $C(p, q)$ trivial if its only element is the null sequence.

Theorem 2. Let $p>q>1$.
(i) If $q<(1+\sqrt{8 m+1}) / 2$, then $C(p, q)$ has the cardinality of the continuum.
(ii) If $(1+\sqrt{8 m+1}) / 2 \leq q \leq m+1$, then $C(p, q)$ is infinite.
(iii) Let $m+1<q \leq 2 m+1$.
(a) If

$$
\begin{equation*}
p \leq \frac{(m+1)(q-1)}{q-m-1}, \tag{2}
\end{equation*}
$$

then $C(p, q)$ is nontrivial.
(b) If

$$
\begin{equation*}
p>\frac{(m+1)(q-1)}{q-m-1}, \tag{3}
\end{equation*}
$$

then $C(p, q)$ is trivial.
(iv) Let $2 m+1<q<m+1+\sqrt{m(m+1)}$.
(a) $C(p, q)$ is a finite set.
(b) There is a continuum of values $p>q$ for which $C(p, q)$ is nontrivial.
(c) If $p>q$ satisfies (3), then $C(p, q)$ is trivial.
(v) If $q \geq m+1+\sqrt{m(m+1)}$, then $C(p, q)$ is trivial.

If e.g. $m=1$ and $q<2$ and $p>q$, then there is a continuum of sequences $\left(c_{j}\right) \in\{-1,0,1\}^{\infty}$ satisfying

$$
\sum_{j=1}^{\infty} \frac{c_{j}}{q^{j}}=\sum_{j=1}^{\infty} \frac{c_{j}}{p^{j}}
$$

If $2 \geq q \leq 3$ then this equality has for any $p>q$ infinitely many solutions, and if $q \geq 2+\sqrt{2}$, then only the trivial sequence $\left(c_{j}\right)=$ 0^{∞} satisfies the former equality.

6. Outline of the proof of Theorem 2

The basic tool of the proof of Theorem 2 is a variant of a classical theorem of Kakeya (1914).
Proposition 3. Let $A=\{-m, \ldots, 0, \ldots, m\}$ and let $\sum_{k=1}^{\infty} r_{k}$ be a convergent series of positive numbers, satisfying the inequalities

$$
\begin{equation*}
r_{n} \leq 2 m \sum_{k=n+1}^{\infty} r_{k} \tag{4}
\end{equation*}
$$

for all $n=1,2, \ldots$. Then the sums

$$
\begin{equation*}
\sum_{k=1}^{\infty} c_{k} r_{k}, \quad\left(c_{k}\right) \in A^{\infty} \tag{5}
\end{equation*}
$$

fill the interval

$$
\begin{equation*}
\left[-m \sum_{k=1}^{\infty} r_{k}, m \sum_{k=1}^{\infty} r_{k}\right] . \tag{6}
\end{equation*}
$$

We apply Proposition 3 to subsequences of $\left(q^{-i}-p^{-i}\right)$.

Lemma 4. If $1<q<(1+\sqrt{8 m+1}) / 2$ and $p>q$, then the sequence $\left(r_{k}\right)_{k \in \mathbb{N}}:=\left(q^{-i}-p^{-i}\right)_{i \in \mathbb{N} \backslash n \mathbb{N}}$ satisfies

$$
r_{n} \leq 2 m \sum_{k=n+1}^{\infty} r_{k}
$$

for all sufficiently large integers n.
Lemma 5. Let $p>q>1$. The sequence

$$
\left(\frac{\sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right)}{q^{-n}-p^{-n}}\right)_{n=1}^{\infty}
$$

is strictly decreasing, and tends to $1 /(q-1)$.

Proof of Theorem 2 (i) If $q<(1+\sqrt{8 m+1}) / 2$, then $C(p, q)$ has the cardinality of the continuum.
Fix a large positive integer n such that the sequence $\left(r_{k}\right)_{k \in \mathbb{N}}:=$ $\left(q^{-i}-p^{-i}\right)_{i \in \mathbb{N} \backslash n \mathbb{N}}$ satisfies

$$
r_{n} \leq 2 m \sum_{k=n+1}^{\infty} r_{k} .
$$

Next we fix a large positive integer N such that

$$
\begin{align*}
& {\left[-m \sum_{i=N}^{\infty}\left(q^{-i n}-p^{-i n}\right), m \sum_{i=N}^{\infty}\left(q^{-i n}-p^{-i n}\right)\right] } \\
& \subset\left[-m \sum_{i \in \mathbb{N} \backslash n \mathbb{N}}\left(q^{-i n}-p^{-i n}\right), m \sum_{i \in \mathbb{N} \backslash n \mathbb{N}}\left(q^{-i n}-p^{-i n}\right)\right] \tag{7}
\end{align*}
$$

This is possible because the right side interval contains 0 in its interior.

The sets

$$
\begin{aligned}
& B:=\mathbb{N} \backslash n \mathbb{N} \\
& C:=\{j n: j=N, N+1, \ldots\} \\
& D:=\{j n: j=1, \ldots, N-1\}
\end{aligned}
$$

form a partition of \mathbb{N}.
Choose an arbitrary sequence $\left(c_{i}\right)_{i \in C} \in A^{C}$; there is a continuum of such sequences because C is an infinite set. Since

$$
-\sum_{i \in C} c_{i}\left(q^{-i}-p^{-i}\right)
$$

belongs to the left side interval in (7), applying Proposition 3 there exists a sequence $\left(c_{i}\right)_{i \in B} \in A^{B}$ such that

$$
\sum_{i \in B \cup C} c_{i}\left(q^{-i}-p^{-i}\right)=0
$$

Setting $c_{i}=0$ for $i \in D$ we obtain a sequence $\left(c_{i}\right)_{i \in \mathbb{N}} \in C(p, q)$.

Proof of Theorem 2 (i) If $(1+\sqrt{8 m+1}) / 2 \leq q \leq m+1$, then $C(p, q)$ is infinite. Since $q \leq m+1$, by Lemma 5 we have

$$
0<q^{-n}-p^{-n}<(q-1) \sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right) \leq m \sum_{i=n+1}^{\infty}\left(q^{-i}-p^{-i}\right)
$$

Since $q \leq 2 m+1$, Lemma 5 also shows that the condition (4) of Proposition 3 is satisfied for the alphabet $A=\{-m, \ldots, m\}$ and the sequence $r_{k}:=q^{-k-n}-p^{-k-n}, k=1,2, \ldots$. Hence there exists a sequence $\left(c_{i}\right)_{i=n+1}^{\infty} \in A^{\infty}$ satisfying

$$
q^{-n}-p^{-n}=\sum_{i=n+1}^{\infty} c_{i}\left(q^{-i}-p^{-i}\right)
$$

setting $c_{1}=\cdots=c_{n-1}=0$ and $c_{n}=-1$ this yields (1).

6. Open problems

1. Find the optimal conditions on p and q in Theorem 2 . In particular,
(a) Can $C(p, q)$ be infinite for some $p>q>m+1$?
(b) In case $2 m+1<q<m+1+\sqrt{m(m+1)}$ is $C(p, q)$ nontrivial for all $p>q$ sufficiently close to q ?
2. Does there exist three (or more) different bases such that a continuum of (or infinitely many) real numbers have identical expansions in all three bases with digit set $\{-1,0,1\}$?
3. Given two bases $p>q>1$ investigate the set of points of the form

$$
\sum_{i=1}^{\infty} c_{i}\left(p^{-i}-q^{-i}\right), \quad\left(c_{i}\right) \in A^{\infty}
$$

