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1. Introduction

In a recent paper [LPV] we investigated Thue inequalities of the form
|Fi(X, V)] < k(t),
where, for a parameter t € Z, the form F; is given by
Fi(X,Y) = X% - 2tX5Y — (5t + 15) X*Y?
—20X3Y3 + 5t X°Y* + (2t + 6)XY® + Y.
Using the automorphisms of this form, it suffices to look for relatively prime so-
lutions (z,y) € Z* with —% < = < y (see Lemma 2 of [LPV]). From the results

proved there, it follows that for ¢ > 89 and ¢ < —92 the only such solutions of the
family of Thue equations

IR(X,)Y)| =1 or =27 (1)

are (0,1) and (1,1). In [LPV] the hypergeometric method was used to obtain
this result, but one can show that for small values of ¢ this method can never be
successfully applied to solve (1). The aim of this paper is to prove the following
theorem, which extends the above result for all ¢ € Z.

Theorem 1. Fort € Z, the only solutions (z,y) € Z? of

|Fi(z,y)|=1 or =27
with —% <z <y are (0,1) and (1,1).
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To prove this theorem for —91 < t < 88 we use the usual method for solving
Thue equations. So we need to investigate the arithmetic of the underlying number
fields, use lower bounds for linear forms in logarithms to obtain initial bounds and
then complete the proof by means of computational diophantine results.

We prove a result about the unit group (of rank 5) of the corresponding order of
the simplest sextic fields (i.e. the fields generated by the roots of F;(X,1) ), which is
of interest for its own. This is in perfect analogy to the results of E. Thomas [Thi]
for simplest cubic fields and of Lettl & Pethé [LP] for simplest quartic fields. Let
us note that there is a gap in the proof of Proposition 1 in [LP], which is corrected
by Nakamula & Pethé [NP].

From A. Baker’s classical work [B] one knows that there exist effectively com-
putable upper bounds for the solutions of Thue equations. For the practical solu-
tion of the Thue equations under consideration we will follow Bilu & Hanrot [BH],
who have developed a nice idea to reduce Baker’s bound for higher degrees.

For algebraic manipulations and some calculations, we used the computer al-
gebra package MAPLE V running on a PC and on a SUN workstation.

2. Arithmetic in an order of the simplest
sextic fields

For t € Z we consider the family of polynomials

Pi= X% —2tX% - (5t +15) X" — 20X3 + 5t X2 + (2t + 6) X + 1

6 2
= H(X - ﬂi)v ( )
i==1

with discriminant disc(P) = 6%(t2 + 3t +9)°. For t & {—8,—3,0,5} the polynomial
P is irreducible over Q[X] (see [G2]) and its roots generate a cyclic number field
K of degree 6 over Q. By Lemma 2.a) of [LPV] it suffices to consider the values
-1 <t #0,5. First, we fix a numbering of the roots §; of P and state some useful
relations between them. Bounds for the §;’s are given in Lemma 3 of [LPV].

Lemma 1.
(a) Let the indices of the roots B; of P be chosen such that we have

Be < Bs <Py <Pz < Pa< P =0

The Galois group Gal (K/Q) is generated by o: 8 — ’gi”é" and with the above
numbering of the roots we have a(;) = Bit1(mod 6)-
(b) The following relations hold:

B1B2P3B4aBs06 =1 Pr+Ba+ B3+ Pa+Ps+ B8 =2t
P1B3Ps = B2fafs = 1 (3)
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,31-*@1_*_1:@ (@)

Brl=—-1-ps 3 s

Proof. See Section 3 of [LPV]. To prove (3) and (4), just express the Bi’s in terms
of § as given in Lemma 3 of [LPV]. o

Let k3 denote the cubic subfield of K , 1.e. the field fixed by o3. Obviously,
¢ = (B03(B))7! is an element of k3. We choose the following numbering of the
algebraic conjugates of ¢

_bBt+Bs 1 _B+1)(B~-1)

T T Bl 28 +1
_PtBs 1 28+1 5)
2=  BBs BB +2)
_Bs+Bs _ 1 B(B +2)

s 2 Bfs —(ﬂ+1)(ﬁ~1)

and have the following relations between the ®;’s, where ~ stands for “asymtoti-
cally as t — o0 ”:

Y1 ~t41

1 1

w2 =0o(p1) ~_1+<p1 N_Z
' 1 1
¢3=02(@1):‘1”TN“1‘?

Using (5) and Lemma 1.(b) one calculates that the (irreducible) minimal polyno-
mial of ¢ is Min(p) = X3 — tX? — (¢ + 3)X — 1 with discriminant disc(Min(yp)) =
(t? 43t +9)? (see M.N. Gras [G2)); thus k3 is a simplest cubic field and k3 = Q(¢p).

Let k3 denote the quadratic subfield of K » 1.e. the field fixed by 2. Obviously,
€ = [1 + B3 + Bs is an element of ky, with algebraic conjugate ¢’ = 3, + Bs + Bs.
We calculated that

£+¢& =2t and £ = -3t—09,

thus Min(€) = X2—2¢X —(3t+9) is the minimal polynomial of ¢ and disc(Min(€)) =
4(t* 4 3t + 9). One checks that for ¢ # —8,-3,0,5 this polynomial is irreducible,
thus ky = Q(¢) and we have

3
4 =ﬁ1+ﬂ3+ﬂ5=t+\/t2+3t+9~2t+§
/ 5 3 27
§ =P+ Ps+0s=t—/t +3t+9~—§___
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We want to find the discriminant, “nice” Z-bases and the unit group of the
order

D= Z[ﬁl,ﬂ?vﬁ(‘hﬂ‘iaﬁ&ﬁﬁ] CK

as well as for the corresponding orders in the subfields

02:=Dﬂk2 and 03 :=Dﬂk3.

Theorem 2.
(a) The order O = Z|f1, B2] admits Z-bases

= (1vﬁ1aﬁ%7ﬂ13, ,821 ﬁ%)z = (ﬁlaﬂ?aﬁ&@i: [ 1}3
= (1,83, Bs, 1, 93, 1)z,

and we have disc(D) = 26(¢? + 3t + 9)°5.
(b) The order o3 = Z{p1] = Z{p1, p2, v3] admits Z-bases

03 = (1’901’(10%)2 = (1)5017‘10'92:

and we have disc(o3) = (t? + 3t + 9)%.
(c) The order oy = Z[£] = Z|Vt? + 3t + 9] admits the Z-basis

02 = (1,Vt2+ 3t +9)z, and we have disc(oz) = 4(t* + 3t + 9).

Remark. Let f2, f3 and f = lem(fs, f3) denote the conductors of the fields k;, ks
and K, resp. The conductor-discriminant formula yields dx, = fo, di, = f2 and
di = f%f2fs, where d;, denotes the discriminant of an algebraic number field L
(see p. 2 of [G2]). From Theorem 2 we can immediately deduce that O is the
maximal order of K if and only if 02 and 03 are maximal.

Put T = t243t+9. If T is squarefree and T % 0,1 (mod 4) (which is equivalent
to t = 2,3 (mod 4)), we have disc(og) = 4T = fy. If furthermore 3 tt or t =
12 (mod 27), we have disc(oz) = T2 = fZ (see Prop. 2 of [G1]). By a result of
Erdés [Er] or a proof similar to that of Lemma 8.8 in [N], one can show that there
exist infinitely many t € N satisfying these conditions, i.e. O equals the ring of
integers of K for infinitely many ¢t € N.

Proof of Theorem 2. (a) Since f3; is an algebraic unit, Z[8;] contains also all negative
powers of §;. Thus from (3) we obtain O = Z[f, B2, Bs, fs], and using the first
part of (4) and the conjugated formula 85 = —1 — 5 we see that © = Z[31, B2).

Let O":=Z[61] = (1, B1, 8%, B3, B, BY)z with disc(D’) = disc(P) = 65 (¢2+3t+9)5.
One calculates that

5
: 1
ﬂzzgoxiﬂi with 1}5=—§ and 9$¢EZf0rOSi§5,
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thus ©' C O = (1,61, 8%, 63, B, B2)z with (O : O') = 9 and
disc(9") = 9 - 25(¢2 4+ 3t + 9)°. Once more, one calculates

4
ﬁ% = szﬂf + x5  withzy = % and 3z; € Z for 0 <1 <5,
i=0
thus O C O := (1,54, 82,63, Ba, B5)z with (D™ : ") = 3, thus disc(D") =
20(¢2 + 3t + 9)5.

One verifies that 83,8i6] € O for 1 < i < 3,1 < j < 2, thus D" is a
ring containing f; and f;, and therefore O’ = 9. To verify also the last two
stated Z-bases for O, one just calculates their discriminants, since one inclusion is
obvious.

(b) The only important thing to prove is that o3 = Z[py], all other statements
are well known (see e.g. [MPL]). By definition, o3 just consists of those elements
of O, which are invariant under o®. Using the second Z-basis given in (6), we can
write an arbitrary a € O as

a =z101 + 2202 + 3083 + T4p1 + Ts2 +x6  With z; € Z, (7)
and calculate that
o (@) = —z1B1 — T2z — x3fs + (231 — 2T3 + T4) 1
+ (229 — 225 + T5)p2 + {z6 + 2tz3).

From a = 0®(a) we obtain that z; = 2o = 3 = 0 and z4,z5,7¢ € Z may be
arbitrary, thus o3 = (1, 91, 92)z = Z[p1).

(¢) By definition, o consists of those elements of £, which are invariant under
o?. Using the third Z-basis given in (6), we can write an arbitrary a € O as

a =210 + T203 + 2305 + T4p1 + T503 + Zg with z; € Z,
and calculate that
o*(a) = x3B1 + 185 + T2B5 + (—5) 01 + (T4 — T5)3 + (w6 + tTs).
From a = 0?(a) we obtain that ; = 23 = z3 € Z and z¢ € Z may be arbitrary,

and z4 = x5 = 0, thus 03 = (1,&)z = Z[Vt% + 3t + 9].

Remark. One can also show that

D =03 ® B103 = (1, 1,92, B1, B191, Brp?)z

by calculating the discriminant of this basis.

Our main interest is to find a basis of 9%, the group of units of the ring O, or
at least of a subgroup of O* with small index.

Let € > 1 be the fundamental unit of the quadratic order o0y, which can ex-
plicitly be calculated from the continued fraction expansion of V12 4+ 3t + 9; so we
have

0y = (—1,¢).
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There is no parametrization known for these units, their sizes vary considerably,
and e.g. for t = 70 we found € =~ 107,
It was proved by Thomas [Thl] that

01>3< = <_1)‘pla‘§')2ﬁ (8)

Besides these units, 9% contains the units 3; {1 < i < 6) and w; = b—%

(1 < i < 3). The latter are relative units, i.e. one has Ng /g (wi) = Niyi, (wi) = 1,
which follows from (3) (see also [G2]). Here Ny, denotes the norm from a field M
to some subfield L. Our main result is the following

Theorem 3. Let £ be the group of units generated by —1, €, B; (1 <i <6), ie
£ = (=1,B1, B2, B4, 05,5} < O%.

Then (O* : &) =1 or=3.

To make the proof of this theorem more comprehensible, we will separate out
some partial steps in the following lemmas.

Lemma 2. {81, B2, B4, 05,€} are multiplicatively independent, therefore the index
(0% : &) is finite.

Proof. Tt suffices to show that the regulator R of {B1. B2, B4, 35, €} does not vanish.
Putting L; := log |8;| and remembering that ¢ > 1, we calculate

L1 L2 L5 Ls 1 ,
Ly Ly Le Li -1,
R =log(e)det |Ly Ls Ly L2 1 =
Ly Ls Ly Lz -1
Ly Lg Ly Ly 11
— 3 log(e) (L% +2L3Ls + L3(L2 — 2L, L + 3L2 — 2L)
+ 2Ly (2L3Ls + 2LoLsLg + L — LsLY)
+ LA+ 2L3L¢ + L3LE + 3LELE +4L2LELs
+2L,L8 + L4 + L33 + L)

To obtain the last expression, we substituted L3 = —L; — Ls and Ly = —~Lo— Lg,

both arising from (3). From the bounds for §;, as given in Lemma 3 of [LPV], we:

On the arithmetic
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deduce that fort >'6 we have

log <2t + —Z—) < Ly < log (2t + ;)

5 <log(2) < Lo < log(2) + o <1

Using these bounds and neglecting small positive summands, we obtain for t > 6

R
3 log(e)

> (L2 — L2)* + 2L3Ls + 2L2(—Ly)Lg — 2L1LsLe(—2L3 + L)

—2(~Lg)Le(L3 +2L2 + L?)

log®(2t +3) log®(2t+ %) 2log(2t+ %)
TR t B t

> (L} - L§)* +
> (L2 - L)% >o0.

9
t

For t € {~1,1,2,3,4} we used the numerical values of the roots §; to verify
R>0. a

Lemma 3. Suppose that there exist n € O* and k,e; € Z with k > 2 and
ged(k, e1, eq,e4,e5) = 1 such that

,r]k — ﬂ:ﬂfl gzﬂfiaz gs‘
Then ey = —eq (mod k), eg = —es (mod k) and k = 1 (mod 2) holds.

Proof. Supposing that such an 7 exists, we obtain that
NK/ka (nk) — nk 0.3(nk) — ﬂf1+e4ﬂ§2+esﬁ21+e4ﬁ§2+es

must be a k-th power in o5, where we used (3) to eliminate 83 and s in the above
expression. By (8) and (5) we know that o is generated by @2 = (6184)”" and
03 = (p102)" = (B285)}, from which we deduce the stated congruences for the
e;’s. Without loosing generality, we may suppose that n* = £(8,8; Her (8285 ez,
If k is even, this last expression must be a totally positive algebraic number. Since
at least one of e, e; must be odd, one can consider the signs of the 8;’s and arrives
at a contradiction for any possible case. W]

For o € K we define

Sa(@) = Zai(ag) and  f(a):= S(a) + So(a™). (9)
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We will use Theorem 2 of Lettl [L] to show that {3,254, 85} can be extended
to a basis of the group of units £ *. For this purpose we need “successive minima”
M,M2,.-. of O under f, which are defined as follows:

f(77z) = mln{f(a) l ac DX \ {‘h‘@h “ e :«?}i—i;}} for 1 < i. (10)

Lemma 4. With the above notations we have

4% + 12t + 30 = min{f(a) | a € %\ {1,~1}}

3 11
= f(xpFl), 1<i<3 (11)
and
8t2 + 24t + 66 = min{f () | @ € D" \ (~1,¢1,02,9s)} (12)
= f(£6FY), 1<i<6.

Proof. We use the second Z-basis from (6) to represent elements of O, thus any
a € O can be written as in (7),

a = 1101 + 2203 + 1303 + T4901 + Tspr + T with z; € Z.
‘We obtain
Sa(e) = 6 (E(z1 + T2+ 23 +Ta+5) +26)° + (2 + 3t +9)Q,
with
Q= (~z1 + 29— 23— T4+ 225)% + (1 + 323 — z4)?
+ 2y + 24)? + 622 + 673
Sy and Q are positive definite quadratic forms in the é:i’s. ‘We have
Sy(£p;) = 2% + 4t + 12, Sa(dp;t) = 2% + 8t + 18,
So(£8;) = 42 + 10t + 30,  So(0;}) = 4t + 14t + 36,

therefore f(£@t!) = 4t2 4+ 12t + 30 and f(£E') = 8t + 24t + 66 as stated in
(11) and (12). To prove the lemma it suffices to find all units o € O* with

Sy(a) < 4% + 12t + 33 = %f(ﬁi) (13)
and to check whether f(a) < f(8:).

Let @ € D% be given as in (7). If Q = 12, we have Sy(a) > 4(t? + 3t + 9),
which contradicts (13). Considering @ modulo 2 and 3, we see that this form
can only attain values congruent to 0 or 4 modulo 6. So we first determine all
x = (z1, 22, T3, 24, Ts) € Z° with Q(x) € {0,4,6,10}. Since Sz(r) = Sa(£o'(a)),

On the arithmetic
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we may neglect all solutions giving conjugates or negatives of other solutions, and
arrive at the following cases:

Case | Q(x) x a
1 0 (0,0,0,0,0) 6
2 4 (0,0,0,1,0) w1 + T
3 6 (1,0,0,-1,0) Pr—ba ﬂ" + 6
4 10 (1,0,0,0, 0) 61 +z6
5 10 (1,0,0,0,1) | By +p2+7e
6 10 (011707170) ﬂ2+901 + s

We will determine, which values of zg yield units of O by checking Ng/g(a) =
+1, and furthermore satisfy (13), which yields lower and upper bounds for zs.

Casel. a = z¢ .
This yields o = %1, the roots of unity of O*.

Case 2. a =1 + Tg .
We have Ny, q(a) = 23 + tx2 — (t+ 3)ze + 1.

If Ni,/o(c) = 1, we obtain zg(z§ + tze — (t + 3)) = 0, and zg = 0 yields
a = 1. The quadratlc factor has rational roots only for t = —3 (which is of
no interest for us) and ¢ = —1, giving z¢ = —1 and zg = 2. Since for t = -1,
Sa(py +2) =26 > 4t% + 12t + 33 and f(p; — 1) = 54 > 8t? + 24t + 66, these units
do not contradict the statement of Lemma 4.

If N, o(e) = —1, we obtain (z¢ — 1)(2§ + (t+1)z6 —2) = 0, and 26 = 1 yields
a=p+1=—py ! The quadratic factor has no rational roots for the values of ¢
under consideration.

Case 3. a = g_—p__ + xg.
We put T := t3 +3t+9 and have Ny g(a) = z§ — (2§ —1)?T. If Ng/q(a) = 1, we
obtain (2 — 1)(z§ — (T — 1)z¢ + (T + 1)) = 0. z¢ = *1 yields a = E‘—"-g—“- +1= @;

and o = &%@‘- —-1= ——é;—, where we used the second part of (4). But Sz(%%) =

262 4 6t + 24 and Sz (&) = 8t2 + 24t + 78 yields f(2) = 106> + 30t +102 > (5:).
The discriminant of the biquadratic factor equals (T 3)% — 12, which is a square
of an integer if and only if T — 3 = +4. We obtain ¢t = —1 and z¢ = +2, but again
Sola £ 2) = 38 > 4t2 + 12t + 33 shows, that these units do not contradict the
statement of our lemma.

If Ngg(e) = —1, we obtain (23 + 1)(zf — 2% + 1) — (2§ - 1)2T = 0. Since
ged(zg—1,28+1) | 2, elther zi—1lor —%—i must divide z§ —z2+1 = zi(zZ-1)+1,

thus 22 — 1 = £1 or Tl +1, which yields as only integral solution zg = 0.
6 )
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This implies T' — 1 = 0, which yields no real values for t. So in Case 3 we found
no units contradicting (11) or (12).

In Cases 4-6 we have Q = 10, thus Sz(a) < 4t2 + 12t + 33 is equivalent to
2
(& 2%1 T; +m6)2 <L+i4 $<(§+ 1)2. Thus we can restrict ourselves to values
Tg Wit

5
t t t
3 3 ;=1:z:z+:1:6< 3+1 (14)

Case 4. o = 31 + T .

We have Nk /q(a) = P(—z¢) with P given by (2), and (14) specializes to ~%_1<
z¢ < 1. For z¢ = 0 we have N q(a) = 1 and obtain a = B1. By the above lower
bound, zg < —1 is only to be considered for ¢t > 1. We know that P has six real
roots, which for ¢ > 1 are all outside the interval [1,2t]. Since P is concave in this
interval, we obtain that P(—ze) < max{P(1), P(2t)} = —27 for —2t < T¢ < -1,
thus there are no further solutions of Nk q(a) = £1.

Case 5. a = 31 + w2 + Ts .
We have Nk q(a) = g(ze) with
g(X) = X& + 4£X5 + (5¢% — 5t — 15)X* + (2t° ~ 10¢% — 30t + 16)X°
(583 + 1262 — 44t — 27) X2 + (2% + 2267 + 2t — 48)X
~ (5t + 15t — 19).
By (14) we only need to consider values z¢ with

t
—t—1<$6<—~3—+1.

From g(1) = —t3, g(0) = —5t* — 15t + 19 and g(-1) = —9t3 — 24t? + 48t + 64
we obtain the special solutions ¢ = 1 fort = —1 and zg = 0 for t = 1. Since
F(Bi+pa+1) = T8 > 8t2+24t+66 for t = —1 and f(B1+¢p2) = 638 > 8t2 424t 466
for t = 1, these units do not contradict (12).

By the above lower bound for zg, we can now restrict ourselves to t > 2. We
obtain that g(—2t —2) <0, g(—t —1) >0 and g(-t + 1) <0, thus g has (at least)
3 real zeros less than —t + 1. Similarly, one finds that g also has 3 real zeros larger
than 0. Since ¢ has no zero in the interval [~t+1,0], we obtain for —t+1 < Ts <0
and t > 2 that g(ze) < max{g(—t+1),9(0)} < —8. Finally, g(—t) > 1 shows that
also in this case there exists no unit contradicting our lemma.

Case 6. a = B2 +p1 + Tp -
This time we have Ng q(a) = g(ze) with

g(X) = X® +4tX5 + (5¢% — 5t — 15)X* + (2t° — 12t — 36t — 2) X°—
_ (763 + 15¢% — 35t — 54) X + (6t° + 40t% + 56t + 6) X
— (9t + 27t + 17).

On the arithmetic
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1 Again, we only need to consider values zg with

t
-—-t-—-1<1176<—-§+1.

S j For t = —1, g(1) = 3+ 9% + 27t + 25 # +1. Because of the above bounds, we now
may restrict ourselves to ¢ > 1 and —t < zg < 0. Since g(~t—3)<0,g(-t-2)>0
and g(—t) < 0, g has 3 real zeros less than —t, and similarly, 3 real zeros larger

) | than 0. We conclude that for —t < z¢ < 0 g(z6) < max{g(—t),g(0)} < —53, thus

' no further solutions of Ng/g(a) = %1 exist. 0

. Proof of Theorem 3. First we want to show that {81, B2, Ba, Bs} can be extended to

; a basis of D% (are “fundamental units” in the terminology of [L]). The functions

1 S, and f in (9) agree with Sz and Fy in (1) of [L]. From Lemma 4 we deduce that

s the following units are successive minima of O™ under f:

: 1 1

m:=y2= M’ N2 '=¥3 = EQ—B;’ n3 =P, M= P
Here we used (3), (8) and Lemma 2 to check multiplicative (in-)dependence of the
units as needed for (10). By Theorem 1 of [L], {02, 3} can be extended to a basis
of O*. Since +pyp3f is not totally positive, K does not contain 1/Epap3f; and
Theorem 2.(a) of [L] shows that we can take $; as a third basis element for O*.
Now we apply Theorem 2.(b) of [L] with
€ L € ) E € B and e:=p
= = , = = , = ot = [s.
1Ee Ty TR T e T ?
Since by Lemma 3 k must be odd, we only have to check whether £ contains any
unit 77 of the form
4 7’ = iezajwe;-“efl or 7 = e eflsflsgﬂ.
- (In the above lines we used & := f; to be in accordance with the notation in [L].
6 Everywhere else in this paper, ¢ denotes the fundamental unit of the quadratic
order 0g. The reader is kindly asked to apologize this ambiguity!)
G . Using the congruence conditions for the exponents of the 8;’s from Lemma 3,
t) the following possibilities remain: :
er '
0 P = Bi 52 P = BBz _ Babs P = B1B2 P = Bafa _ B3
at 205’ BBs  BiBs’ BaPs’ BiBs  Bs’
BB
7]3 = —_1—‘2—7 773 = 'é:}‘
Bafs Be
Considering the sizes of the 8;’s and using Lemma 3.a) of [LPV] we can show that
in the first 4 cases fort > 6
2
B3

Sa(n) < 3- " 13 <4t 412t + 33,

B34
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but the existence of such a unit 7 would contradict (12) of Lemma 4. Similarly, in
the latter 2 cases we obtain for t > 9

Beh % :
B304 |

A numerical computation shows that also for the remaining values of ¢ we always
have Sy(n) < 4% + 12t + 33, up to 2 exceptions for ¢ = ~1. But then S2(n) is no
rational integer, thus there exist no such 7 in our sextic orders, and {3, v3, 81, B2}
and also {01, 02, B4, 85} can be extended to'a basis of O%.

So we have 9% = (-1, 81, B2, 81, B5,m) with some 57 € 0%, and by Lemma 2

k 5
B o
with k,e,e1,e2,eq,e5 € Z, e # 0 and ged(k, e, e;, eq, e4;€5) = 1. Now we use the

same argument as at the end of the proof of Proposition 1 in [LP}. Consider the
absolute value of the relative norm map from K to ko

N 9% — (&)
A 'NK/kz(’Y)l
From (3) we see that N'(8;) = 1, thus (—1, 81, B2, B4, Bs) C ker(N). On the other

hand, M(e) = €% and e # 0 show that N(n) # 1, and we obtain ker(N) =
(=1, 81, B2, B, Bs).

Put N (n) = e¥*7 with m € Z and j € {0,1,2}. If j = 0, N'(ne~™) = 1 and
ne~™ € ker(N) implies that O* = (~1, 1, Ba, B4, Bs, €).

If j = 1,2, %37 € ker(WN) = (-1, B1, B2, B4, Bs) and we obtain that (O*:
(—"1§ﬂ17ﬁ2)ﬂ41ﬂ5>6>) = 3. 0

4]

L

Sa(m) <3 +3 < 487 4+ 12¢ + 33,

Remark. From the above proof and Lemma 3 one can deduce that the index of
e
the unit groups is 3 if and only if there exists an n € O* with 7° = 6(M> for

BafBs
some e € {~1,0,1}. In this case, O* = (=1, 81, P2, Ba, Bs,m).
The index (D% : £) can indeed be equal to 3. For t = 10, © is the maximal

1/3
order of K and n = (55:‘2;) belongs to K. It is a zero of the polynomial

X® 46956 X% — 200701 X* — 155126760X3 — 200701.X2 + 6956.X -+ 1.

3. Proof of Theorem 1

In this section we will completely solve the Thue equation (1) for all t € Z.
As already mentioned in the introduction, we can restrict ourselves to solutions
(z,y) € Z? with ~% < z < y. Each such solution yields 5 further solutions by
Lemma 2 of [LPV].

Since Fy(Y,X) = F_;_3(X,Y), we may restrict ourselves to —1 < ¢. From
F(X Y, X +2Y) = ~27 F,(X,Y) we see that each (z,y) € Z? with |Fy(z,y)| =1

On the arithmetic «
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yields | Fy(z—y, +2y)|=27. On the other hand, let (z',y’) € Z* with |Fy(z’, y')|=27.
One finds that Fi(z',v') = (z’ — ¥')2 = 0 (mod 3), thus ' = ¢’ (mod 3) and one
obtains (z,y) = E-Igti, —_L;i) € 72 with |Fi(z,y)| = 1. So there is a bijection
between the integral solutions of |F3(X,Y)| = 1 and those of |F3(X,Y)| = 27, thus
it suffices to investigate only the first equation.

For t € {0,5}, F; factors into two “simple” cubic forms Fp = F£33) F§3) and
Fs = F®) F, where

FOX,Y) = X® —tX%Y - (t +3)XY? - Y3,

thus in these cases Theorem 1 follows from Theorem 2 in [Th2]. For t > 89,
Theorem 1 follows from Corollary 1 in [LPV].

So we only have to care about the casest € T := {~1,1,2,3,4} and 6 < ¢t < 88.
Let us suppose that for such a ¢ there is some (z,y) € Z* with —-% < z < y,
2 < y and |Fy(z,y)| = 1. Theorem 1.a) of [LPV] and, for ¢t € Ty, an analogous
computation using the numerical values of the roots 8; of P show that % must be
a convergent to 3, with m € {2,3} and

0.082 if m =2,
0.494 if m =3.

T ¢
———ﬂml<——(13 with 01:{
Y Y

Since we will follow the exposition of Bilu & Hanrot [BH] to obtain Baker’s bound,
we will number all constants ¢; according to that paper, but we will interchange
the role of = and y. The constants will be chosen to hold for all values of ¢ under
consideration, mostly they arise from the case t = —1, as e.g. for

linn<1?§6 I,Bq, - ﬁ]i > cg = 0.4646.

Using Theorem 3 we obtain for 1 < j < 6 that
z— By = £6° B, B, B, eV with b € Z. (15)

(The indices of the §;’s are to be taken (mod 6).) From Siegel’s identity we get

B — Br m-ﬂzy_ll<0_s (16)

Bm — Bt — By —yG.

For m = 2 we choose k = 6, | = 4, and for m = 3 we take k = 1,1 = 5 and
calculate

7 l B — B
6 (,Bm - ﬂl)(ﬂm - /Bk)

{ 0.0598 if m =2,
C Cy =
1= 071  ifm =23
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Inserting (15) into (16), our choice of k and ! makes ¢ disappear, and using =
—[ we arrive for m= 2,3 at the linear forms

¥ i
Am = log|83,_»| + 3b1 log §3m+2§ + 3bs log Brms
+ 3b3 1og*’3"‘*1 ~ ~§-3b4log§ O |

Note that we have to use a factor 3 to clear the probable denominators of the b;’s.
Now we get
0.25 ‘form =2,

Am| < cay™® ith ¢4 =
Am| < eay Wik {3.00 for m = 3.

Taking absolute values and logarithms of (15) we get a system of linear equa-
tions for the b;’s with matrix

)
L2 L3 L5 Ls - log(a)
L3 L4 LG L1 log(s) (18)
L4 L5 L1 L2 - Iog(a) !
Ly Lg Ly Lz log(e)

)

LG L1 L3 L4 —log(e

where we put L; := log|G8;| as in the proof of Lemma 2. Delete the m-th row of
this matrix and denote its inverse by A. Following the “third observation” of [BH],
we have

B := max{3|b;| ] 1<i<5} <cslog(y) + cs,
where for both m = 2,3 we calculate
cs=c7 =825 and c¢g=-cg=6.36.

Since all b;’s are real, we have b,.; = 0 and B = B’ with the notations of [BH].
Finally, for m = 2,3 we arrive at

|[Am| < co exp(—c10B) with ¢g = 307 and ¢;9 = 0.727. (19)

Let h(-) denote the absolute logarithmic height of algebraic numbers. For —1 <
t < 88 we calculated that

o) = 31080 = g 1og () <3

__&) _1 (_ﬁlﬂﬁ)
h (ﬁj+2 6 tog P304 <2

Using the bound of Baker & Wiistholz (as stated in Theorem 2.3.1 of [BH]), we
get for the linear forms A,, of (17)

and

|Am| > exp(—ci1log B)  with ¢y = 5.042 - 10%.
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Checking this lower bound against the upper bound given in (19) yields
B =max{3|b;| | 1 <i <5} < By =5.225-10%. (20)

Although we made use of the special nature of the number fields K and the
involved algebraic numbers, the obtained upper bound for B is very large. It was
Baker & Davenport [BD] who first developed techniques to reduce these large
bounds to more manageable ones. Their method was based on computations of
the continued fraction expansion of certain real numbers. Ellison [El], Peths &
Schulenberg [PSch] and Tzanakis & de Weger [TW] adapted their method for a
complete solution of Thue equations. All of them used only the information of one
linear form in logarithms of algebraic numbers. They used different techniques of
numerical diophantine approximation to reduce the initial very large bound. To
find the solutions corrresponding to exponents below the reduced bound one needs
another reduction technique. First one converts the bound for B into a bound
for solutions x and y by using relation (15) and applies the continued fraction
reduction (see Pethd [P] or Tzanakis & de Weger [TW]). For the second reduction
step we need to compute the zeros associated to the given binary form with high
precision.

The essential new idea of Bilu & Hanrot [BH] is that Thue equations imply
not only one but r — 1 independent inequalities for linear forms in logarithms of
r algebraic numbers. Using elementary linear algebra, these inequalities can be
transformed into a system of r — 1 inequalities, each involving only two unknowns.
To any such inequality, the very simple reduction method of Baker & Davenport
can be applied. Moreover, the exponents associated to solutions for which |y| > Y3,
with a constant Y3, can be located on a line instead of an (r —1)-dimensional linear
subspace. With this idea, Bilu & Hanrot solved Thue equations of degree 19 and 33.

After these historical notes we show how the Bilu & Hanrot reduction works in
our situation. Remark that all the parameters below depend on t and m, but we
will not indicate this explicitly. Let A = (a;;)1<4,j<5 be the inverse of the matrix
which we obtain from the matrix (18) by removing its m-th row. Put

5
61':204]‘ 1S’L§5
=1

and
5
A=Y ai; log|Bm — eyl 1<i <5,
J=1

where k(j) =jif 1 < j<m, and k(j) =7+ 1if m < j <5. Let u be chosen such
that

|6u] = max |5

and put

6iAy — B
i = —, )\m.._._lu_i
Bus by by
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for all 1 <4 <5, 1 # u. Then we obtain (c.f. Proposition 2.4.1. of [BH]) the
following system of inequalities

[(3b;) — (3by)8ui + 3Ausl < 14 exp(—cy5B), 1<i<5,1#u
o (21)
B =max{3|b;| | 1 < j <5} < By = 5.225 - 10°?

413 i m=2,

2474 tm=3
To solve (21) we use the method of [BH], Section 2.4.2. Consider the subsystem

[(3b;) — (8by)bui + 3wl € 14 expl—cisB) -
B < By =5.225:10%

with Cis = EG- = C1p = 0.727 and Cig. ™ {

5

of (21) for a single i # u. Let k be a not very large number (in our computations
we took k = 10) and compute the convergents p,/q, of the continued fraction
expansion of &,; until ¢, > &Bg. If |gaAui]| > £71, where || - || denotes the distance
to the nearest integer, then we obtain a new estimate for B:
-1 Ci4

B <c (log gn + log ool = n—l)’
We can of course iterate this procedure until the new bound can not be reduced
further.

We implemented the above procedure for our sextic Thue equations in MAPLE.
We did not use the absolute bounds for ¢i,...,c14, but computed for each case
their actual values. The reason is that this caused only minor extra programming
work, but the reduced bound became in most cases considerably smaller.

We found v = 1 for both m = 2 and m = 3. We performed the Baker &
Davenport reduction to all four systems of inequalities of type (21) and took the
smallest reduced bound as the new bound for B. The direction, i.e. the index for
which we obtained the best bound varied depending on t. After the reduction we
obtained in all cases ‘B < 6. The final upper bound decreased with t. We achieved
B <1 fort > 10 for both m = 2,3,’and even'B = 0 for m = 2 and t > 46.
To locate the possible solutions below these bounds we used Proposition 2.5.1
of [BH]. Remark that Y5 = 1 for our Thue equations. We never found a solution
with |y| > 2, which finishes the proof for this case. The only solutions with y =1
are {z,y) = (0,1), (1, 1), thus the proof of Theorem 1 is completed.
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