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Polynomial values in linear recurrences

I. NEMES and A. PETHO (Debrecen)

1. Introduction

Let A4, ..., 4, and Gy, Gy, ..., G,_, be integers. We have for the n-th term
of a k-order linear recurrence

(1) G, = A,Gy_y+ ...+ 4,G,_p for n=k k+1, ...

Let oy, ..., be the distinct roots of the characteristic polynomial of the
recurrence

) XE— 4, X 1—  —4,.

Throughout this paper we assume that o, has multiplicity one. Then for n=0 we
have

3 G, = Eyof+Py(n)as+ ...+ P(n)oy,

where Py(n) is a polynomial with degree less than the multiplicity of «; in the charac-
teristic polynomial of G,, and where E; and the coefficients of Py{n) are elements
of the field Q(vy, ..., o).

Finally let T (x) B,x"4...+B, be a polynomial with 1nteger coeﬂiaentq
Its degree will be denoted by deg T, while its height, max {|B;|; .,m} by
H(T).

The Diophantine equation

4) G, = Ex"+T(x)E # 0, integer

was investigated by several authors. Naturally, most of the results are known for
T(x)=0.

SHOREY and STEWART [4] proved for general linear recurrences that (4) has
finitely many solutions in ¢, assuming |o|>|¢;|, j=2,...,7 Under some other
restriction on G,, recently P. Kiss [2] was able to generalize their result when deg
T<=cq.

For nondegenerate second order linear recurrences SHOREY and STEWART [4]
derived much more, namely (4) has finitely many solutions in integers |x|=1, ¢=2, n.
The second author investigated in [3] for nondegenerate second order linear recurren-
ces the slightly more general equation

%) G, = wx?
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with we€S, where S is the set of nonzero integers composed solely of primes from
some fixed finite set. He showed assuming yet (4,, 45)=1 that (5) has finitely many
solutions in integers |x|=1, ¢g=2, n and weS.

STEWART [7] was dealing with the case T(x)=c¢, where ¢ is a fixed integer.
For nondegenerate second order recurrences with |4,|=1 he proved the finiteness
of the solution in integers |x|=1, ¢=2, ¢, n of (4).

All the above mentioned results are effective.

In the present paper we shall derive some results for (4), when 7(x) is a poly-
nomial with some restriction.

2. Main results

Theorem 1. Let G, satisfy (3), oy, 071, |o|>'2'= ;. ;=3,..,¢ and
G,—E07#0 for n=>c,. Further let # (T)<H, and deg T=gc,. where H;=0
real number. Then all integer solutions n, |x|>1, q=2 of the equation (4) satisfy
q<cyq, where cy,c3 and cq are effectively computable constants depending on E, G,
and H,.

For second order linear recurrences we prove a more precise result.

Theorem 2. Let G, be a nondegenerate second order [inear recurrence with
|4sl=1. Further let # (T)<H, and deg T=min {g(1—71.¢—3} where H, and
y<1 are posttive real numbers. Then all integer solutions n. x =1, g=2 of (4)
satisfy

max {n’ IX|, q} = Cs,

where c5 is an effectively computable constant depending on E. G,, y and H,.

Remark. Theorem 2 is in the restriction of deg T best possible. Let L, denote
a Lucas sequence,i.e. Ly=2, Ly=a+p and L,=(@+pHL,_—L,_,, where aff=-1
and o+ p integer. Then, as is well known, L,=«"-+ " Further it is easy to see
that L,,=L2+4(—1)"2. This means that both equations L,=x>-2 and L,=x*-2
have infinitely many integer solutions #, x. Therefore in Theorem 2 the assumption
deg T=qg—3 is necessary.

3. Auxiliary results

The most important result we use is Lemma 6 of [4].

Lemma. Let o be a real algebraic number larger than one from the field k. Let
[K:Ql=D,E, A and B be elements of K, EAB#0, finally & a positive real number.
If Ex"=A4o"+B with |B|<a"3~? and n,x,q integers larger than one then q<cs
is a constant, effectively computable in terms of D, E, A, x and .

The following theorem was proved by C. L. SiEGEL [3] for the first time but in
noneffective form. Using the upper estimate for linear forms of logarithms of algeb-
raic numbers A. BAKER [1] proved it in effective form.
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Theorem A, Let Fix % 2 =ipwri:
coefficients. Let it have ar
:he equation Ay*=F(x) =«

rolinomial of degree n and with integer
veree mmoie zeros. Then the integer solutions x,y of

A Lo inzeger. sanisfy max {|x], [y|}<c, a constant
effectively computable in crms :‘;" A e coefficients of F(x).
4. Proofs
In the sequel ¢g, ;... = Zencte pesitive numbers effectively computable in
terms of E, G, H; and .
PROOF OF THEOREM 1. W'z 2y 2352 x. 10 be positive by changing ifnecessary

the sign of E;. Further since z. .-_»br_m integer with absolute value strlctly
larger then all its con3u9:.':< >n kinz norm we see that either o;>1 or o, is one
of 0 or 1. But these two cases mzre zxcuded so we may assume o, >1. Put

B on o= Pymidi— = P,(n)at
D. = =ax deg Pun);, i=2,..,1)
It is easy to show that

(6) 2B < onProan
Assume that for a polsm:-mzl Toxi with #(T)=H,; and deg T'<gcs, n, |x]=
>1, ¢ is a solution of (4. W gman &+¢ an estimate for ¢, in the proof.

Write (4) in the fOI‘IT.

£xt = E. 2'~ B (n)—T(x).
Assume first that

@) Bini—T(x)=0
in which case
(3) E.20 = Ex?
also holds. We distinguish two czses.
If 1=lap/=|o;|, j=3.....:. then JLI'IO‘IO B,(n)=0 which means |B,(n)|<1

for n>cs. Further T(x; iz z polynomial with integer coefficients, therefore @)

has for n>cg no solutions. By &} g= <y because of [x|=2.

n
“Tog %]
If lay|>1, then write

B, (n) = P,1rz)12(1+2 Zgg( ])

The quantity in the bracket: ternds to 1 if » tends to infinity, so for n>cy, |B,(n)|>
=[Py(n)]loe]"(1—&")=l2,">~%. On the other hand T(x)=m H,|x|". From 8)
we have |[x|=(|E/E! % "3 hence 'T(X)|=cyym oy [™9<]a, [C””"‘/” By (7)

lo
loa|"1=8) < [By (n)| = |T(x) < x, **™™ 2. This implies m=>cy, 08 |2 g. Therefore

log [o]
log lozy| _ . ) .
W then (7) and (5) have only finitely many solutions in #, ¢, |x|>1
1

which are effectively computable.

if c3=cyy
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In the sequel we assume that B,(n)—7(x)#0. Put §=(1—93)/2, where 3=0

if a,=1; and 9= og}| %) otherwise. Since «;>1 we have by (6) |B;|< %a"(l &
sl
for n>cy. We choose ¢;5 such that |Ellx[s5=2F+1. If q is large enough then

T 1 Write (4) in the form

Eyo3+ B, (n) _ T(x)

x1C15 xT 5"

Excw =

Taking absolute values, and applying the above estimates we have

E o+ By (n)|

At

2|Ey|+1 < |Exos| = +1.

Hence 2|E)||x|" “s=|E,of+Bi(n)|=2'E,ef, so Ix/fCs<ol. Further |T(x)=

. 1
=m H,|x|"<|x|%% with cg<1. Hence ) =9 when

¢ is small enough. So we have |B;(n)+T(x)|=o}C~9,
Note that if n<c¢;; and (4) holds then g<c;3 as required. Of course since

Ix|™(Ext"—mHy) = |E||x[1—|T(x)| = |[Ex?+T(x)| = |G,| = c;90

the required inequality for ¢ holds.
Finally by the Lemma if n=c,, and (4) holds then g=¢, as was stated.

ProOF OF THEOREM 2. The assumption 'A,/=1 means o a,|=1. We show
that o, and o, are real numbers. Of course if one of them had a nonzero immaginary
part then loy|= |oty| would hold since they are roots of a polynomial with integer
coeficients. This imply || =|&,/=1.

But ay/a; cannot be a root of unity by nondegeneracy. Thus &, a, are real
numbers and |} >1> |ap| holds since |0, 2,|=1. Further the equation A, af= T(x)
has only finitely many solutions, since with # large enough 0<|T(x)|=|4, o] <1.
Therefore n<c,, which implies ¢, jx|<cs,.

In the sequel we assume A4,3#7T(x). Now we shall prove g<cy;. Assume
loggH,

that (4) has a solution n,q, |x|>1 such that g=c,,, with 7log? =% and
q%>1+—2—. Then
TG = < b < R
Applying the assumption we have
g(1— y)+102 qf" = q(1—7)+q% = q[l—%) g—L:
Hence T 1. From this follows as in the proof of Theorem 1 |x/471<q?,

xP-t
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and |T(x)|<a«{l=® with 5:%. Finally it is abvious that P,(n)ley|"<af1=9).

Now applying the Lemma we conclude that ¢ is bounded by an effectively computable
constant.
Now let ¢ and T(x) be fixed with deg T<g(1 —7) and consider the equation

G, = Ex"+T(x) = Ty(x).

It is well known that G2, —4,G,.1G,+4,G2=CA}, with C=G}—A4,G,G,+
+ A,G% (see for example [3] Lemma 1). From this follows DG;+4CA3=z% with
D=A?—44,>0 and z an integer. Replacing G2 by Ex?4 T(x), and taking |4./=1
into account we have

R(x) = D(Ex+T(x)?+4C = DT3(x) £4C = 2.

This is an elliptic ‘equation, and by means of Theorem A it has finitely many
solutions in x, z when R(x) has at least three simple zeros. Let (R(x), R (x))z O (x).
It is well known that a root @ of R(x) has multiplicity at least two if and only if w
is a root of Q(x). Further (R(x), T3(x))=1 because of ¢=0, and R'(x)=
=2D Ty(x) T7(x) so deg Q(x)=¢—1. This means that if either deg Q(x)<g—1
or it has at least one multiple root then R(x) has at least three simple zeros and we
are ready.

Hence the only wrong case is when Q(x)=T1(x), and R(x)=T(x)3S(x)
with a polynomial S(x) with rational coefficients of degree two with not any multiple
roots. Let S(x)=s,x?+s5:x45, and consider the equation

D(Ex1+T(x)P+4C = (2gExT T (X)) (52 %7+ 5; X+ 5¢).

The coefficient of x** and that of x*¢~2 on the left hand side is 0, because of
deg T(x)<q—3, while the coefficient of x**~* on the right hand side is 4¢*E%s,,
and that of x*~2 is 4¢*E35,. This means s;=s5,=0, and S(x)=s,x* wich is a
contradiction.
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