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Let a1 = 1,09,...,am be linearly independent algebraic numbers
over Q and put K := Q(a1,...,am). Let n = [K : Q]. For any
a € K, denote by o(® the conjugates of a. Put

ID(X) = X1 + a8 Xo+ ...+ i) Xn

for: = 1,...,n. There exists a non-zero ag € Z such that the
form

n .
F(X) L= aONK/Q(ale + ...+ ame) = ag H l(z)(X)
i=1
has integer coefficients. Such a form is called a norm form.

The equation

aONK/Q(OélﬂUl + ...+ amxm) =0b (1)

in x1,...,zm € Z is called a norm form equation.



If the Q vector space spanned by «1,...,am,m has a subspace,
which is proportional to a full Z-module of an algebraic number
field, different from Q and the imaginary quadratic field, then
a1Z + ...+ am is called degenerate.

In that case it is easy to see, that (2) can have infinitely many
solutions.

For non-degenerate norm form equations W.M. Schmidt (1971)
proved that the number of their solutions is finite. This result is
ineffective.

For a large class of norm form equations K. GyoOry and Z.Z.
Papp (1978): finiteness 4+ explicit upper



Motivation

Buchmann and Pethd found twenty years ago, as a byproduct of
a search for independent units that in the field K := Q(«) with
a’ = 3, the integer

10 4+ 9a + 82 —|—7043 -+ 6a” -+ 5a° —|—40¢6
IS a unit. This means that the diophantine equation

NK/@(xO—I—xla-I-...—I—x6a6) =1 (2)

has a solution (zg,...,zg) € Z" such that the coordinates form
an arithmetic progression.



Our goals: Generalize (2)) in three directions, and investigate
those solutions which form an arithmetic progression:

e Wwe consider arbitrary number fields

e the integer on the right hand side of equation (2) is not
restricted to 1

e it is allowed that the solutions form only nearly an arithmetic
progression.



Results

Let K := Q(«a) be an algebraic number field of degree n and
m € Z an integer. Consider the equation
NK/Q(QZO—|—QZ‘1(X—|—$QO£2+ itz 10 ) =m. (3)
Let X = max{|xo],...,|zn_1]}. Ve say that the sequence {zqg,...,z,_1}

forms nearly an arithmetic progression if there exists d € Z and
O <é € R such that

(z; —xj_1) —d| < X' 0 i=1,...,n—1. (4)



Theorem 1. Let o be an algebraic integer of degree n > 3 over
Q and put K := Q(«). Suppose that

nao’™ o

b= a"—1 a-—1
is an algebraic number of degree at least 3, over Q. Then there
exists an effectively computable constant ¢; > 0 depending only
on n,m and the regulator of K such that for any 0 < ¢ < ¢q and

any solution of equation (3)) with the property (4)) we have

lz;| < B for ¢i=0,...,n—1,

where B is again an effectively computable constant depending
only on n,m,d, the regulator of K, and on the height of «.



In the special case when § = 1 we proved a nearly complete
finiteness result.

Theorem 2. Let o be an algebraic integer of degree n > 3 over Q
and put K := Q(«). Equation (3]) has only finitely many solutions
in xg,...,xp,—1 € Z such that xq,...,x,_1 are consecutive terms
of an arithmetic progression, provided that non of the following
two cases hold

(i) o has minimal polynomial of the form

2" — bl — . —bz+(bn+b—1)
with b € Z;
(ii) B .= Oé?}lole — —=3 is a real quadratic number.



Remark. Case (i) appears quite often. Indeed, elementary com-
putation shows that the polynomial #—bz"1—.. . —bz+(bn+b—1)
is irreducible forn =2 if b¢ {—3,0,12,15} and is irreducible for
n=3ifb¢g{—14,0}.

In contrast we found only one quartic integral o with defining
polynomial z% + 223 4 522 4+ 4z + 2 such that the corresponding
B is a real quadratic number. It is a root of a:2—4a:—|—2. Allowing
however a not to be integral we can obtain a lot of examples.
Does there exist infinitely many exceptions?



Theorem 3. For any n € N (n > 3) there exists an algebraic
integer o of degree n over Q such that the equation

NK/Q(CBO+33]_04+$2052+...—I—ZEn_]_Oén_l) = +1, (5)

where K := Q(«), has a solution (zq,...,x,_1) € Z™ having coor-
dinates which are consecutive terms in an arithmetic progression.



More precisely, the following statements are true:

(i) If ™ = 2,n > 3, then for odd n € N the n-tuples (2n —

1,2n—-2,...,n), (-2n+1,-2n+2,...,—m), (=-1,—-1,...,—1) and
(1,1,...,1);

for even n € N the n-tuples (2n — 1,2n — 2,...,n), (—2n +
1, —2n+2,...,—mn), (-1,-1,...,-1), (1,1,...,1), (—4n+1,—-4n+
3,...,—2n4+1)and (4n—-1,4n—-3,...,2n—1)

are the only solutions of equation (5)) which form an arithmetic
progression.

(ii) If o™ = 3,n > 3, then for each odd n € N the n-tuples
(Bl =Sus ) mnsly (3nsl 3n=3 0 nEdy are the only so-
lutions of equation (5]) which form an arithmetic progression,

and for even n € N there are no such solutions at all.




On the proof of Theorem 1

Put ¢; ;= (2; —z;—1) —d. Then equation (3)) can be written in
the form

n_1q n+1 _ n _ n+1_F
s[5 ()

where y = cia+cra?+...+¢,_1a™ L. It can be transformed to

a —1

Nk /Q (

n
where 8= 775 — %5 and A 1=

a_

a—1
a—1-




Lemma 1. (SprindZuk, 1974) Let K be an algebraic number
field of degree n > 3 over Q. Let B’ € Zi be of degree at least
three. Consider the equation

Nijla+ By +X) =m (6)

in z,y € Z and X € Zx with |[N| < max{|z|,|y|}17%,0 < § <
1. Then there exist effectively computable constants cy,co > 0
depending only on n and the regulator of K such that for the
solutions of equation (|6]) with 0 < § < ¢; we have

1/6log(1l/é
max{|z|, |y|} < By’ /0109(1/0),

where the effectively computable constant By depends only on
n,m and on the height of 3.

Note. This result is proved originally with the assumption K =
Q(B"), but analyzing the proof it is clear that it works in our case,
too.



On the proof of Theorem 3

If the minimal polynomial of « is ™ — a, then equation (5) can
be transformed to the form

Nk <(a _1 1)2>'NK/Q (zo(a —1)(a—1) +d(an(a—1) —(a—1)a)) =4

which can be rewritten as

(—zo(a — 1) — dan)"+(—=1)"Tla (zg(a — 1) 4+ dan — d(a — 1)) = +(a—1)’

Put X ;= —2g9(a—1) —dan and Y := —zg(a—1) —dan+d(a—1).
So we get the equation

X" —aY" = +(a— 1)°.



The following two lemmas complete the proof of Theorem 3.

Lemma 2. (Bennett; 2001) If n > 3 is an odd integer, then the
pairs (1,0), (-1,0), (1,1) and (—=1,—-1), and if n > 3 is an even
integer then the pairs (1,0), (-1,0), (1,1), (—-1,—-1), (—-1,1)
and (1,—1) are the only solutions of the equation

X" 2Y"=+41 X, Y<cZ

Lemma 3. (Bennett, Vatsal, Yazdani; 2004) The pairs (—1,1)
and (1,—1) are the only solutions of the equation

X"-3Y"=44 X, YEZ

where n > 3 is an odd integer. For even integers n > 3 the above
equation has no solutions.



Computational experiences

Theorem 4. Let o be a root of the irreducible polynomial
2" —a € Z[x], and put K := Q(«). The equation

NK/@(xo—I—mloz—l—a:QOzQ—l— it z, 10" =1 (7)

has no solutions in integers xg,...,x,_1 Which are consecutive
elements of an arithmetic progression, if 4 < a < 100 with the
possible exception a =93 and n = 2%31%,u=0,1,v € Z4.



To prove this result, similarly to the proof of Theorem 3, we
transform our equation ([7]) to

X" —aY" = (a—1)7 (8)
with X ;= —2g(a—1) —dan and Y := —xg(a—1) —dan+d(a—1).

Now we try to completely solve equation () for 4 < a < 100.
Clearly, it is enough to consider the cases where n is an odd
prime, or 4.



Lemma 1 The only solutions of equation (8) for 4 < a < 100, if
a7 93 or ifa =93 and n # 2“31Y (v =0,1,v € Zy ), are those
listed in the following Table.

n | a (X,Y)

3]0 (=8,—4),(=2,-2), (4,0)
6 9 (270)7(_270)

3 [ 10 (1,-2),(11,5)

3 | 19 (7,1)

3 | 28 (—27,-9),(-3,-3),(9,0)
3 | 29 (1,-3)

3 | 36 (13,3)

3 | 37 (10, —2)

3 | 38 (7,-3), (11, -1)

3 | 57 (—8, —4)

3 | 65 (—64,—-16), (-4, —4),(16,0)
12 | 65 (2,0),(—2,0)

3 | 66 (1, —4)




n | a (X,Y)

3 |73 (8, —4)

3 | 74 (47,11)

3 |93 (118,26)

4 | 5 (6,4),(—=6,4),(—6,—4),(6,—4),(2,0),(=2,0)
4 | 26 (5,0),(=5,0)

4 | 37 (6,0),(—6,0)

4 | 50 (7,0),(—7,0)

4 165 (8,0),(—8,0),(12,4),(—12,4), (=12, —4), (12, —4)
4 | 82 (9,0),(—9,0)

8 | 82 (3,0),(—3,0)

4 |90 (37,12), (-37,12), (=37, —12), (37, —12)
5 33 (_87 _4)7 (_27 _2)7 (47 O)

10 | 33 (2,0),(-2,0)

5 | 34 (1,-2)




The method contains the following ingredients:

e Baker's method, for bounding n in terms of a (Bakery)

e Finding contradictions (mod p)

e Solving the remaining equations via MAGMA, where possible

e Using theory of modular forms



Lemma 4. (Pintér, 2004) Let
F(z,y) =ax" —by", a7 b

be a binary form of degree n > 3, with positive integer cofficients
a and b. Set A = max{a,b,3}. Suppose that

F(z,y) =c

with & > [y| > 0, 3log(1.5]c/b|) < 7400'%¢4 and P9 < 8log A.
Then we have

log A
n < min <74oo%, 3106 log A) |



The local method:

Choose a small integer k such that p = 2kn+1 is a prime. Then
X™ and Y™ are both 2k-th roots of unity modulo p. Thus we
have to check

X" —aY"=(a—1)? (mod p)

only in a “few"” cases. Programmed in MAGMA, this method
works very efficiently.



Lemma 5. (Bennett, Skinner) Suppose that a,b,c, A, B,C are
non-zero integers with aA,bB,cC pairwise coprime, ab #*= %1,

satisfying

Aa™ 4+ B = Cc?

with n > 7 a prime and (n,ABC) = 1. Then there exists a
cuspidal newform f = > >2 ; crq" Of weight 2, trivial Nebentypus
character and level N, with N := Rad>(AB)Rad»(C)?s», where

(

1

2
4
8

7\

€D .

32
128
256

if
if
if
if
or if
if
if
if

ord>(Bb"*) = 6

OI’dQ(an) >0

ordr(B) =2 and b= —-BC/4 (mod 4)
ord>(B) =2 and b= BC/4 (mod 4),
ord>(B) € {4,5}

ord~>(B) = 3 or if bBC' is odd

OI’dQ(B) =1

C' is even.



Moreover, if we write Kf for the field of definition of the Fourier
coefficients ¢, of the form f and suppose that p is a prime coprime

to nN, then
Norme/@(cp —ap) =0 (mod n),
where ap = x(p+1) orape{zr : |z|<2p, =0 (mod 2)}.



Lemma 6. (Kraus) Suppose that a,b,c, A, B,C are non-zero
integers with aA,bB, cC' pairwise coprime, ab # +1, satisfying

Aa™ + Bb"' = Cc"

with n > 5 a prime and (n, ABC) = 1. Then for f, N as in Lemma
5 we have

(

1 if ordo(ABC) =3

2 if ord>(ABC) = 0 or if ordo(ABC) > 5
8 if ordb,(ABC)=2or 3

| 32 if ordy(ABC) =1.

Moreover, if we write Kf for the field of definition of the Fourier
coefficients ¢, of the form f and suppose that p is a prime coprime
to nN, then

Norme/Q(cp —ap) =0 (mod n),
where ap = £(p+1) orap € {z : |z| <2 /p, c=p+1 (mod 4)}.



