On the distribution of polynomials with integer coefficients

Attila Pethő
(University of Debrecen, Hungary)

based on a joint work with Shigeki Akiyama
Numeration and Substitution, Kyoto, May 5, 2012.

Definitions

- If $P \in \mathbb{R}[x]$, then $|\bar{P}|:$ maximum of absolute values of the roots of P.
- For $v=\left(v_{d-1}, \ldots, v_{0}\right) \in \mathbb{R}^{d}$ the polynomial $P_{v}=x^{d}+v_{d-1} x^{d-1}+$ $\ldots+v_{0}$ is called associated to v.
- $\mathcal{E}_{d}(B) \subset \mathbb{R}^{d}$ such that if $v \in \mathcal{E}_{d}(B)$ and P_{v} denotes the to v associated polynomial then $\left|\bar{P}_{v}\right| \leq B$.
- $\mathcal{E}_{d}^{(r, s)}(B) \subseteq \mathcal{E}_{d}(B)$. If $v \in \mathcal{E}_{d}^{(r, s)}(B)$ then P_{v} has r real and $2 s$ non-real coefficients, $r+2 s=d$.
- $v_{d}=\lambda_{d}\left(\mathcal{E}_{d}(1)\right), v_{d}^{(r, s)}=\lambda_{d}\left(\mathcal{E}_{d}^{(r, s)}(1)\right)$.

Preliminary results

Theorem 1 Let $d \geq 1$ and r, s non-negative integers such that $r+2 s=d$. Then the boundary of the set $\mathcal{E}_{d}^{(r, s)}(1)$ is the union of finitely many algebraic surfaces.

Idea of the proof: The polynomials on the boundary either have roots ± 1 or a complex number with absolute value one or have multiple real roots. The "inner boundary" is the surface $\operatorname{Disc}(P)=0$, which is a polynomial in the coefficients of P.

Theorem 2 The $\operatorname{set} \mathcal{E}_{d}^{(r, s)}(1)$ is Riemann measurable. Let $R_{k}(x)=$ $x^{2}-y_{j} x+z_{j}, j=1, \ldots, s$ and put
$D_{r, s}=[-1,1]^{r} \times[0,1] \times\left[-2 \sqrt{z_{1}}, 2 \sqrt{z_{1}}\right] \times \cdots \times[0,1] \times\left[-2 \sqrt{z_{s}}, 2 \sqrt{z_{s}}\right]$.
Then we have

$$
v_{d}^{(r, s)}=\lambda_{d}\left(\mathcal{E}_{d}^{(r, s)}\right)=\frac{1}{r!s!} \int_{D_{r, s}}\left|\Delta_{r}\right| \Delta_{s} \Delta_{r, s} d X
$$

where

$$
\begin{aligned}
\Delta_{r} & =\prod_{1 \leq j, k \leq r}\left(x_{j}-x_{k}\right) \\
\Delta_{s} & =\prod_{1 \leq j, k \leq r} \operatorname{Re} s_{x}\left(R_{j}(x), R_{k}(x)\right) \\
\Delta_{r, s} & =\prod_{j=1}^{r} \prod_{k=1}^{s} R_{k}\left(x_{j}\right)
\end{aligned}
$$

and $d X=d x_{1} \ldots d x_{r} d y_{1} d z_{1} \ldots d y_{s} d z_{s}$.

The next lemma was proved by Akiyama, Brunotte, Pethő and Thuswaldner, 2008.

Lemma 3 We have

$$
\begin{equation*}
\mathcal{E}_{d}^{(r, s)}(B)=\operatorname{diag}\left(B^{d}, \ldots, B\right) \mathcal{E}_{d}^{(r, s)}(1) \tag{1}
\end{equation*}
$$

where $\operatorname{diag}\left(v_{1}, \ldots, v_{d}\right)$ denotes the d-dimensional diagonal matrix, whose entries are v_{1}, \ldots, v_{d}.

Moreover

$$
\begin{equation*}
\lambda_{d}\left(\mathcal{E}_{d}^{(r, s)}(B)\right)=B^{d(d+1) / 2} \lambda_{d}\left(\mathcal{E}_{d}^{(r, s)}(1)\right) \tag{2}
\end{equation*}
$$

The next result is due to H. Davenport, 1964.

Lemma 4 Let \mathcal{R} be a closed bounded region in \mathbb{R}^{n} and let $N(\mathcal{R})=\#\left(\mathcal{R} \cap \mathbb{Z}^{n}\right)$ and $V(\mathcal{R})$ the volume of \mathcal{R}. Suppose that:

- Any line parallel to one of the n coordinate axes intersects \mathcal{R} in a set of points which, if not empty, consists of at most h intervals.
- The same is true (with m in place of n) for any of the m dimensional regions, $1 \leq m \leq n-1$, obtained by projecting \mathcal{R} on one of the coordinate spaces defined by equating a selection of $n-m$ of the coordinates to zero.
Then

$$
\mathrm{N}(\mathcal{R})-\mathrm{V}(\mathcal{R}) \leq \sum_{m=0}^{n-1} h^{n-m} V_{m}
$$

where V_{m} is the sum of the m dimensional volumes of the projections of \mathcal{R} on the various coordinate spaces obtained by equating any $n-m$ coordinates to zero, and $V_{0}=1$ by convention.

The assumptions of Lemma 4 satisfy, if the boundary of \mathcal{R} is the union of finitely many algebraic surfaces.

Distribution of irreducible polynomials

Notations: in this section $P(X) \in \mathbb{Z}[X]$ is monic, of degree d and with $|\bar{P}|<B$.

- $N_{d}(B)$: the number of polynomials P.
- $N_{d}^{(r, s)}(B)$: number of $P(X)$, with signature (r, s).
- $I_{d}(B)$: the number of irreducible polynomials P.
- $I_{d}^{(r, s)}(B)$: number of irreducible polynomials P with signature (r, s).

Theorem 5 Let $d \geq 1$ and r, s be non-negative integers such that $d=r+2 s$. Let $B>0$. Then there exist constants c_{1}, c_{2} depending only on r, s, d such that

$$
\left|N_{d}^{(r, s)}(B)-v_{d}^{(r, s)} B^{d(d+1) / 2}\right| \leq c_{1} B^{d(d+1) / 2-1}
$$

and

$$
\left|N_{d}(B)-v_{d} B^{d(d+1) / 2}\right| \leq c_{2} B^{d(d+1) / 2-1}
$$

Outline of the proof. It is clear that $P(X) \in \mathbb{Z}[X]$ monic, of degree d, with signature (r, s) and with $|\bar{P}|<B$ if and only if the vector of its coefficients belongs to $\mathcal{E}_{d}^{(r, s)}(B)$. Thus $N_{d}^{(r, s)}(B)$ is the number of lattice points in $\mathcal{E}_{d}^{(r, s)}(B)$.

The volume of $\mathcal{E}_{d}^{(r, s)}(B)$ is $v_{d}^{(r, s)} B^{d(d+1) / 2}$.

The boundary of $\mathcal{E}_{d}^{(r, s)}(B)$ is the union of finitely many algebraic surfaces. \longrightarrow Apply the Theorem of Davenport:

$$
\left|N_{d}^{(r, s)}(B)-v_{d}^{(r, s)} B^{d(d+1) / 2}\right| \leq \sum_{m=0}^{d-1} h^{d-m} V_{m}
$$

where h is independent from B.
V_{m} is the sum of the m dimensional volumes of the projections of $\mathcal{E}_{d}^{(r, s)}(B)$ on the various coordinate spaces Let $\mathbf{v} \in \mathcal{E}_{d}^{(r, s)} \subset \mathcal{E}_{d}$. Then, we have the trivial bound $\left|v_{i}\right|<2^{d}, i=1, \ldots, d$. The projection of $\mathcal{E}_{d}^{(r, s)}(B)$ to any line parallel to the i-th coordinate axis is covered by an interval of length at most $O\left(B^{i}\right), i=1, \ldots, d$. Thus

$$
V_{m} \leq O\left(B^{d(d+1) / 2-(1+\ldots+m)}\right) \leq O\left(B^{d(d+1) / 2-1}\right)
$$

Theorem 6 Let $d \geq 1$ and r, s be non-negative integers such that $d=r+2 s$. Let $B>0$. Then there exist constants c_{3}, c_{4} depending only on r, s, d such that

$$
\left|I_{d}^{(r, s)}(B)-v_{d}^{(r, s)} B^{d(d+1) / 2}\right| \leq c_{3} B^{d(d+1) / 2-1},
$$

and

$$
\left|I_{d}(B)-v_{d} B^{d(d+1) / 2}\right| \leq c_{4} B^{d(d+1) / 2-1}
$$

Outline of the proof. $\{$ irreducible polynomials $\}=\{$ polynomials $\}$ \backslash \{reducible polynomials\}. If a polynomial of degree d is reducible then it has a divisor of degree at least $\lceil d / 2\rceil$. Notice that the signature of the divisors may differ from the dividend. Thus

$$
I_{d}^{(r, s)}(B) \geq N_{d}^{(r, s)}(B)-\left(\sum_{j=\lceil d / 2\rceil}^{d-1} N_{j}(B) N_{d-j}(B)\right)
$$

Using Theorem 5 we obtain

$$
\begin{aligned}
I_{d}^{(r, s)}(B) & \geq v_{d}^{(r, s)} B^{d(d+1) / 2}-\left(\sum_{j=[d / 2\rceil}^{d-1} v_{j} B^{j(j+1) / 2} v_{d-j} B^{(d-j)(d-j+1) / 2}\right) \\
& +O\left(B^{d(d+1) / 2-1}\right)
\end{aligned}
$$

Now

$$
B^{j(j+1) / 2} B^{(d-j)(d-j+1) / 2}=B^{j(j+1) / 2+(d-j)(d-j+1) / 2}
$$

and we have the estimation

$$
\frac{(d-j)(d-j+1)}{2}+\frac{j(j+1)}{2}=\frac{d(d+1)-2 j(d-j)}{2} \leq \frac{d(d+1)}{2}-1
$$

for the exponents. Thus

$$
I_{d}^{(r, s)}(B) \geq v_{d}^{(r, s)} B^{d(d+1) / 2}-O\left(B^{d(d+1) / 2-1}\right)
$$

The lower bound is an immediate consequence of Theorem 5.

Distribution of Salem polynomials

A polynomial with integral coefficients is Salem polynomial if all but one roots lie in and at least one on the unit circle. It is well known that the degree of a Salem polynomial is even, it has two real roots one of which is larger, the other is less then one and all others are non-real complex numbers, lying on the unit circle. Moreover they are reciprocal, i.e., $P(X)=X^{d} P(1 / X)$.

Denote $S_{d}(B)$ the number of Salem polynomials $P(X)=X^{2 d}+$ $p_{d-1} X^{2 d-1}+\ldots+p_{d-1} X+1$ such that $\left|p_{d-1}\right|<B$. The number of irreducible polynomials among the Salem polynomials will be denoted by $S_{d}^{i r r}(B)$.

Theorem 7 Let $d \geq 1$ and $B>0$. Then there exist constants c_{5}, c_{6} depending only on d such that

$$
\left|S_{d}(B)-v_{d-1}^{(d-1,0)} B^{d-1}\right| \leq c_{5} B^{d-2}
$$

and

$$
\left|S_{d}^{i r r}(B)-v_{d-1}^{(d-1,0)} B^{d-1}\right| \leq c_{6} B^{d-2}
$$

hold.

Outline of the proof. Set $P(X) / X^{d}=Q(y)$, where $y=X+$ $1 / X$, and $\operatorname{deg} Q=d . Q(y)$ is totally real, i.e. has signature ($d, 0$) and the coefficient of its d-1-degree term is p_{d-1}.

Denote the largest root of $P(X)$ by β. Then $1 / \beta$ is an other root of $P(X)$. Hence $\left|p_{d-1}-(\beta+1 / \beta)\right|<2(d-1)$. Apart from
$\beta+1 / \beta$ the zeroes of $Q(y)$ are in modulus at most 2. Thus, if B is large enough, then $\beta+1 / \beta$ is the dominant root of $Q(y)$.

The rest is analogous to the proof of the Pisot polynomial case.

Distribution of Pisot polynomials

A monic $P(X) \in \mathbb{Z}[X]$ is Pisot polynomial if all but one of its roots lie inside the unit circle. They are irreducible. $\mathcal{B}_{d}(M)$ is the set of coefficient vectors $\left(b_{2}, \ldots, b_{d}\right)$ of Pisot or Salem polynomials of form $P(X)=X^{d}-M X^{d-1}-b_{2} X^{d-2}-\ldots-b_{d} \in \mathbb{Z}[X]$. Akiyama et al., 2008 proved:

$$
\mathcal{B}_{d}(M)-v_{d-1} M^{d-1}=O\left(M^{d-1-1 /(d-1)}\right) .
$$

Now we improve this.

Theorem 8 Let $d \geq 2$ Then we have

$$
\mathcal{B}_{d}(M)-v_{d-1} M^{d-1}=O\left(M^{d-2}\right) .
$$

Outline of the proof. Let $\mathcal{E}_{d-1}=\mathcal{E}_{d-1}$ (1). Denote β the largest root of the Pisot polynomial P and let $P=(X-\beta)\left(X^{d-1}+\right.$ $r_{d-2} X^{d-2}+\ldots+r_{0}$.
For a fixed integer $M>0$ let $\psi_{M}: \mathcal{E}_{d-1} \mapsto \mathcal{B}_{d}(M)$ be defined as $\psi_{M}\left(r_{0}, \ldots, r_{d-2}\right)=\left(r_{d-2}\left(M+r_{d-2}\right)-r_{d-3}, \ldots, r_{1}\left(M+r_{d-2}\right)-r_{0}, r_{0}\left(M+r_{d-2}\right)\right)$.
This is a continuous mapping, which is injective if M is large enough.
The volume of $\psi_{M}\left(\mathcal{E}_{d-1}\right)$ is

$$
\lambda_{d-1}\left(\psi_{M}\left(\mathcal{E}_{d-1}\right)\right)=\int_{\mathcal{E}_{d-1}} \operatorname{det}\left(J_{1}\right) d_{r_{0}} \ldots d_{r_{d-2}}
$$

where J_{1} denotes the Jacobian of ψ_{M}. One can show that $\operatorname{det}\left(J_{1}\right)$ is a polynomial in M of degree $d-1$ with leading coefficient one and such that its other coefficients are polynomials in b_{2}, \ldots, b_{d}.

Thus

$$
\begin{aligned}
\lambda_{d-1}\left(\psi_{M}\left(\mathcal{E}_{d-1}\right)\right) & =M^{d-1} \int_{\mathcal{E}_{d-1}} d_{r_{0}} \ldots d_{r_{d-2}} \\
& +\sum_{j=0}^{d-2} M^{j} \int_{\mathcal{E}_{d-1}} p_{j}\left(r_{0}, \ldots, r_{d-2}\right) d_{r_{0}} \ldots d_{r_{d-2}} \\
& =v_{d-1} M^{d-1}+O\left(M^{d-2}\right)
\end{aligned}
$$

As ψ_{M} is an algebraic mapping and the boundary of \mathcal{E}_{d-1} is the union of finitely many algebraic surfaces, the same is true for $\psi_{M}\left(\mathcal{E}_{d-1}\right)$.

Let $M>2^{d}$. We show that $\left(b_{2}, \ldots, b_{d}\right) \in \mathbb{Z}^{d-1}$ is a lattice point of $\psi_{M}\left(\mathcal{E}_{d-1}\right)$ iff $P(X)=X^{d}-M X^{d-1}-b_{2} X^{d-2}-\ldots-b_{d}$ is a Pisot or Salem polynomial. Thus

$$
\left|\mathcal{B}_{d}(M)\right|=\left|\psi_{M}\left(\mathcal{E}_{d-1}\right) \cap \mathbb{Z}^{d-1}\right|
$$

From here on we may repeat the proof of Theorem 5 because the assumptions of Lemma 4 hold for $\psi_{M}\left(\mathcal{E}_{d-1}\right)$. Finally we obtain

$$
\left|\mathcal{B}_{d}(M)\right|=v_{d-1} M^{d-1}+O\left(M^{d-2}\right)
$$

Combining the results of Theorems 8 and 7 with the observation that the exponent of M in the main term in the first one is much bigger than in the second one we immediately obtain

Corollary 9 Let $d \geq 2$ and $M>0$ be integers. Denote $P_{d}(M)$ the number of Pisot polynomials of degree d and such that the coefficient of the term of degree $d-1$ is $-M$. Then

$$
P_{d}(M)=v_{d-1} M^{d-1}+O\left(M^{d-2}\right)
$$

