On norm form equations with solutions forming arithmetic progressions

Attila Pethő
(University of Debrecen, Hungary)
based on joint works with Attila Bérczes

Luminy, 19 May, 2005

Let $\alpha_{1}=1, \alpha_{2}, \ldots, \alpha_{m}$ be linearly independent algebraic numbers over \mathbb{Q} and put $K:=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{m}\right)$. Let $n:=[K: \mathbb{Q}]$. For any $\alpha \in K$, denote by $\alpha^{(i)}$ the conjugates of α. Put

$$
l^{(i)}(\mathbf{X})=X_{1}+\alpha_{2}^{(i)} X_{2}+\ldots+\alpha_{n}^{(i)} X_{n}
$$

for $i=1, \ldots, n$. There exists a non-zero $a_{0} \in \mathbb{Z}$ such that the form

$$
F(\mathbf{X}):=a_{0} N_{K / \mathbb{Q}}\left(\alpha_{1} X_{1}+\ldots+\alpha_{m} X_{m}\right)=a_{0} \prod_{i=1}^{n} l^{(i)}(\mathbf{X})
$$

has integer coefficients. Such a form is called a norm form.

The equation

$$
\begin{equation*}
a_{0} N_{K / \mathbb{Q}}\left(\alpha_{1} x_{1}+\ldots+\alpha_{m} x_{m}\right)=b \tag{1}
\end{equation*}
$$

in $x_{1}, \ldots, x_{m} \in \mathbb{Z}$ is called a norm form equation.

If the \mathbb{Q} vector space spanned by $\alpha_{1}, \ldots, \alpha_{m}$ has a subspace, which is proportional to a full \mathbb{Z}-module of an algebraic number field, different from \mathbb{Q} and the imaginary quadratic field, then $\alpha_{1} \mathbb{Z}+\ldots+\alpha_{m} \mathbb{Z}$ is called degenerate.
In that case it is easy to see, that (2) can have infinitely many solutions.
For non-degenerate norm form equations W.M. Schmidt (1971) proved that the number of their solutions is finite. This result is ineffective.
For a large class of norm form equations K. Györy and Z.Z.
Papp (1978): finiteness + explicit upper

Motivation

Buchmann and Pethő found twenty years ago, as a byproduct of a search for independent units that in the field $K:=\mathbb{Q}(\alpha)$ with $\alpha^{7}=3$, the integer

$$
10+9 \alpha+8 \alpha^{2}+7 \alpha^{3}+6 \alpha^{4}+5 \alpha^{5}+4 \alpha^{6}
$$

is a unit. This means that the diophantine equation

$$
\begin{equation*}
N_{K / \mathbb{Q}}\left(x_{0}+x_{1} \alpha+\ldots+x_{6} \alpha^{6}\right)=1 \tag{2}
\end{equation*}
$$

has a solution $\left(x_{0}, \ldots, x_{6}\right) \in \mathbb{Z}^{7}$ such that the coordinates form an arithmetic progression.

Our goals: Generalize (2) in three directions, and investigate those solutions which form an arithmetic progression:

- we consider arbitrary number fields
- the integer on the right hand side of equation (2) is not restricted to 1
- it is allowed that the solutions form only nearly an arithmetic progression.

Results

Let $K:=\mathbb{Q}(\alpha)$ be an algebraic number field of degree n and $m \in \mathbb{Z}$ an integer. Consider the equation

$$
\begin{equation*}
N_{K / \mathbb{Q}}\left(x_{0}+x_{1} \alpha+x_{2} \alpha^{2}+\ldots+x_{n-1} \alpha^{n-1}\right)=m . \tag{3}
\end{equation*}
$$

Let $X=\max \left\{\left|x_{0}\right|, \ldots,\left|x_{n-1}\right|\right\}$. We say that the sequence $\left\{x_{0}, \ldots, x_{n-1}\right\}$ forms nearly an arithmetic progression if there exists $d \in \mathbb{Z}$ and $0<\delta \in \mathbb{R}$ such that

$$
\begin{equation*}
\left|\left(x_{i}-x_{i-1}\right)-d\right| \leq X^{1-\delta}, \quad i=1, \ldots, n-1 \tag{4}
\end{equation*}
$$

Theorem 1. Let α be an algebraic integer of degree $n \geq 3$ over \mathbb{Q} and put $K:=\mathbb{Q}(\alpha)$. Suppose that

$$
\beta:=\frac{n \alpha^{n}}{\alpha^{n}-1}-\frac{\alpha}{\alpha-1}
$$

is an algebraic number of degree at least 3 , over \mathbb{Q}. Then there exists an effectively computable constant $c_{1}>0$ depending only on n, m and the regulator of K such that for any $0 \leq \delta<c_{1}$ and any solution of equation (3) with the property (4) we have

$$
\left|x_{i}\right|<B \quad \text { for } i=0, \ldots, n-1,
$$

where B is again an effectively computable constant depending only on n, m, δ, the regulator of K, and on the height of α.

In the special case when $\delta=1$ we proved a nearly complete finiteness result.

Theorem 2. Let α be an algebraic integer of degree $n \geq 3$ over \mathbb{Q} and put $K:=\mathbb{Q}(\alpha)$. Equation (3) has only finitely many solutions in $x_{0}, \ldots, x_{n-1} \in \mathbb{Z}$ such that x_{0}, \ldots, x_{n-1} are consecutive terms of an arithmetic progression, provided that non of the following two cases hold
(i) α has minimal polynomial of the form

$$
x^{n}-b x^{n-1}-\ldots-b x+(b n+b-1)
$$

with $b \in \mathbb{Z}$;
(ii) $\beta:=\frac{n \alpha^{n}}{\alpha^{n}-1}-\frac{\alpha}{\alpha-1}$ is a real quadratic number.

Remark. Case (i) appears quite often. Indeed, elementary computation shows that the polynomial $x^{n}-b x^{n-1}-\ldots-b x+(b n+b-1)$ is irreducible for $n=2$ if $b \notin\{-3,0,12,15\}$ and is irreducible for $n=3$ if $b \notin\{-14,0\}$.

In contrast we found only one quartic integral α with defining polynomial $x^{4}+2 x^{3}+5 x^{2}+4 x+2$ such that the corresponding β is a real quadratic number. It is a root of $x^{2}-4 x+2$. Allowing however α not to be integral we can obtain a lot of examples. Does there exist infinitely many exceptions?

Theorem 3. For any $n \in \mathbf{N}(n \geq 3)$ there exists an algebraic integer α of degree n over \mathbb{Q} such that the equation

$$
\begin{equation*}
N_{K / \mathbb{Q}}\left(x_{0}+x_{1} \alpha+x_{2} \alpha^{2}+\ldots+x_{n-1} \alpha^{n-1}\right)= \pm 1, \tag{5}
\end{equation*}
$$

where $K:=\mathbb{Q}(\alpha)$, has a solution $\left(x_{0}, \ldots, x_{n-1}\right) \in \mathbb{Z}^{n}$ having coordinates which are consecutive terms in an arithmetic progression.

More precisely, the following statements are true:
(i) If $\alpha^{n}=2, n \geq 3$, then for odd $n \in \mathbf{N}$ the n-tuples ($2 n-$ $1,2 n-2, \ldots, n),(-2 n+1,-2 n+2, \ldots,-n),(-1,-1, \ldots,-1)$ and $(1,1, \ldots, 1)$;
for even $n \in \mathbf{N}$ the n-tuples $(2 n-1,2 n-2, \ldots, n),(-2 n+$ $1,-2 n+2, \ldots,-n),(-1,-1, \ldots,-1),(1,1, \ldots, 1),(-4 n+1,-4 n+$ $3, \ldots,-2 n+1$) and ($4 n-1,4 n-3, \ldots, 2 n-1$)
are the only solutions of equation (5) which form an arithmetic progression.
(ii) If $\alpha^{n}=3, n \geq 3$, then for each odd $n \in \mathbf{N}$ the n-tuples $\left(\frac{-3 n+1}{2}, \frac{-3 n+3}{2}, \ldots, \frac{-n-1}{2}\right),\left(\frac{3 n-1}{2}, \frac{3 n-3}{2}, \ldots, \frac{n+1}{2}\right)$ are the only solutions of equation (5) which form an arithmetic progression, and for even $n \in \mathbf{N}$ there are no such solutions at all.

On the proof of Theorem 1

Put $c_{i}:=\left(x_{i}-x_{i-1}\right)-d$. Then equation (3) can be written in the form

$$
N_{K / \mathbb{Q}}\left(\left(\frac{\alpha^{n}-1}{\alpha-1}\right) x_{0}+\left(\frac{n \alpha^{n+1}-n \alpha^{n}-\alpha^{n+1}+\alpha}{(\alpha-1)^{2}}\right) d+\mu\right)=m
$$

where $\mu=c_{1} \alpha+c_{2} \alpha^{2}+\ldots+c_{n-1} \alpha^{n-1}$. It can be transformed to

$$
N_{K / \mathbb{Q}}\left(\frac{\alpha^{n}-1}{\alpha-1}\right) N_{K / \mathbb{Q}}\left(x_{0}+\beta d+\lambda\right)=m
$$

where $\beta:=\frac{n \alpha^{n}}{\alpha^{n}-1}-\frac{\alpha}{\alpha-1}$ and $\lambda:=\mu \frac{\alpha-1}{\alpha^{n}-1}$.

Lemma 1. (Sprindžuk, 1974) Let K be an algebraic number field of degree $n \geq 3$ over \mathbb{Q}. Let $\beta^{\prime} \in \mathbb{Z}_{K}$ be of degree at least three. Consider the equation

$$
\begin{equation*}
N_{K / \mathbb{Q}}\left(x+\beta^{\prime} y+\lambda^{\prime}\right)=m \tag{6}
\end{equation*}
$$

in $x, y \in \mathbb{Z}$ and $\lambda^{\prime} \in \mathbb{Z}_{K}$ with $\left|\overline{\lambda^{\prime}}\right|<\max \{|x|,|y|\}^{1-\delta}, 0<\delta<$ 1. Then there exist effectively computable constants $c_{1}, c_{2}>0$ depending only on n and the regulator of K such that for the solutions of equation (6) with $0<\delta<c_{1}$ we have

$$
\max \{|x|,|y|\}<B_{0}^{c_{2} 1 / \delta \log (1 / \delta)}
$$

where the effectively computable constant B_{0} depends only on n, m and on the height of β^{\prime}.

Note. This result is proved originally with the assumption $K=$ $\mathbb{Q}\left(\beta^{\prime}\right)$, but analyzing the proof it is clear that it works in our case, too.

On the proof of Theorem 3

If the minimal polynomial of α is $x^{n}-a$, then equation (5) can be transformed to the form
$N_{K / \mathbb{Q}}\left(\frac{1}{(\alpha-1)^{2}}\right) \cdot N_{K / \mathbb{Q}}\left(x_{0}(a-1)(\alpha-1)+d(a n(\alpha-1)-(a-1) \alpha)\right)= \pm$
which can be rewritten as
$\left(-x_{0}(a-1)-d a n\right)^{n}+(-1)^{n+1} a\left(x_{0}(a-1)+d a n-d(a-1)\right)^{n}= \pm(a-1)^{2}$
Put $X:=-x_{0}(a-1)-d a n$ and $Y:=-x_{0}(a-1)-d a n+d(a-1)$.
So we get the equation

$$
X^{n}-a Y^{n}= \pm(a-1)^{2}
$$

The following two lemmas complete the proof of Theorem 3.

Lemma 2. (Bennett; 2001) If $n \geq 3$ is an odd integer, then the pairs $(1,0),(-1,0),(1,1)$ and $(-1,-1)$, and if $n \geq 3$ is an even integer then the pairs $(1,0),(-1,0),(1,1),(-1,-1),(-1,1)$ and $(1,-1)$ are the only solutions of the equation

$$
X^{n}-2 Y^{n}= \pm 1 \quad X, Y \in \mathbb{Z}
$$

Lemma 3. (Bennett, Vatsal, Yazdani; 2004) The pairs $(-1,1)$ and $(1,-1)$ are the only solutions of the equation

$$
X^{n}-3 Y^{n}= \pm 4 \quad X, Y \in \mathbb{Z}
$$

where $n \geq 3$ is an odd integer. For even integers $n \geq 3$ the above equation has no solutions.

Computational experiences

Theorem 4. Let α be a root of the irreducible polynomial $x^{n}-a \in \mathbb{Z}[x]$, and put $K:=\mathbb{Q}(\alpha)$. The equation

$$
\begin{equation*}
N_{K / \mathbb{Q}}\left(x_{0}+x_{1} \alpha+x_{2} \alpha^{2}+\ldots+x_{n-1} \alpha^{n-1}\right)=1 \tag{7}
\end{equation*}
$$

has no solutions in integers x_{0}, \ldots, x_{n-1} which are consecutive elements of an arithmetic progression, if $4 \leq a \leq 100$ with the possible exception $a=93$ and $n=2^{u} 31^{v}, u=0,1, v \in \mathbb{Z}_{+}$.

To prove this result, similarly to the proof of Theorem 3, we transform our equation (7) to

$$
\begin{equation*}
X^{n}-a Y^{n}=(a-1)^{2} \tag{8}
\end{equation*}
$$

with $X:=-x_{0}(a-1)-d a n$ and $Y:=-x_{0}(a-1)-d a n+d(a-1)$.

Now we try to completely solve equation (8) for $4 \leq a \leq 100$. Clearly, it is enough to consider the cases where n is an odd prime, or 4.

Lemma 1 The only solutions of equation (8) for $4 \leq a \leq 100$, if $a \neq 93$ or if $a=93$ and $n \neq 2^{u} 31^{v}\left(u=0,1, v \in \mathbb{Z}_{+}\right)$, are those listed in the following Table.

n	a	(X, Y)
3	9	$(-8,-4),(-2,-2),(4,0)$
6	9	$(2,0),(-2,0)$
3	10	$(1,-2),(11,5)$
3	19	$(7,1)$
3	28	$(-27,-9),(-3,-3),(9,0)$
6	28	$(3,0),(-3,0)$
3	29	$(1,-3)$
3	36	$(13,3)$
3	37	$(10,-2)$
3	38	$(7,-3),(11,-1)$
3	57	$(-8,-4)$
3	65	$(-64,-16),(-4,-4),(16,0)$
6	65	$(4,0),(-4,0)$
12	65	$(2,0),(-2,0)$
3	66	$(1,-4)$

n	a	(X, Y)
3	73	$(8,-4)$
3	74	$(47,11)$
3	93	$(118,26)$
4	5	$(6,4),(-6,4),(-6,-4),(6,-4),(2,0),(-2,0)$
4	10	$(3,0),(-3,0)$
4	17	$(4,0),(-4,0)$
8	17	$(2,0),(-2,0)$
4	26	$(5,0),(-5,0)$
4	37	$(6,0),(-6,0)$
4	50	$(7,0),(-7,0)$
4	65	$(8,0),(-8,0),(12,4),(-12,4),(-12,-4),(12,-4)$
4	82	$(9,0),(-9,0)$
8	82	$(3,0),(-3,0)$
4	90	$(37,12),(-37,12),(-37,-12),(37,-12)$
5	33	$(-8,-4),(-2,-2),(4,0)$
10	33	$(2,0),(-2,0)$
5	34	$(1,-2)$

The method contains the following ingredients:

- Baker's method, for bounding n in terms of a (Bakery)
- Finding contradictions $(\bmod p)$
- Solving the remaining equations via MAGMA, where possible
- Using theory of modular forms

Lemma 4. (Pintér, 2004) Let

$$
F(x, y)=a x^{n}-b y^{n}, a \neq b
$$

be a binary form of degree $n \geq 3$, with positive integer cofficients a and b. Set $A=\max \{a, b, 3\}$. Suppose that

$$
F(x, y)=c
$$

with $x>|y|>0,3 \log (1.5|c / b|) \leq 7400 \frac{\log A}{\lambda}$ and $\frac{\log 2 c}{\log 2} \leq 8 \log A$. Then we have

$$
n \leq \min \left(7400 \frac{\log A}{\lambda}, 3106 \log A\right)
$$

The local method:

Choose a small integer k such that $p=2 k n+1$ is a prime. Then X^{n} and Y^{n} are both $2 k$-th roots of unity modulo p. Thus we have to check

$$
X^{n}-a Y^{n} \equiv(a-1)^{2} \quad(\bmod p)
$$

only in a "few" cases. Programmed in MAGMA, this method works very efficiently.

Lemma 5. (Bennett, Skinner) Suppose that a, b, c, A, B, C are non-zero integers with $a A, b B, c C$ pairwise coprime, $a b \neq \pm 1$, satisfying

$$
A a^{n}+B b^{n}=C c^{2}
$$

with $n \geq 7$ a prime and $(n, A B C)=1$. Then there exists a cuspidal newform $f=\sum_{r=1}^{\infty} c_{r} q^{r}$ of weight 2, trivial Nebentypus character and level N, with $N:=\operatorname{Rad}_{2}(A B) \operatorname{Rad}_{2}(C)^{2} \varepsilon_{2}$, where

$$
\varepsilon_{2}:=\left\{\begin{array}{lll}
1 & \text { if } & \operatorname{ord}_{2}\left(B b^{n}\right)=6 \\
2 & \text { if } & \operatorname{ord}_{2}\left(B b^{n}\right) \geq 7 \\
4 & \text { if } & \operatorname{ord}_{2}(B)=2 \text { and } b \equiv-B C / 4 \quad(\bmod 4) \\
8 & \text { if } & \operatorname{ord}_{2}(B)=2 \text { and } b \equiv B C / 4 \quad(\bmod 4), \\
32 & \text { or if } & \operatorname{ord}_{2}(B) \in\{4,5\} \\
128 & \text { if } & \operatorname{ord}_{2}(B)=3 \text { or if } b B C \text { is odd } \\
256 & \text { if } & C \text { is even. }
\end{array}\right.
$$

Moreover, if we write K_{f} for the field of definition of the Fourier coefficients c_{r} of the form f and suppose that p is a prime coprime to $n N$, then

$$
\operatorname{Norm}_{K_{f} / \mathbb{Q}}\left(c_{p}-a_{p}\right) \equiv 0 \quad(\bmod n),
$$

where $a_{p}= \pm(p+1)$ or $a_{p} \in\{x:|x|<2 \sqrt{p}, x \equiv 0(\bmod 2)\}$.

Lemma 6. (Kraus) Suppose that a, b, c, A, B, C are non-zero integers with $a A, b B, c C$ pairwise coprime, $a b \neq \pm 1$, satisfying

$$
A a^{n}+B b^{n}=C c^{n}
$$

with $n \geq 5$ a prime and $(n, A B C)=1$. Then for f, N as in Lemma 5 we have

$$
\varepsilon_{n}:= \begin{cases}1 & \text { if } \operatorname{ord}_{2}(A B C)=3 \\ 2 & \text { if } \operatorname{ord}_{2}(A B C)=0 \text { or if } \operatorname{ord}_{2}(A B C) \geq 5 \\ 8 & \text { if } \operatorname{ord}_{2}(A B C)=2 \text { or } 3 \\ 32 & \text { if } \operatorname{ord}_{2}(A B C)=1\end{cases}
$$

Moreover, if we write K_{f} for the field of definition of the Fourier coefficients c_{r} of the form f and suppose that p is a prime coprime to $n N$, then

$$
\operatorname{Norm}_{K_{f} / \mathbb{Q}}\left(c_{p}-a_{p}\right) \equiv 0 \quad(\bmod n),
$$

where $a_{p}= \pm(p+1)$ or $a_{p} \in\{x:|x|<2 \sqrt{p}, x \equiv p+1 \quad(\bmod 4)\}$.

