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Definitions

o If P € R[x], then |P|: maximum of absolute values of the roots
of P.

e Forv=(vy_1,...,v9) € R% the polynomial P, = z%¢4v,;_ q2% 14
...+ vg Is called associated to v.

e £;(B) C RY such that if v € £(B) and P, denotes the to v
associated polynomial then |Py| < B.

. 8§T’8>(B) C &i(B). Ifv e SCET’S)(B) then P, has r real and 2s
non-real coefficients, r 4+ 2s = d.

o vy = Ag(E4(1)), v = Ag(€7P (1)),



Preliminary results

Theorem 1 Let d > 1 and r,s non-negative integers such that
r 4+ 2s = d. Then the boundary of the set EC(ZT’S)(l) is the union
of finitely many algebraic surfaces.

Idea of the proof: The polynomials on the boundary either
have roots +£1 or a complex number with absolute value one
or have multiple real roots. The "inner boundary” is the surface
Disc(P) = 0, which is a polynomial in the coefficients of P.



Theorem 2 The set SCET’S)(l) is Riemann measurable. Let Ri(z) =
:I:Q—ij—l—zj,jz 1,...,s and put

Drs=[-1,1]" x [0, 1] X [-24/21,2/21] X - - X [0, 1] X [—2+/Zs, 2+/25].

Then we have

(rs) = 3 (&4 =i/ Ar|AsAys dX
) d(d ) gl Dr,s| ?“| SLAAr,s )
where
Ay = (mj_wk:)a
1<j,k<r
As = ReSa:(Rj(x)aRk(x))a
1<j,k<r
T S
A’I",S — H H Rk(xj)
1=1k=1

and dX = dxq...dxrdy1dzy ...dysdzs.



The next lemma was proved by Akiyvama, Brunotte, Pethd and
Thuswaldner, 2008.

Lemma 3 We have

e\")\(B) = diag(BY, ..., B)E" (1), (1)
where diag(vy,...,vg) denotes the d-dimensional diagonal matrix,
whose entries are vy,...,v,4.

Moreover
A(EF(B)) = BUHDI2 () (1)), (2)

The next result is due to H. Davenport, 1964.



Lemma 4 Let R be a closed bounded region in R™ and let
N(R) = #(RNZ") and V(R) the volume of R. Suppose that:

e Any line parallel to one of the n coordinate axes intersects R
in a set of points which, if not empty, consists of at most h
intervals.

e The same is true (with m in place of n) for any of the m di-
mensional regions, 1 < m < n — 1, obtained by projecting R on
one of the coordinate spaces defined by equating a selection of
n —m Of the coordinates to zero.

Then

n—1
N(R) —V(R) < > A" "V,
m=0
where Vp, is the sum of the m dimensional volumes of the projec-
tions of R on the various coordinate spaces obtained by equating

any n —m coordinates to zero, and Vo = 1 by convention.



The assumptions of Lemma 4 satisfy, if the boundary of R is the
union of finitely many algebraic surfaces.



Distribution of irreducible polynomials

Notations: in this section P(X) € Z[X] is monic, of degree d and
with |P| < B.

e Ny (B): the number of polynomials P.

o Ncgr’s)(B): number of P(X), with signature (r,s).

e [;(B): the number of irreducible polynomials P.

N IC(ZT’S)(B): number of irreducible polynomials P with signature

(r,s).



Theorem 5 Let d > 1 and r,s be non-negative integers such
that d = r + 2s. Let B > 0. Then there exist constants c1,co
depending only on r,s,d such that

|N§T’S>(B) _ UC(ZT,S)Bd(d+1)/2| < Cle(d—l—l)/Q—l

and

Outline of the proof. It is clear that P(X) € Z[X] monic, of
degree d, with signature (r,s) and with |P| < B if and only if the
vector of its coefficients belongs to 5§r’3)(3). Thus Ncgr’s)(B) is

the number of lattice points in 86(/"’8)(3).

The volume of EC(ZT’S)(B) is vc(f’s)Bd(d‘H)/Q.



The boundary of éfy’s)(B) is the union of finitely many algebraic
surfaces. — Apply the Theorem of Davenport:

d—1
|N§T’S)(B> . U§T78)Bd(d+1)/2| S Z hd—mvm,
m=0

where h is independent from B.

Vi is the sum of the m dimensional volumes of the projections
of chr’s)(B) on the various coordinate spaces Let v € EC(ZT’S) C &y
Then, we have the trivial bound |v;| < 24,i = 1,...,d. The
projection of é’y’s)(B) to any line parallel to the i-th coordinate
axis is covered by an interval of length at most O(B*%),i =1, ...,d.
Thus

Vi, < O(Bd(d—l—l)/Q—(l—l—...—l—m)) < O(Bd(d+1)/2_1).



Theorem 6 Let d > 1 and r,s be non-negative integers such
that d = r + 2s. Let B > 0. Then there exist constants c3,cq

depending only on r,s,d such that
|IC(Zr,s)(B) . ,UC(ZT,S)Bd(d+1)/2| < C3Bd(d—|—1)/2—17

and

Outline of the proof. {irreducible polynomials} = {polynomials}
\ {reducible polynomials}. If a polynomial of degree d is reducible
then it has a divisor of degree at least [d/2|. Notice that the
signature of the divisors may differ from the dividend. Thus

(r,s) (r,s) =
;" (B) > N;"*(B) — Y N;(B)Ng_;(B)
j=Td)2]



Using Theorem 5] we obtain

d—1
Iér’s)(B) > ,Uc(lras)Bd(d—i—l)/? _ ( Z Uij(j+1)/2vij(dj)(dj+1)/2)
j=[d/2]
+ O(Bd(CH_l)/Q_l).

Now

BIG+1)/2 g(d=)(d—j+1)/2 — gi(i+1)/2+(d—5)(d—j+1)/2

and we have the estimation

(d—j)(d—J7+ 1)+j(j+ 1) _ d(d+1) —25(d —j) < dd+1)
2 2 2 - 2

for the exponents. Thus

1

]C(Zr,s)(B) > U(gr,s)Bd(d+1)/2 _O(Bd(d—l—l)/2—1>.

The lower bound is an immediate consequence of Theorem [5].



Distribution of Salem polynomials

A polynomial with integral coefficients is Salem polynomial if all
but one roots lie in and at least one on the unit circle. It is well
known that the degree of a Salem polynomial is even, it has two
real roots one of which is larger, the other is less then one and
all others are non-real complex numbers, lying on the unit circle.
Moreover they are reciprocal, i.e., P(X) = X9P(1/X).

Denote S (B) the number of Salem polynomials P(X) = X2¢ +
pg_1 X241 4+ 4 p; 1X 41 such that |p;_1| < B. The number
of irreducible polynomials among the Salem polynomials will be
denoted by SY7"(B).



Theorem 7 Let d > 1 and B > 0. Then there exist constants
cs,ce depending only on d such that

1S4(B) — v\ 10 Bd=1| < g B2
and
|SCZ'Z7“7“(B) . vc(léi—llao)Bd—l‘ < C6Bd—2
hold.
Outline of the proof. Set P(X)/X% = Q(y), where y = X +

1/X, and degQ = d. Q(y) is totally real, i.e. has signature (d,0)
and the coefficient of its d — 1-degree term is p;_1.

Denote the largest root of P(X) by 8. Then 1/3 is an other
root of P(X). Hence |p;_1 — (B8+1/8)| <2(d—1). Apart from



B+ 1/8 the zeroes of Q(y) are in modulus at most 2. Thus, if
B is large enough, then g+ 1/8 is the dominant root of Q(y).

The rest is analogous to the proof of the Pisot polynomial case.



Distribution of Pisot polynomials

A monic P(X) € Z[X] is Pisot polynomial if all but one of its roots
lie inside the unit circle. They are irreducible. B;(M) is the set
of coefficient vectors (bp,...,bg) of Pisot or Salem polynomials
of form P(X) = X4 - MX4 1 _p,Xx4=2_  _p, € Z[X]. Akiyama
et al., 2008 proved:

Now we improve this.

Theorem 8 Letd>2 Then we have

Bd(M) — ’Ud_]_Md_l — O(Md_2).



Outline of the proof. Let £;_1 = &,;_1(1). Denote g the largest
root of the Pisot polynomial P and let P = (X — B)(X%1 4+
Td_QXd_Q + ...+ 0.

For a fixed integer M > 0 let s : E4_1 — By(M) be defined as
Yu(ro, .., ra—2) = (rg2(M +rqg2) —714-3,...,71(M +rq-2) —710,70(M +14-2)).

This is a continuous mapping, which is injective if M is large
enough.
The volume of ¥ (E4_1) IS

A—1 (W (Eg—1)) = /gd 1det(J1) drg - dry o,

where J; denotes the Jacobian of ;. One can show that
det(J1) is a polynomial in M of degree d — 1 with leading co-
efficient one and such that its other coefficients are polynomials
in bo,...,by.



Thus
A—1(Wp(Eg—1)) = Md_l/g drg .- dry
d—1

d—?2
-+ Z MJ/ pj(’ro,...,’l“d_Q) dro...drd_z
=0 Ed—1

= vy M4+ o2,

As s is an algebraic mapping and the boundary of £;_1 is the
union of finitely many algebraic surfaces, the same is true for

Yar(Eg—1)-

Let M > 2% We show that (by,...,by) € Z% 1 is a lattice point
of Yp(Ey_1) Iff P(X) = X4 —MXI1 _p,X9=2_ —b,is a Pisot
or Salem polynomial. Thus

By(M)| = ¢ (Eq4—1) N Z37L.



From here on we may repeat the proof of Theorem 5] because the
assumptions of Lemma 4| hold for ¢,,(E4_1). Finally we obtain

1Bg(M)| = vg_1 M1 +0(M4~2).

Combining the results of Theorems [8 and [7] with the observation
that the exponent of M in the main term in the first one is much
bigger than in the second one we immediately obtain

Corollary 9 Let d > 2 and M > 0 be integers. Denote P;(M)
the number of Pisot polynomials of degree d and such that the
coefficient of the term of degreed — 1 is —M. Then

Py(M) = vg_1 Mt +0O(M42).



