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Complete Solution of a Family of Quartic Thue Equations

By G. LETTL and A. PETHO

1 Introduction

Let F € Z[X, Y] be an irreducible binary form of degree > 3 and 0 #+mel.
The diophantine equation

F=m (1)

is called Thue equation in honour of the Norwegian mathematician AXEL
THUE, who proved in 1909 (see [18]) that (1) has only finitely many integral
solutions (i.e. (x,y) € Z* with F(x,y) = m). In 1968, A. BAKER [1] showed
that Thue equations can be solved effectively. Since then, much work was
done to lower the effective upper bound for the solutions of (1) to some
reasonable size, and nowadays it is no problem to calculate all solutions of a
Thue equation of low degree with a computer (see e. g [12], [19], [2]).

On the other hand, it was quite recently that parametrized families of
Thue equations were completely solved. For example, one knows all solutions
of the Thue equations

X ==X ~m+2)XY - Y =41 (neZ) (2.2)
and
X' —aX’Y = XY +aXY 4+ Y'=1 (ae2) (2.b)
(see [16], [8], [11], [9]).

For the following families the solutions are known for large parameters:
X —m—-DXY +nXY? Y =1  (n>333-10% (2.¢)
and

X'~ aX’Y =3X°Y2 +aXY 4+ Y =41  (@>99- 10%7)
(2.d)
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(see [10], [11]).

All these families of equations are stably solvable in the sense of [17], i.e.
up to finitely many exceptions, all solutions are given by finitely many pairs
of rational functions of the parameter.

In this paper we consider the family of Thue equations
F, =X*—aX’Y —6X?Y?+aXY* +Y*=c 3)

with a € Z and ¢ € {+1,+4}.

If a € {0,13}, F, factors into two quadratic forms and it is quite elementary
to solve (3). For all other values of a, F, is irreducible. Our main result is the
following

Theorem 1. The only solutions of (3) are
F (+1,0) = F,(0,£1) =1,
F(+1,1) = F,(+1,—1) = —4,
(these solutions we call ‘trivial solutions’), and
Fi(£1,42) = Fy(F2, 1) = F_ (£2,+1) = F_ (F1,£2) = —1,
Fi(#3,+1) = Fi(FL,£3) = F (£1, £3) = F. ($3,41) = 4,

Fy(+2,+3) = Fy(F3,42) = F_y(#3,42) = Fy(T2.43) = 1,
Fy(d5, 1) = Fy(FL%5) = Foy(d1, £5) = F_4(T5, £1) = —4.

Let o denote a root of the polynomial
fo=Fa(X,1) = X*—aX®—6X> +aX +1 € Z[X]. @)
From Theorem 1 we derive the following
Theorem 2. Let a € Z\ {0,+3}. We have Z[x] = Z[5] with a § € Z]o] if and
only if
a arbitrary and & = +e*' +d or

a=1and & = +0-+d, where = —1+3c2—o or 0 = 8+250+ 20> — 4o
are roots of the polynomial X* —19X3 —24X%? —9X — 1 or

a=4and 5 = +0+d, where § = 34+9a—220% +4¢> or 0 = —13—T4a—
3002 + 963 are roots of the polynomial X* 4+ 72X — 84X? + 32X — 4.

Here d € Z is an arbitrary integer.

Similar results were proved by using a different method in [9] for the order
Z[o], where o is a root of the polynomial associated to (2.b). o

At first, we will state some elementary transformation properties of the
form F,.
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Lemma 1. Let a, ¢, x, y € Z.
() If Fau(x,y) =c then F(x — y,x +y) = —4c.
(i) If F4(x,y) = —4c then F,(55%, %) =c.
(il)) Fa(x,y) = Fa(—=x,—y) = Fu(y,—x) = Fa(=y,%).
(IV) F—'a('x> y) = Fa(y: X).

The proof of lemma 1 is done by direct calculation. Note that F,(x,y) = —4c
implies x = y mod (2), so % are indeed integers in this case.

Parts (i), (ii) and (iv) of lemma 1 show that there is a bijection between
the solutions of F, = ¢, F, = —4c and F_, = c. If (x,y) € Z? is a solution
of (3) with x = 0 (or y = 0), this implies y = +1 (or x =+1) and c = 1. It is
easy to check that for y = +1 or x = +1 one obtains just solutions stated in
theorem 1. By (iii), we can also restrict to positive y.

Therefore, to prove theorem 1 we have only to show the following:

For a € N\{3} the only solutions (x,y) € Z* of the equation F, = +1 with
|x| > 2 and y = 2 are F4(2,3) = F4(-3,2) = 1.

2 Simplest Quartic Number Fields

The polynomials f, = F,(X, 1), which are given in (4), are irreducible for each
a € N\ {3}. If fo(o) = O, one can calculate that also fa(;‘;—}) == (. Thus the

rational map x — i—j permutes the roots of f, and, for a # 3, K := Q(«) is a
real quartic number field with cyclic Galois group G = (t), generated by the

i . a—1
automorphism 1: o> “.

These socalled “simplest” quartic number fields were investigated by M. N.
Gras in [5], L5 (see also [6]). They have very similar properties as the
“simplest” cubic number fields, which were called so by D. SHANKS [14] and
are generated by the polynomials associated to the Thue equation (2.a).

We order the four real roots of f, by their size and denote them by
oy <oy <oy <op.

For the size of the roots we have the following estimations, which hold either
for all a € N or for the indicated values of a:

1 5 1 5
at+-<at+-—— < y=a<a+— (5.2)
a a @ (@20 a
2 a—1 2 3
- PV g, P 5b
a<f(0<) =y ~ T (5.b)
1 , 1 1 5
S e & P 5.
a a & (a>5)T (@) = a3 o < a v a’ (59
2 2 1 2 1 I’
—1—-——2<r3(a)=a4=—°‘+1 & o] Semage] ==
a a o—1 @9 a a a (5.d)
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These inequalities can be obtained by considering the sign of f, at the points
at+ia+3-5%, ..

Now let @ € N\ {3}, « = oy > 1 be the largest root of f,, K = Q(x) and
B =%l = —3(a) > 1. We will repeatedly use that

o—1

(o) = (6)

1 {
B‘, w(f) =—a, T()= % ?(f) = _E-
For the algebraic part of the proof of our theorem we will work with the

order © = Z[x«, ] and its group of units, O*.

Lemma 2. The order O is invariant under G = Gal(K /®) and has discriminant
Do = (16 +a?)’.

Proof. By (6), the conjugates of o are %, ~L —B. Thus L = o*—ao? —6a+a
and % = —p3 —ap? + 6§ + a show the invariance of O under G.

Expressing f, %, p° with respect to the basis {1,a,4%,«*} shows that
{&,a,0%, 03} is a Z-basis for O, where

3 % .
. Lyx if a is odd,
o= 2.3, .
Letede if g is even.

Therefore (O : Z[o]) = 2 and Dp = 1Dz = 1D(fa) = (16+a%)?, where D(f,)
denotes the discriminant of the polynomial f,.

Obviously, « and § are units of ©. The following proposition is the quartic
analogue of theorem 3.10 in [15], which deals with simplest cubic fields.
Furthermore, our proof shows that {o, f} is a basis for the relative units of O.

Let k be the quadratic subfield of K and ¢ > 1 be the fundamental unit
of the quadratic order o := O Nk.

Proposition 1. We have O* = (—1,a, 8,n) with n € {¢, /e, /ofe }.
For the proof we will need the following result from [7].

Lemma 3. Let y be an algebraic integer of degree d and
d
M) = [T max{1,y¥]},
k=1
where y® (1 < k < d ) are the conjugates of y. Then

Dzl < diM (@)D,




g S = oy Frpmm . e L g T e g sy Tl

5]
W
Ty
b
1
W

-aguietar of the group & ;. Then
0 shows that & 7, f; are multiplicatively inde-

First we will show that
(s, 8} can be extended to a basis of O*.

Let us assume on the contrary that there exists a y € O* and k, Lnel
with n > 2, (k,I,n) = 1 and

P = o B, ¢

Without restriction, we suppose that |k|, |I| <% and y > 0.

From t(y)" = (—1)'a!f=* and 774(y)" = «~'(—1)* B* we see that an even n
also forces | and k to be even, which contradicts (k,l,n) = 1. Thus n must be
odd, and we have n > 3 and [k, {I| < 7.

If 2n < |k| +|l|, we consider ' := osenl®) gsenthy=2 instead of y, which yields
()" = o B with k' = nsgn(k) — 2k, I' = nsgn(l) — 2 and 0 < [K|+ |1 < %n.
Therefore we can assume that we have a unit y € O™ with y = océﬂ i and
0<é+1i <4

Let M(y) be defined as in lemma 3. From (S.a-d) we obtain M(x) =
M) = a- B < (a+ )1+ 2+ ). Observe that M(y172) < M(y1) - M(y2), thus
M@y) < M@ M@ < M(2)5. Now lemma 3 yields

(16 + )} = Do < Dapy < 4*M(y)° < 4'M(@)*.

But (16 + @)® < 4%((a + 2)(1 + 2 + 2))* does not hold for a > 20, which
contradicts the existence of y and proves our assertion for a > 20.
By [13], 6.22, p. 366, we have the following lower bound for the regulator

R of ©%

_ log’(Do/16)

T 80y/10
The quotient Ro/R gives the index of (¢, o, f ) in O, for which we can compute
an upper bound by the above inequality for each a # 3 with 1 <a < 19.
Hence, if (7) holds, we have 3 <n < %, |kl, [I} < 5 and 0 < [k| + I < %n. We
checked all triplets (n,k,[) for 1 < a < 19 and a # 3 by computer and never
found a solution of (7), i.e. our assertion holds for all positive integers a # 3.

Now let n € O* with O* = (—1,a,B,n), and consider the absolute value

of the relative norm map from K to k

N0 — (g)
7+ INg )l

Since Ng (@) = Ngu(B) = —1, we have (—1,a,8) = ker(A4"). On the
other hand, 4'(s) = & shows that ((g) : #(D%)) <2, A(n) # 1 and
ker(A") = (—1,a,f).
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Therefore either A(n) = g2, which yields ne~! € ker() and % =
(—1,a,B,¢), ot N () =2, which yields #%¢~* € ker(A4). In the latter case, we
can choose 7 such that n* = sk B! with k, I € {0,1}. Considering the signs of
the conjugates, we can see that cither O% = (—1,0,8,+/&) (and Nyole) = 1)
or O% = (—1,0,,+/aBe) (and Nyjgle) = —1).

3 Preparations for the Proof of Theorem 1

We will use the notations introduced in the last chapter. Let a € N\ {3} and
suppose that there exist x, y € Z with |x| > 2,y > 2 and

Fa(x,y) = £1.
Since Fq(x,y) = Hle(x — a;y) is just the norm from K = Q(«) to Q@ of
yo=x—oay € 0%,
proposition 1 yields that there exist uy, U, Uz € %Z with
71l = e B (8:2)

Using (6), we obtain for the conjugates yi+1 = ) =x—opny 1 <i< 3):

yal = &7 p 0" ~ (8b)

ys] = g2 8.c)

pal = 71 ™ (8.d)

From H?ﬂ\f —oy| = ;1; < £ one sees that the rational 3 is close to one of
the zeroes of f,. Let j € {1,...,4} with Ix — oyl = min{}x — o;y| [1<i<d4).

At first we will show that
it suffices to consider the cases j=1and j=4

Let 1 <i<4andi j Then
Il — o] < 1x — oyl 4+ x — oyl < 20x — %yl

which implies

8

ly ©

=gy € =

MLyl —ogly) @)l

The inequalities (5a)—(5d) and a direct calculation for some small Vglues of a
show that lf'ﬁm < 2 holds for all a > 1. Thus

b
a-_.__

J
y

1

<
= 2)/2’
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which means that )1 is a convergent to «;. Now |x| < 2|«;y| follows from the
inequality

1
x| < |x — ayyl + eyl < fejyl + 2

We have
1 1
— <

! y < <
= 2ylloyx] Ty

vt
& X

_ |y —x

SN

O(J'X
As lo; — a0 > 0.5 for all 1 <i < j <4, the last inequality means that
Lyt 3| = min (Jax — y1}
x| = il — 1.
As —1/ay = a4 and —1/03 = oy, the claim is confirmed.

We call (x,y) a solution of type I (resp. type II) if j =1 (resp. j = 4).
In the following we will show that in both cases we obtain non vanishing
integers Ny, Ny € Z with

log|Nlog o + Ny log 8| < —cmax{|Ny|,|N;|}logo.

Using a lower bound for this linear form in two logarithrms, we will arrive at
a contradiction to the existence of a solution (x, y) for sufficiently large a.
Case 1: Solutions of Type I

We suppose that the solution (x, y) is of type I, i.e.

X . X
‘——al‘ =mm{‘——oc,-
y y

Then obviously 0 < 72 < 73 < 74 and sgn(y;) = sgn(Fa(x, y)).

Our next aim is to obtain estimations for the y;,. We have f/(x;) > @’ for
a > 20 by (5a) and a simple calculation. The same is true for a > 1, which
can be easily seen by computing the roots. Thus by (9) we obtain

1£i§4}.

8 1
1l < 213—);3 < R (10.2)
Therefore oy — ﬁ < % <oy +21? and y(o —oz,v—z—lag) <y < yloyg—o+ 21?)
for 2 < i < 4. Using (5.a-c) and calculating for some small values of a with a
computer yields

7 5
ya—1) <yla-1+--7) Syt - (10b) |
6
ya<ys<y(a+ E) (10.c)
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Eliminating x and y from the equations
V=X — Y (i=124
yields via the socalled Siegel’s identity the following:

0 yaln =) _ 71 (o — o) .

2 (0t — %4) - 2 (0 — )
Using 423 = pt, B = -2 and (8.b,d) we obtain
—2uy plus—1 __ 71 2
o =1-= . 11
B vy o+ 1 A

Since we deal with solutions of type I, |y5] is very small and the above
expression very near to L

Lemma 4. For a >0 we have

|2us log & — (2u — 1) log fl < il 2

Y2 &
Proof. 1f y1 > 0, (11) yields

N 2
2us log o — (2uz — 1) log B = —log (1 = = .
12u3 log & — (2u2 — 1) log B og vNH)
Using —log(l —x) < x+ x2, which holds for x < 0.68, and 2L < m for
a > 1, one easily shows the assertion. For a = 1 a direct calculation is used.
If y; < 0, the assertion follows with log(l +x) < x.

L
2uy —1 # 0, sgn(2u3) = sgn(2ux — 1) and M = 2up— 1| = max{|2us, |2u2 — 1}
Furthermore, || = o2 ps < st shows that up <0, us < 0.

Next we will derive bounds for [2u; — 1} and |2ua}:

Since log a > loga, log ff ~ % and %—‘% < —%7 we can deduce that 2u3 # 0,

Lemma 5. If a > 1 then
M = 12u; — 1| > L—zlloga

and

2uy — 1] + 12u3] < M(l + alogaj .

Proof. From lemma 4 we obtain

2 2
M2 ogq 12
Y2 & Y2 o

[2u; — 1| log p > [2us|loga —
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so it suffices to prove

vi] 2
logoc—l—h—i— > Elogalogﬂ.
Y2 A 2

We have the estimation

X2 S 42— 1) dd =2 —d) (12)
1l
and use
lo (1—}—x)<x—x—2—f—ﬁ—ﬁ—}—x—5
& SATY TR T TS
to obtain

2 2 2 1
log f < log 1+ - ) <=-, 13
ogf <log(l+_+—5)<-—73 (13)
where the last inequality holds for @ > 6, but log f < % — al—} holds for a > 1,
too.
To prove the first inequality of our lemma, it suffices to show that

1 1 >a(2 1 I
O —_—— — i T b
BT 5= 2\4 a3> 084

but this is true for a > 2.
For the proof of the second inequality we start with

12us| log o < |2us — 1{log B + 2= 171l i.
Using again (12) and (13), we arrive at
2 1y | 5 )
2usl < M{ - — —= M 1
{2us] (a 3)10ga+(a5_a4)10ga< aloga’ (14)

which immediately yields our assertion.

Lemma 6. If a > 902 then

log|2us log & — (2uy — 1) log | < —0.98|2u; — 1| logx,
and if a > 1 then

log|2us log o — (2u; — 1) log f| < —0.8]2u; — 1|log .

Proof. Taking logarithms of the equations (8.b-d) we get a regular system of
linear equations for the u;. Using Cramer’s rule and I_L (|7il=1, we obtain

log «log fﬁ — log Blog ;—‘;
2(log” « +log” B)

Uy = —
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and

logalog];—i’ ~Iogﬂlog;—‘2‘ 1 73

2uy — 1| =
2 1l log? o +log® log «

+1. (1%

From lemma 4 we get

log|2u3 log & — (2u; — 1) log B| < —log<%§—| %) ,

thus we have to show that

0.982u; — 1] loga < 10g<%2—’ %) .
1

Using (15), it remains to show

72 V3 V2
098(log — +log = +loga} <log —= +loga —log?2,
( Bl 708y, T8 ) Sy TOBYTO8

or equivalently,
Y2

0981og L, +1log2 < 0.02log —.
¥2 (71l
With (10.b,c) we get for a > 8
a+$ 1 1
y—3<——7"——5—<1+— and 10g23<—.
Y2 a—1 + rial a V2 a é

A direct calculation shows that also for 1 < ¢ < 8 we have ;—z <1+ % and

loglt < L,
Using this and (12), the first part of lemma 6 follows from

0.
% +1log2 < 0.0210g(2(a’ — a%)),

which holds for a > 902.

The proof of the second inequality is analogous for a > 3, and for a = 1,
2 a direct calculation is used.

Case 2: Solutions of Type II

Now we suppose that the solution (x, y) is of type II, i.e.

by . X
‘——oc4| =mm{‘———cx,—'
Y y
<

This case differs from case 1 just by applying the Galois automorpﬁiérﬁ T
Thus the algebraic relations can be transformed directly, whereas another

lsig4}.
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archimedian valuation makes the metrical results of this case similar, but not
identical to those of case 1.

Obviously we now have y; <y, < y3 < 0 and sgn(ys) = —sgn(Fa(x,y)).
Again we derive estimations for the y;,. Using the estimations (5d) one can
easily check that |f}(«4)| > 2a for a > 1. Hence by (9) we obtain

10.4)

l |<i<1
& 2ay3 T 2a’

We obtain 064—% < f <a4+ﬁ and y(oc,»~oc4—zlz) < |y <y(oc,v—oz4+%
for 1 <i < 3. Using (5.a-¢) and calculating for some small values of a yields

| 2 725 2 ,
y(a+1+;)<h)1|<y(a+l+—a—+;) (10.a%)

0.25 025 S ,
y(2—7)<|y2|<y(2+—a——+;> (10.6)

045 1.25 3
Applying 77! to (11) yields

—2uyl p—2u3 __ V4 "

o B _1+y (o —1). 1)
1

Since we deal with solutions of type II, |y4| is small and the above expression
near to 1.

Lemma 4. For a > 1 we have

2uz — 1) log o + 2us log | < ‘z—‘l‘la

Proof. The proof is analogue to that of lemma 4.

Since log o > loga, log f > 5—52—2 and l}::—‘:|oz < 2171’ we can deduce that 2u;

0, 2u;—1 % 0, sgn(2u3) = —sgn(2uy—1) and M := |2u3] = max{|2us), |2i42—1|}.
Furthermore, o242 = l";—;{ < % shows that u; < 0 and u3 > 0.

a

For |2u; — 1| and |2u3| we obtain nearly the same bounds as in case 1;

Lemma 5. For a > 2 we have

1
M = 2u;3} > gloga— 1

and

2 1
[2up — 1 4 [2u3] < M(l + aloga> N 2aloga’
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Proof. From lemma 4’ we obtain
[2us|log f > (2u; — 1| log o — ‘Zﬁ‘oc >loga — 'gi'oc,
Y1 1

so using (13), it suffices to prove

V4 a 1 2 1
loga o a2(210ga_4)(5~a3)'
Estimating
5
74‘ a+s; s
14 — 12
71 * 4a(a+1) (12)
it suffices to show that
a+2 a /2 1
1 —_Ta 21 —— Y _ =
ogd 4a(a+1) > (2 ga 4) (a a3)’
which is easily shown to be true for a > 2.
With (12’) and (13) we obtain for the second inequality:
2uy — 1] < M 28F y—“’ *
loga yi 1 loga
(g 1 ) 1 + a+?2
a a*/loga  4dala+ 1)loga P
< B 2 $loga—j a+2
aloga a*loga d4a(a+ 1)loga
2 1
(14)

aloga + 2aloga’
Lemma 6. Ifa > 131111 then
log|(2u; — 1) log & + 2u3 log B| < —0.95|2u3]log «,
and if a > 1 then
log|(2uy — 1) log & + 2u3 log B < —0.8]2us3|log a.

Proof. Like in lemma 6, we use Cramer’s rule to obtain

[2u3| =

logalog|2| + log B log| 2
galog| 22| +log § gly3i< L B’ 1logzﬁ o ')i"
og- o 73 (15)

log? o« 4+ log? p loga “ly,
Using lemma 4, we have to show that

0.9512u3] log & < log ([z—i| é)
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Using (15°), it remains to show

0952088
loga

log‘ﬁ' +loga < O.OSlog’yE. + log‘zl—‘.
V3 V4 Y2
If we estimate «, § and y;, it remains to show

2 1ylogla+1+%) 9
095(5 F)W +10g(2+ E) < 0.05 log(8a— 1)
This inequality holds for @ > 131111. Similarly,

0.8(2 1>log(a+1-|—g)

9
- — = log(2+ =) < 0.2log(8a—1
log(a—{—é) + og( +a2) og(8a—1)

a a

holds for a > 11.

For 1 < a < 10 we calculate the roots o; of f,, use the expression giving
|2u3] in (15°) and estimate the y; to show that

71, 1
.82 =] -
0.3 uglloga<log(1y4!a)
holds.

4 Proof of Theorem 1 for a > 488050
Now we need a lower bound for the absolute value of the linear form
A = Nloga+ N,log§, N, N> € Z)\ {0}.

We use the following result of M. LAURENT [20], appendix p. A-2, adopted
for our application:

Proposition 2. Let a;, a; > e with
h(x) <logay, h(f) <loga,,
where k(') denotes the logarithmic absolute height of an algebraic number. Let

o [Ny INo|
" 4dloga, 4loga;

and B>05+1ogh'.

If 4B > 25 then
log|A| > —87-4*B%logay logas .

Remark. By the remark of M. MIGNOTTE in [9], one may assume the weaker

condition 4B > 25 instead of Laurent’s condition log b’ > 25.
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Since

1 2 2
h(x) = h(f) = %(logoc +logB) < Zlog((a + 2)(1 +-+ P)) < %log(a +2.1)

for a > 72, we can put
ay =a; = \4/a+2.1.

a; > e holds for a > 53.
With lemma 5 (lemma 5 resp.) we can put

B :=05+1 ML+ froga i 1 16

=00+ Og<m) mn casc ( )
M1+ 2 + i

=B =05+1 2064 o i 2. 16’

B 0.5+ og( Togla + 2.0) in case (16%)

Using the lower bound for M, which is given in lemma 5 (lemma 5, resp.),
one checks, that 4B > 25 is satisfied for a > 629.

Combining proposition 2 with lemma 6 (lemma 6 resp.) yiclds for a >
131111

0.98M log o« < 1392B log?(a + 2.1) in case 1 (17
095M loga < 1392B log*(a+2.1)  in case 2. (17)

Considered as a function of M, the difference of the two sides of these
inequalities are monotonous for M > sloga (M > §loga — %, resp.), if
a > 64000. Inserting the lower bound for M, we arrive at

a 5 1
0.98 Elogalog(aJr P a_Z)
5loga+1

5 2 984T
< 1392(0 +ogiL i

)2 log*(a+2.1) (18)

1 5 1
0.95 (gloga — Z) log(a+ P 217)

5loga+ %
log(a+2.1)

But (18) does not hold for a > 470415 and (18)) does not hold for

a > 488050, which concludes the proof of the theorem.

2
< 1392(0.5+1og ) log’(a +2.1). (18)

5 Proof of Theorem 1 for 1 < a < 488050

The rest of the proof was done by using numerical techniques. We divided the
interval 1 < a < 5-10° into three pieces: I; = [1,100]\ {3}, I, = [100, 1.32- 10°]
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and I3 = [1.32-10%,5-10°]. In order to save computing time we used a different
method for I5.

1. For a € I; the method of MIGNOTTE [8] was adopted. By the lemmata 5,
5, 6 and 6 and by (14) and (14’) we have to solve the inequality

log|Aloga + M log | < —0.95{M|log o (19)
in integers A, M with

2 L 1
aloga ' 2aloga’

0< A< |M|

Putting B = B” = —1.9673 + log(1.01|M|) we see that the conditions of
Proposition 2 are fulfilled, thus

0.95|M|log(1.32 - 10°) < 1392 (log(1.01|M]) — 1.9673)210g2(5 10° +2.1).

This implies |M| < 3.712-10° and 4 < 4.
By the lemmata 5 and 5° we have |M| > 10°, and so

log o
log

(Much more is true, but we do not need it.)
Using the computer algebra system MAPLE we get

1 7
oga (aloga " loga P 3 <1072
log p

2 3a 2a
If (19) has a solution then

’A + M‘ < 1072,

! (aloga Tloga

5
1} - 1 —11
(T )| <o
where | - || denotes the distance to the nearest integer. We checked this
inequality for all values of a, 4 with 1.32-10° <2< 5-10°and 1 < 4 < 4, and
found that it cannot hold. For this computation we used the computational

number theory system PARI.
2. For a € I U I, we start with

logi4log x4+ Mlog i < —0.8{M|log . (20)

For a € I; we use the explicit values of «, f for a =1 (a = 100, resp.) and

see that we can use proposition 2 with a; = gy = 3.18 and B = 0.5 —|—log(M

1)
With 1.06 < log « we obtain

0.8+ 1.06M < 1392 (0.5 + 1og(43%4§))2(4.63)2
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which holds only for M < 8.6 - 109.
For a € I, one can check that log(¢f) > 4.625 and ~28% > 0.995. Using
. . . log(ap)
Proposition 2 with B = 0.5 + 10g(0.22 M) we obtain

2
0.8 0.995M < 1392 (0.5 +log(0.22 M)) log(1.32- 10° + 2.1)

which holds only for M < 4.18 - 10°.
If (4, M) € Z is a solution of (20) then

log +£ < 1
loga M |M|log e

1
—0.8|M|1 —
exp(—0.8|M|loga) < Ve

hence K//ii is a convergent of %. We tested for 1 < a < 1.32-10° whether the

convergents of izgg with denominators less then 10% satisfy (20), and found

asonly solutionsa=1,A=—2,M=3anda=4, A= —1, M = 4. Thus the
proof of Theorem 1 is complete.

6 Proof of Theorem 2

In this section we are using results of GAAL, PETHO and PousT [3], [4], which
enables the reformulation of index form equations over quartic number fields
to finitely many Thue equations over the same field. To formulate the relevant
result we have to introduce some notation.

Let IK = @Q(£) be a quartic number field and denote by

fX) =X+ a X’ + 0, X? + a3X + a4 € Z[X]

the minimal polynomial of £. The discriminant of an integral o € Zg will be
denoted by D(x).

Let ¢ be an order in K with an integer basis w; = 1, ws, @3, w4, which is
presented in the form

4
1 5 .
wi=gj§;wﬁ§f 1, (l=1,...,4),

where wj;, d € Z. Denotes D¢ the discriminant of ¢ and put n = (D(£)/Dy)?.

The index of € O is defined by I(x)> = D(x)/Dy. It is an integer by
the properties of the discriminant. The elements 1, «, &%, &> build an integral
basis of @, with other words, © = Z[«] if and only if |I(x)| = 1. With this
introduction we have the following

Lemma 7. ([3]) Let m € Z and i, = d°m/n. The element o = xow; + yows +
Zowq € O satisfies
o) =m
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if and only if there is a solution (u,v) € Z? of the cubic Thue equation
F(U,V) = U’ — UV + (a103 — 4a) UV? + (dayas — & — dPag) V> = +i,

such that if

W] W) ®13 4 0 ay
W21 W W23 W Xo ) _ X1
wy w3 wi wa | [y | |
W41 W4 W43 W44 20 Z1

then for the integers xi, y1, z| the equations

X1 Y1, 21) = X[ — a1 X1y1 + a2 )g ay — 2a2)X12;
Ou( ) =xf + @yt + (4] — 2a)
+ (a3 —aia)yiz1 + (—a1az + a3 + as)zi = u

2 2
Qa(x1,y1,21) = yi — X121 — A1yiz1 + apz; =

hold.

Proof of Theorem 2. Let K = Q(x;) and O = Z[w;]. The minimal polynomial
of a1 is fu(x). As {1,01,af,a} is a basis of 0, we may take d = w; = 1, i = 1,
.,4and w;; =0,1<1i, j<4,i+# j Hence n = 1. As we mentioned above,
Z[5] = O holds if and only if |I(5)] = 1. To find all § € @ with this property,
we have to solve first, by lemma 7, the cubic Thue equation

F(U,Vy=U?+6U%V — (@ +4UV? — 2d% + 24)V?
= (U+2V)((U 42V = V¥(d® + 16)) = +1.

The only solution of it is (u,v) = (41, 0).
In the next step we have to solve the system of ternary cubic forms

Q1(x1,y1,21) = xf + axiy; — 6yf -+ (a2 4+ 12)x12y — Sayyzy + (a2 + 37)zf
= +1

21
Oa(x1,y1,21) = yi — x121 + ay1z; — 627 (1)

=0

in integers xi, yi, z1.

Let us assume that (x,y,z) € Z* is a solution of (21). Q(x, y,z) = 0 yields
X = }’2—2+ay—6z. From Q(x,y,z) = &1 we see that x, y, z are relatively prime,
thus each prime p dividing z must not divide ’Z—Z Thus there exist relatively
prime integers r, s € Z with y = rs and z = 5%, which yields x = r? 4 ars — 6s2.
But Q(r* + ars — 65%,7s,5%) = F,(r + as,s) = +1, and theorem 1 solves this
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equation. Thus we obtain

(r,s) = (+1,0) (x,y,2) = (1,0,0) d=u
(r.8) =(xa,F1) (x,y,2) = (—6,—q, 1) 0=—a—1/u

a=1: (rs) =(+1,72) (x,y,2) = (=25,—2,4) & = —25q — 26> + 4o
(rs) = (£3,F1)  (x,y,2) = (0,—3,1) 6= —=3a* 4o

a =

(r,s) = (£10,F3) (x,3,2) = (=74,—30,9) & = —74o — 3002 + 9o
(r.s) = (1L, F2)  (x,y,2) = (9,—22,4) § =90 — 2267 + 4o

which completes the proof of theorem 2.

Remark. By using the same method one can easily show that the order Z {o, B]

*

in which we worked in the proof of Theorem 1, does not have a power integral
basis for a # 1, 5.
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