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1. Prologue

The number z € R has a common expansion

e inreal bases 1 <q1 << qgr,7>2

e with the digit set A=A, ={-m,...,0,...,m} CZ
if there exists (c¢;) € A satisfying

The existence of common expansions seems to be a rare event.



2. Simultaneous radix representations

Indlekofer, Katai and Racské (1992) called a € Z% simultaneously
representable by q € Z2, if there exist integers
0<mqg,...,my<Q:=|qq1---qq| such that

4 .
a; = ijqg, 1=1,...,d.
7=0

If q1,...,94 > O then apart from the zero vector no integer vec-
tors are simultaneously representable by q. If some of the base
numbers are negative, then simultaneous representations may
appear.



For example take g1 = -2 and ¢gop = -3 then Q@ =2-3 =6 and

(101)10 = (1431335045)_, = (1431335045)_3.

Changing the sign of the ‘“digits’ with odd position we get a
common representation of 101 in bases 2 and 3 with digits from
Ag={-6,...,0,...,6}.

Peth6 (2006) gave a criterion of simultaneous representability
on the one hand with the Chinese reminder theorem and, on the
other hand with CNS polynomials. A similar result was proved
by Kane (2006), A. Chen (2008).



3. A construction of common expansions

No results on simultaneous representability of real numbers
in noninteger bases seem to have appeared in the literature.
Komornik and Peth® (2017) proved recently:

Theorem 1. Let r be a positive integer. There exists a positive
integer m and an interval I such that for all z € I there exist
continuum many (q1,...,qr,(cj)) € R" x AR® such that

1<q1 <---<gqr and



4. Basic steps of the proof

I. Choose a polynomial P(z) = pgaz®+---4+piz+pg € Z[z] with r

real roots 1 < a1 < --- < ap. Put m = H(P) = max{|pol,---,|p4|}
Then p; admits a common expansion in azy,...,ar With digit set
Am because P(a;)/ad =0, i.e.
d .
pd: Z —pd_]az j,’I/: 1...’7a.
J=1

. X €

a; a1 ot a4
2 7 2 '



III. Choose ¢ large enough such that

_ m
— > m Z o J = — :
ozé Y(ap—1)
If (¢;) € Apy with ¢q =---=¢y_1 =0 and 8 € [ag, a,41] then
. 0 . 0 M
TN<m > BT <m ) ay) <—.
=/ =1 =1 4
— J J

V. Take I = |pg— 4, pg+ 23| 2 € I and (¢;) € A with ¢ =
+ = ¢y_1 = 0 such that IIl. holds. Let

f (cj)(x) — P(x)

—Pdt+ 2z - ZCJ
7=0



P(:I:)

% has the real roots ag,...,ar in [ag, o41]. Thus changes
its sign in [O‘i_i_;‘i—l,ai_'_;i“]. Moreover
P . . . .
max |P(@)] L x € i+ o ]_)Oé’z,—l_az—l—]_ >M,i=1,...r
xd 2 2
By the choice of z and (¢;) we have
P(m) |l M
y(x) — < |pg— 2|+ ch é;
7=0

OéO—I—Oé]_ ar+o +1
for:vel 5 5 ]



Thus f, (.)(z) changes its sign in [aﬁzo‘i—l,a#;’i“ for ¢ =

1,...,r, i.e. it has r real roots, say ¢q1,...,q9-. Hence

P(q;) = —j

fz,(cj)(QZ):—dz_pd_l_Z_ chqijzojz: ) 5 T
) 7=0
thus z admits the common expansions
P(q;) = .
z = — dz —|—pd—|-chqz-]=O,z=1,...,r.
q; j=0

There are continuum many possibilities for (c;) € Ap.

V. It remains to prove that we have for any r an appropriately
polynomial P(x). By Narkiewicz (1990) there are for any r (in-
finitely many) totally real number fields of degree r. Let Pi(x)
a defining polynomial of such a field. With appropriate choice of
the integer t all roots of P;(xz —t) will be larger than one.



5. Common expansions with small digit sets

The digit set A,, is in the above construction usually large.
For example if Pi(z) = z2 — xz — 1, which has two real roots
] = %,ag = %5 must translate by 2 to get an appropriate
quadratic polynomial, which is z2 — 52z + 5. Thus m = 5.



Using interval filling sequences Komornik and Pethd (2014)
proved results in the case r = 2. In the sequel we use g1 =
qg,9>o = p. Let p > ¢ > 1,m > 1 and denote by C(p,q) the set of

sequences (c;) € A}Y satisfying

> d=3y (1)

We call C(p,q) trivial if its only element is the null sequence.



Theorem 2. Letp>q > 1.

(i) Ifg < (1 ++v/8m+1)/2, then C(p,q) has the cardinality of
the continuum.

(i IF(1+v8m+1)/2<qg<m+1, then C(p,q) is infinite.
(iii) Let m+1<qg<2m+1.

(a) If
P < (m-l-l)(q—l)’ (2)
q—m —1
then C(p,q) is nontrivial.
(b) If
b > (m+1)(q—1)7 (3)

q—m —1
then C(p,q) is trivial.



(iv) Let 2m+1<g<m+ 1+ /m(m+1).

(a) C(p,q) is a finite set.

(b) There is a continuum of values p > g for which C(p,q) is
nontrivial.

(c) If p > q satisfies (3), then C(p,q) is trivial.

(v) If > m+ 1+ /m(m+ 1), then C(p,q) is trivial.



Ifee g m=1and g < 2 and p > ¢q, then there is a continuum of
sequences (c;j) € {—1,0,1}* satisfying
© @) @)

o=

€

If 2 > q < 3 then this equality has for any p > q infinitely many
solutions, and if ¢ > 2++/2, then only the trivial sequence (c;) =
0°° satisfies the former equality.



6. Outline of the proof of Theorem 2

T he basic tool of the proof of Theorem 2 is a variant of a classical
theorem of Kakeya (1914).

Proposition 3. Let A={-m,...,0,...,m} and let }:72 ; ry be a
convergent series of positive numbers, satisfying the inequalities

@)
rn < 2m Z Tl (4)
k=n—+1
for alln=1,2,.... Then the sums
oo
> cpry, () € A% (5)
k=1

fill the interval

o0 @)
—m Z ) Z Tl (6)
k=1 k=1



We apply Proposition 3 to subsequences of (g7 — p%).

Lemma 4.If1 < g < (14++v8m+1)/2 and p > ¢q, then the
sequence (ri)ren = (¢7" — P ien\ny Satisfies

oo

rn < 2m Z T
k=n-+1

for all sufficiently large integers n.
Lemma 5. Let p>qg > 1. The sequence

(Z%}if,ﬂ_l(q_i — p_i)) >~

q—n _ p—’I’L

n=1

is strictly decreasing, and tends to 1/(q—1).



Proof of Theorem 2 (i) If ¢ < (1 4+ +v/8m + 1)/2, then C(p,q)
has the cardinality of the continuum.
Fix a large positive integer n such that the sequence (73)reN =

(¢7" = p™")iem\nn Satisfies

0@

rn < 2m Z Tl-
k=n-+1

Next we fix a large positive integer N such that
—m Y (¢ —p™),m Y (¢ - pm)]
i=N i=N

C {m Y @ =pm > (@ =-p|. ()

1€eN\nN ieN\nN
This is possible because the right side interval contains O in its
interior.



The sets
B := N\ nN,
={jn : j=N,N+1,...},
D:={{mn : j=1,...,.N—-1}
form a partition of N.

Choose an arbitrary sequence (¢;);cc € AC: there is a continuum
of such sequences because C' is an infinite set. Since

— > elgt —p ")
icC
belongs to the left side interval in (7), applying Proposition 3
there exists a sequence (¢;);ep € AP such that

> clgt=p ) =0.
i€ BUC
Setting ¢; = 0 for i € D we obtain a sequence (¢;);en € C(p,q).



Proof of Theorem 2 (i) If (14++v8m+1)/2<q<m+1, then
C(p, q) is infinite.
Since g <m+4 1, by Lemma 5 we have

@) @)
0<q "—p "<(@—-1) ), (@'=-pD<m > (@"'—p ")
i=n+1 1=n+1
Since ¢ < 2m + 1, Lemma 5 also shows that the condition (4)
of Proposition 3 is satisfied for the alphabet A = {—m,...,m}
and the sequence r, ;= ¢ " —p %" k=12, .... Hence there
exists a sequence (Ci)f?;n—l—l € A®° satisfying
o0 . .
g "—p "= > clg'—p");
1=n—+1

setting ¢y =---=¢,_1 =0 and ¢, = —1 this yields (1).



6. Open problems

1. Find the optimal conditions on p and q in Theorem 2. In
particular,

(a) Can C(p,q) be infinite for some p>g>m+ 17

(b) In case 2m+1 < g < m+1+y/m(m + 1) is C(p, q) nontrivial
for all p > q sufficiently close to ¢~

2. Does there exist three (or more) different bases such that
a continuum of (or infinitely many) real numbers have identical
expansions in all three bases with digit set {—1,0,1}7

3. Given two bases p > g > 1 investigate the set of points of the

form
o0

SelpTt =g, (¢) € A™®.
i=1



