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Luminy, 19 May, 2005



Let α1 = 1, α2, . . . , αm be linearly independent algebraic numbers

over Q and put K := Q(α1, . . . , αm). Let n := [K : Q]. For any

α ∈ K, denote by α(i) the conjugates of α. Put

l(i)(X) = X1 + α
(i)
2 X2 + . . . + α

(i)
n Xn

for i = 1, . . . , n. There exists a non-zero a0 ∈ Z such that the

form

F (X) := a0NK/Q(α1X1 + . . . + αmXm) = a0

n∏
i=1

l(i)(X)

has integer coefficients. Such a form is called a norm form.

The equation

a0NK/Q(α1x1 + . . . + αmxm) = b (1)

in x1, . . . , xm ∈ Z is called a norm form equation.



If the Q vector space spanned by α1, . . . , αm has a subspace,

which is proportional to a full Z-module of an algebraic number

field, different from Q and the imaginary quadratic field, then

α1Z + . . . + αmZ is called degenerate.

In that case it is easy to see, that (2) can have infinitely many

solutions.

For non-degenerate norm form equations W.M. Schmidt (1971)

proved that the number of their solutions is finite. This result is

ineffective.

For a large class of norm form equations K. Győry and Z.Z.

Papp (1978): finiteness + explicit upper



Motivation

Buchmann and Pethő found twenty years ago, as a byproduct of

a search for independent units that in the field K := Q(α) with

α7 = 3, the integer

10 + 9α + 8α2 + 7α3 + 6α4 + 5α5 + 4α6

is a unit. This means that the diophantine equation

NK/Q(x0 + x1α + . . . + x6α6) = 1 (2)

has a solution (x0, . . . , x6) ∈ Z7 such that the coordinates form

an arithmetic progression.



Our goals: Generalize (2) in three directions, and investigate

those solutions which form an arithmetic progression:

• we consider arbitrary number fields

• the integer on the right hand side of equation (2) is not

restricted to 1

• it is allowed that the solutions form only nearly an arithmetic

progression.



Results

Let K := Q(α) be an algebraic number field of degree n and

m ∈ Z an integer. Consider the equation

NK/Q(x0 + x1α + x2α2 + . . . + xn−1αn−1) = m. (3)

Let X = max{|x0|, . . . , |xn−1|}. We say that the sequence {x0, . . . , xn−1}
forms nearly an arithmetic progression if there exists d ∈ Z and

0 < δ ∈ R such that

|(xi − xi−1)− d| ≤ X1−δ, i = 1, . . . , n− 1. (4)



Theorem 1. Let α be an algebraic integer of degree n ≥ 3 over

Q and put K := Q(α). Suppose that

β :=
nαn

αn − 1
−

α

α− 1

is an algebraic number of degree at least 3, over Q. Then there

exists an effectively computable constant c1 > 0 depending only

on n, m and the regulator of K such that for any 0 ≤ δ < c1 and

any solution of equation (3) with the property (4) we have

|xi| < B for i = 0, . . . , n− 1,

where B is again an effectively computable constant depending

only on n, m, δ, the regulator of K, and on the height of α.



In the special case when δ = 1 we proved a nearly complete

finiteness result.

Theorem 2. Let α be an algebraic integer of degree n ≥ 3 over Q
and put K := Q(α). Equation (3) has only finitely many solutions

in x0, . . . , xn−1 ∈ Z such that x0, . . . , xn−1 are consecutive terms

of an arithmetic progression, provided that non of the following

two cases hold

(i) α has minimal polynomial of the form

xn − bxn−1 − . . .− bx + (bn + b− 1)

with b ∈ Z;

(ii) β := nαn

αn−1 −
α

α−1 is a real quadratic number.



Remark. Case (i) appears quite often. Indeed, elementary com-

putation shows that the polynomial xn−bxn−1−. . .−bx+(bn+b−1)

is irreducible for n = 2 if b 6∈ {−3,0,12,15} and is irreducible for

n = 3 if b 6∈ {−14,0}.

In contrast we found only one quartic integral α with defining

polynomial x4 +2x3 +5x2 +4x +2 such that the corresponding

β is a real quadratic number. It is a root of x2−4x+2. Allowing

however α not to be integral we can obtain a lot of examples.

Does there exist infinitely many exceptions?



Theorem 3. For any n ∈ N (n ≥ 3) there exists an algebraic

integer α of degree n over Q such that the equation

NK/Q(x0 + x1α + x2α2 + . . . + xn−1αn−1) = ±1, (5)

where K := Q(α), has a solution (x0, . . . , xn−1) ∈ Zn having coor-

dinates which are consecutive terms in an arithmetic progression.



More precisely, the following statements are true:

(i) If αn = 2, n ≥ 3, then for odd n ∈ N the n-tuples (2n −
1,2n−2, . . . , n), (−2n+1,−2n+2, . . . ,−n), (−1,−1, . . . ,−1) and

(1,1, . . . ,1);

for even n ∈ N the n-tuples (2n − 1,2n − 2, . . . , n), (−2n +

1,−2n+2, . . . ,−n), (−1,−1, . . . ,−1), (1,1, . . . ,1), (−4n+1,−4n+

3, . . . ,−2n + 1) and (4n− 1,4n− 3, . . . ,2n− 1)

are the only solutions of equation (5) which form an arithmetic

progression.

(ii) If αn = 3, n ≥ 3, then for each odd n ∈ N the n-tuples

(−3n+1
2 , −3n+3

2 , . . . , −n−1
2 ), (3n−1

2 , 3n−3
2 , . . . , n+1

2 ) are the only so-

lutions of equation (5) which form an arithmetic progression,

and for even n ∈ N there are no such solutions at all.



On the proof of Theorem 1

Put ci := (xi − xi−1) − d. Then equation (3) can be written in

the form

NK/Q

((
αn − 1

α− 1

)
x0 +

(
nαn+1 − nαn − αn+1 + α

(α− 1)2

)
d + µ

)
= m,

where µ = c1α+ c2α2 + . . .+ cn−1αn−1. It can be transformed to

NK/Q

(
αn − 1

α− 1

)
NK/Q(x0 + βd + λ) = m,

where β := nαn

αn−1 −
α

α−1 and λ := µ α−1
αn−1.



Lemma 1. (Sprindžuk, 1974) Let K be an algebraic number
field of degree n ≥ 3 over Q. Let β′ ∈ ZK be of degree at least
three. Consider the equation

NK/Q(x + β′y + λ′) = m (6)

in x, y ∈ Z and λ′ ∈ ZK with |λ′| < max{|x|, |y|}1−δ,0 < δ <
1. Then there exist effectively computable constants c1, c2 > 0
depending only on n and the regulator of K such that for the
solutions of equation (6) with 0 < δ < c1 we have

max{|x|, |y|} < B
c21/δ log(1/δ)
0 ,

where the effectively computable constant B0 depends only on
n, m and on the height of β′.

Note. This result is proved originally with the assumption K =
Q(β′), but analyzing the proof it is clear that it works in our case,
too.



On the proof of Theorem 3

If the minimal polynomial of α is xn − a, then equation (5) can

be transformed to the form

NK/Q

(
1

(α− 1)2

)
·NK/Q (x0(a− 1)(α− 1) + d(an(α− 1)− (a− 1)α)) = ±1,

which can be rewritten as

(−x0(a− 1)− dan)n+(−1)n+1a (x0(a− 1) + dan− d(a− 1))n = ±(a−1)2.

Put X := −x0(a−1)− dan and Y := −x0(a−1)− dan+ d(a−1).

So we get the equation

Xn − aY n = ±(a− 1)2.



The following two lemmas complete the proof of Theorem 3.

Lemma 2. (Bennett; 2001) If n ≥ 3 is an odd integer, then the
pairs (1,0), (−1,0), (1,1) and (−1,−1), and if n ≥ 3 is an even
integer then the pairs (1,0), (−1,0), (1,1), (−1,−1), (−1,1)
and (1,−1) are the only solutions of the equation

Xn − 2Y n = ±1 X, Y ∈ Z.

Lemma 3. (Bennett, Vatsal, Yazdani; 2004) The pairs (−1,1)
and (1,−1) are the only solutions of the equation

Xn − 3Y n = ±4 X, Y ∈ Z

where n ≥ 3 is an odd integer. For even integers n ≥ 3 the above
equation has no solutions.



Computational experiences

Theorem 4. Let α be a root of the irreducible polynomial

xn − a ∈ Z[x], and put K := Q(α). The equation

NK/Q(x0 + x1α + x2α2 + . . . + xn−1αn−1) = 1 (7)

has no solutions in integers x0, . . . , xn−1 which are consecutive

elements of an arithmetic progression, if 4 ≤ a ≤ 100 with the

possible exception a = 93 and n = 2u31v, u = 0,1, v ∈ Z+.



To prove this result, similarly to the proof of Theorem 3, we

transform our equation (7) to

Xn − aY n = (a− 1)2 (8)

with X := −x0(a−1)−dan and Y := −x0(a−1)−dan+d(a−1).

Now we try to completely solve equation (8) for 4 ≤ a ≤ 100.

Clearly, it is enough to consider the cases where n is an odd

prime, or 4.



Lemma 1 The only solutions of equation (8) for 4 ≤ a ≤ 100, if

a 6= 93 or if a = 93 and n 6= 2u31v (u = 0,1, v ∈ Z+), are those

listed in the following Table.

n a (X, Y )

3 9 (−8,−4), (−2,−2), (4,0)
6 9 (2,0), (−2,0)
3 10 (1,−2), (11,5)
3 19 (7,1)
3 28 (−27,−9), (−3,−3), (9,0)
6 28 (3,0), (−3,0)
3 29 (1,−3)
3 36 (13,3)
3 37 (10,−2)
3 38 (7,−3), (11,−1)
3 57 (−8,−4)
3 65 (−64,−16), (−4,−4), (16,0)
6 65 (4,0), (−4,0)
12 65 (2,0), (−2,0)
3 66 (1,−4)



n a (X, Y )

3 73 (8,−4)
3 74 (47,11)
3 93 (118,26)
4 5 (6,4), (−6,4), (−6,−4), (6,−4), (2,0), (−2,0)
4 10 (3,0), (−3,0)
4 17 (4,0), (−4,0)
8 17 (2,0), (−2,0)
4 26 (5,0), (−5,0)
4 37 (6,0), (−6,0)
4 50 (7,0), (−7,0)
4 65 (8,0), (−8,0), (12,4), (−12,4), (−12,−4), (12,−4)
4 82 (9,0), (−9,0)
8 82 (3,0), (−3,0)
4 90 (37,12), (−37,12), (−37,−12), (37,−12)
5 33 (−8,−4), (−2,−2), (4,0)
10 33 (2,0), (−2,0)
5 34 (1,−2)



The method contains the following ingredients:

• Baker’s method, for bounding n in terms of a (Bakery)

• Finding contradictions (mod p)

• Solving the remaining equations via MAGMA, where possible

• Using theory of modular forms



Lemma 4. (Pintér, 2004) Let

F (x, y) = axn − byn, a 6= b

be a binary form of degree n ≥ 3, with positive integer cofficients

a and b. Set A = max{a, b,3}. Suppose that

F (x, y) = c

with x > |y| > 0, 3 log(1.5|c/b|) ≤ 7400logA
λ and log 2c

log 2 ≤ 8 logA.

Then we have

n ≤ min
(
7400

logA

λ
,3106 logA

)
.



The local method:

Choose a small integer k such that p = 2kn+1 is a prime. Then

Xn and Y n are both 2k-th roots of unity modulo p. Thus we

have to check

Xn − aY n ≡ (a− 1)2 (mod p)

only in a “few” cases. Programmed in MAGMA, this method

works very efficiently.



Lemma 5. (Bennett, Skinner) Suppose that a, b, c, A, B, C are
non-zero integers with aA, bB, cC pairwise coprime, ab 6= ±1,
satisfying

Aan + Bbn = Cc2

with n ≥ 7 a prime and (n, ABC) = 1. Then there exists a
cuspidal newform f =

∑∞
r=1 crqr of weight 2, trivial Nebentypus

character and level N , with N := Rad2(AB)Rad2(C)2ε2, where

ε2 :=



1 if ord2(Bbn) = 6
2 if ord2(Bbn) ≥ 7
4 if ord2(B) = 2 and b ≡ −BC/4 (mod 4)
8 if ord2(B) = 2 and b ≡ BC/4 (mod 4),

or if ord2(B) ∈ {4,5}
32 if ord2(B) = 3 or if bBC is odd
128 if ord2(B) = 1
256 if C is even.



Moreover, if we write Kf for the field of definition of the Fourier

coefficients cr of the form f and suppose that p is a prime coprime

to nN , then

NormKf/Q(cp − ap) ≡ 0 (mod n),

where ap = ±(p + 1) or ap ∈ {x : |x| < 2
√

p, x ≡ 0 (mod 2)}.



Lemma 6. (Kraus) Suppose that a, b, c, A, B, C are non-zero
integers with aA, bB, cC pairwise coprime, ab 6= ±1, satisfying

Aan + Bbn = Ccn

with n ≥ 5 a prime and (n, ABC) = 1. Then for f, N as in Lemma
5 we have

εn :=


1 if ord2(ABC) = 3
2 if ord2(ABC) = 0 or if ord2(ABC) ≥ 5
8 if ord2(ABC) = 2 or 3
32 if ord2(ABC) = 1.

Moreover, if we write Kf for the field of definition of the Fourier
coefficients cr of the form f and suppose that p is a prime coprime
to nN , then

NormKf/Q(cp − ap) ≡ 0 (mod n),

where ap = ±(p+1) or ap ∈ {x : |x| < 2
√

p, x ≡ p+1 (mod 4)}.


