
Common expansions in
noninteger bases

Vilmos Komornik Attila Pethő
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1. Prologue

The number z ∈ R has a common expansion

• in real bases 1 < q1 < · · · < qr, r ≥ 2

• with the digit set A = Am = {−m, . . . ,0, . . . ,m} ⊂ Z
if there exists (cj) ∈ A∞ satisfying

z =
∞∑
j=1

cj

q
j
1

= · · · =
∞∑
j=1

cj

q
j
r

.

The existence of common expansions seems to be a rare event.



2. Simultaneous radix representations

Indlekofer, Kátai and Racskó (1992) called a ∈ Zd simultaneously

representable by q ∈ Zd, if there exist integers

0 ≤ m0, . . . ,m` < Q := |q1 · · · qd| such that

ai =
∑̀
j=0

mjq
j
i , i = 1, . . . , d.

If q1, . . . , qd > 0 then apart from the zero vector no integer vec-

tors are simultaneously representable by q. If some of the base

numbers are negative, then simultaneous representations may

appear.



For example take q1 = −2 and q2 = −3 then Q = 2 · 3 = 6 and

(101)10 = (1431335045)−2 = (1431335045)−3.

Changing the sign of the “digits” with odd position we get a

common representation of 101 in bases 2 and 3 with digits from

A6 = {−6, . . . ,0, . . . ,6}.

Pethő (2006) gave a criterion of simultaneous representability

on the one hand with the Chinese reminder theorem and, on the

other hand with CNS polynomials. A similar result was proved

by Kane (2006), A. Chen (2008).



3. A construction of common expansions

No results on simultaneous representability of real numbers

in noninteger bases seem to have appeared in the literature.

Komornik and Pethő (201?) proved recently:

Theorem 1. Let r be a positive integer. There exists a positive

integer m and an interval I such that for all z ∈ I there exist

continuum many (q1, . . . , qr, (cj)) ∈ Rr ×A∞m such that

1 < q1 < · · · < qr and

z =
∞∑
j=1

cj

q
j
1

= · · · =
∞∑
j=1

cj

q
j
r

.



4. Basic steps of the proof

I. Choose a polynomial P (x) = pdx
d+ · · ·+p1x+p0 ∈ Z[x] with r

real roots 1 < α1 < · · · < αr. Put m = H(P ) = max{|p0|, . . . , |pd|}.
Then pd admits a common expansion in α1, . . . , αr with digit set

Am because P (αi)/α
d
i = 0, i.e.

pd =
d∑

j=1

−pd−jα
−j
i , i = 1 . . . , r.

II. Let δ = α1−1
2 , α0 = 1, αr+1 = αr + 1 and

M =
r

min
j=0

r
max
i=1

{
|P (x)|
xd

: x ∈
[
αi + αi−1

2
,
αi + αi+1

2

]}
.



III. Choose ` large enough such that

M

4
> m

∞∑
j=`

α
−j
0 =

m

α`−1
0 (α0 − 1)

.

If (cj) ∈ A∞m with c1 = · · · = c`−1 = 0 and β ∈ [α0, αr+1] then∣∣∣∣∣∣
∞∑
j=`

cjβ
−j
∣∣∣∣∣∣ ≤ m

∞∑
j=`

β−j ≤ m
∞∑
j=`

α
−j
0 ≤

M

4
.

IV. Take I =
[
pd − M

4 , pd + M
4

]
, z ∈ I and (cj) ∈ A∞m with c1 =

· · · = c`−1 = 0 such that III. holds. Let

fz,(cj)(x) =
P (x)

xd
− pd + z −

∞∑
j=0

cjx
−j.



P (x)
xd

has the real roots α1, . . . , αr in [α0, αr+1]. Thus P (x)
xd

changes

its sign in
[
αi+αi−1

2 ,
αi+αi+1

2

]
. Moreover

max

{
|P (x)|
xd

: x ∈
[
αi + αi−1

2
,
αi + αi+1

2

]}
≥M, i = 1, . . . r.

By the choice of z and (cj) we have∣∣∣∣∣fz,(cj)(x)−
P (x)

xd

∣∣∣∣∣ ≤ |pd − z|+
∣∣∣∣∣∣
∞∑
j=0

cjx
−j
∣∣∣∣∣∣ ≤ M

2

for x ∈
[
α0+α1

2 ,
αr+αr+1

2

]
.



Thus fz,(cj)(x) changes its sign in
[
αi+αi−1

2 ,
αi+αi+1

2

]
for i =

1, . . . , r, i.e. it has r real roots, say q1, . . . , qr. Hence

fz,(cj)(qi) =
P (qi)

qdi
− pd + z −

∞∑
j=0

cjq
−j
i = 0, i = 1, . . . , r,

thus z admits the common expansions

z = −
P (qi)

qdi
+ pd +

∞∑
j=0

cjq
−j
i = 0, i = 1, . . . , r.

There are continuum many possibilities for (cj) ∈ A∞m .

V. It remains to prove that we have for any r an appropriately
polynomial P (x). By Narkiewicz (1990) there are for any r (in-
finitely many) totally real number fields of degree r. Let P1(x)
a defining polynomial of such a field. With appropriate choice of
the integer t all roots of P1(x− t) will be larger than one.



5. Common expansions with small digit sets

The digit set Am is in the above construction usually large.

For example if P1(x) = x2 − x − 1, which has two real roots

α1 = 1+
√

5
2 , α2 = 1−

√
5

2 must translate by 2 to get an appropriate

quadratic polynomial, which is x2 − 5x+ 5. Thus m = 5.



Using interval filling sequences Komornik and Pethő (2014)

proved results in the case r = 2. In the sequel we use q1 =

q, q2 = p. Let p > q > 1,m ≥ 1 and denote by C(p, q) the set of

sequences (cj) ∈ A∞m satisfying

∞∑
j=1

cj

qj
=
∞∑
j=1

cj

pj
. (1)

We call C(p, q) trivial if its only element is the null sequence.



Theorem 2. Let p > q > 1.

(i) If q < (1 +
√

8m+ 1)/2, then C(p, q) has the cardinality of

the continuum.

(ii) If (1 +
√

8m+ 1)/2 ≤ q ≤ m+ 1, then C(p, q) is infinite.

(iii) Let m+ 1 < q ≤ 2m+ 1.

(a) If

p ≤
(m+ 1)(q − 1)

q −m− 1
, (2)

then C(p, q) is nontrivial.

(b) If

p >
(m+ 1)(q − 1)

q −m− 1
, (3)

then C(p, q) is trivial.



(iv) Let 2m+ 1 < q < m+ 1 +
√
m(m+ 1).

(a) C(p, q) is a finite set.

(b) There is a continuum of values p > q for which C(p, q) is

nontrivial.

(c) If p > q satisfies (3), then C(p, q) is trivial.

(v) If q ≥ m+ 1 +
√
m(m+ 1), then C(p, q) is trivial.



If e.g. m = 1 and q < 2 and p > q, then there is a continuum of

sequences (cj) ∈ {−1,0,1}∞ satisfying

∞∑
j=1

cj

qj
=
∞∑
j=1

cj

pj
.

If 2 ≥ q ≤ 3 then this equality has for any p > q infinitely many

solutions, and if q ≥ 2+
√

2, then only the trivial sequence (cj) =

0∞ satisfies the former equality.



6. Outline of the proof of Theorem 2

The basic tool of the proof of Theorem 2 is a variant of a classical
theorem of Kakeya (1914).
Proposition 3. Let A = {−m, . . . ,0, . . . ,m} and let

∑∞
k=1 rk be a

convergent series of positive numbers, satisfying the inequalities

rn ≤ 2m
∞∑

k=n+1

rk (4)

for all n = 1,2, . . . . Then the sums

∞∑
k=1

ckrk, (ck) ∈ A∞ (5)

fill the interval −m ∞∑
k=1

rk,m
∞∑
k=1

rk

 . (6)



We apply Proposition 3 to subsequences of (q−i − p−i).

Lemma 4. If 1 < q < (1 +
√

8m+ 1)/2 and p > q, then the

sequence (rk)k∈N := (q−i − p−i)i∈N\nN satisfies

rn ≤ 2m
∞∑

k=n+1

rk

for all sufficiently large integers n.

Lemma 5. Let p > q > 1. The sequence∑∞i=n+1(q−i − p−i)
q−n − p−n

∞
n=1

is strictly decreasing, and tends to 1/(q − 1).



Proof of Theorem 2 (i) If q < (1 +
√

8m+ 1)/2, then C(p, q)

has the cardinality of the continuum.

Fix a large positive integer n such that the sequence (rk)k∈N :=

(q−i − p−i)i∈N\nN satisfies

rn ≤ 2m
∞∑

k=n+1

rk.

Next we fix a large positive integer N such that[
−m

∞∑
i=N

(q−in − p−in),m
∞∑
i=N

(q−in − p−in)

]

⊂

−m ∑
i∈N\nN

(q−in − p−in),m
∑

i∈N\nN

(q−in − p−in)

 . (7)

This is possible because the right side interval contains 0 in its

interior.



The sets
B := N \ nN,
C := {jn : j = N,N + 1, . . .},
D := {jn : j = 1, . . . , N − 1}

form a partition of N.

Choose an arbitrary sequence (ci)i∈C ∈ AC; there is a continuum
of such sequences because C is an infinite set. Since

−
∑
i∈C

ci(q
−i − p−i)

belongs to the left side interval in (7), applying Proposition 3
there exists a sequence (ci)i∈B ∈ AB such that∑

i∈B∪C
ci(q

−i − p−i) = 0.

Setting ci = 0 for i ∈ D we obtain a sequence (ci)i∈N ∈ C(p, q).



Proof of Theorem 2 (i) If (1 +
√

8m+ 1)/2 ≤ q ≤ m+ 1, then

C(p, q) is infinite.

Since q ≤ m+ 1, by Lemma 5 we have

0 < q−n − p−n < (q − 1)
∞∑

i=n+1

(q−i − p−i) ≤ m
∞∑

i=n+1

(q−i − p−i).

Since q ≤ 2m + 1, Lemma 5 also shows that the condition (4)

of Proposition 3 is satisfied for the alphabet A = {−m, . . . ,m}
and the sequence rk := q−k−n− p−k−n, k = 1,2, . . . . Hence there

exists a sequence (ci)
∞
i=n+1 ∈ A

∞ satisfying

q−n − p−n =
∞∑

i=n+1

ci(q
−i − p−i);

setting c1 = · · · = cn−1 = 0 and cn = −1 this yields (1).



6. Open problems

1. Find the optimal conditions on p and q in Theorem 2. In
particular,

(a) Can C(p, q) be infinite for some p > q > m+ 1?

(b) In case 2m+1 < q < m+1+
√
m(m+ 1) is C(p, q) nontrivial

for all p > q sufficiently close to q?

2. Does there exist three (or more) different bases such that
a continuum of (or infinitely many) real numbers have identical
expansions in all three bases with digit set {−1,0,1}?

3. Given two bases p > q > 1 investigate the set of points of the
form

∞∑
i=1

ci(p
−i − q−i), (ci) ∈ A∞.


