On the distribution of polynomials with integer coefficients

Attila Pethő (University of Debrecen, Hungary)

based on a joint work with Shigeki Akiyama

Numeration and Substitution, Kyoto, May 5, 2012.

Definitions

- If $P \in \mathbb{R}[x]$, then $|\overline{P}|$: maximum of absolute values of the roots of P.
- For $v = (v_{d-1}, \ldots, v_0) \in \mathbb{R}^d$ the polynomial $P_v = x^d + v_{d-1}x^{d-1} + \ldots + v_0$ is called associated to v.
- $\mathcal{E}_d(B) \subset \mathbb{R}^d$ such that if $v \in \mathcal{E}_d(B)$ and P_v denotes the to v associated polynomial then $|\overline{P}_v| \leq B$.
- $\mathcal{E}_d^{(r,s)}(B) \subseteq \mathcal{E}_d(B)$. If $v \in \mathcal{E}_d^{(r,s)}(B)$ then P_v has r real and 2s non-real coefficients, r + 2s = d.
- $v_d = \lambda_d(\mathcal{E}_d(1)), \ v_d^{(r,s)} = \lambda_d(\mathcal{E}_d^{(r,s)}(1)).$

Preliminary results

Theorem 1 Let $d \ge 1$ and r, s non-negative integers such that r + 2s = d. Then the boundary of the set $\mathcal{E}_d^{(r,s)}(1)$ is the union of finitely many algebraic surfaces.

Idea of the proof: The polynomials on the boundary either have roots ± 1 or a complex number with absolute value one or have multiple real roots. The "inner boundary" is the surface Disc(P) = 0, which is a polynomial in the coefficients of P. **Theorem 2** The set $\mathcal{E}_d^{(r,s)}(1)$ is Riemann measurable. Let $R_k(x) = x^2 - y_j x + z_j, j = 1, \dots, s$ and put $D_{r,s} = [-1,1]^r \times [0,1] \times [-2\sqrt{z_1}, 2\sqrt{z_1}] \times \dots \times [0,1] \times [-2\sqrt{z_s}, 2\sqrt{z_s}].$ Then we have

$$v_d^{(r,s)} = \lambda_d(\mathcal{E}_d^{(r,s)}) = \frac{1}{r!s!} \int_{D_{r,s}} |\Delta_r| \Delta_s \Delta_{r,s} \, dX,$$

where

$$egin{array}{rll} \Delta_r &=& \prod\limits_{1\leq j,k\leq r} (x_j-x_k), \ \Delta_s &=& \prod\limits_{1\leq j,k\leq r} \operatorname{Res}_x(R_j(x),R_k(x)), \ \Delta_{r,s} &=& \prod\limits_{j=1}^r \prod\limits_{k=1}^s R_k(x_j) \end{array}$$

and $dX = dx_1 \dots dx_r dy_1 dz_1 \dots dy_s dz_s$.

The next lemma was proved by Akiyama, Brunotte, Pethő and Thuswaldner, 2008.

Lemma 3 We have

$$\mathcal{E}_d^{(r,s)}(B) = diag(B^d, \dots, B)\mathcal{E}_d^{(r,s)}(1), \tag{1}$$

where $diag(v_1, \ldots, v_d)$ denotes the *d*-dimensional diagonal matrix, whose entries are v_1, \ldots, v_d .

Moreover

$$\lambda_d(\mathcal{E}_d^{(r,s)}(B)) = B^{d(d+1)/2} \lambda_d(\mathcal{E}_d^{(r,s)}(1)).$$
(2)

The next result is due to H. Davenport, 1964.

Lemma 4 Let \mathcal{R} be a closed bounded region in \mathbb{R}^n and let $N(\mathcal{R}) = \#(\mathcal{R} \cap \mathbb{Z}^n)$ and $V(\mathcal{R})$ the volume of \mathcal{R} . Suppose that:

• Any line parallel to one of the n coordinate axes intersects \mathcal{R} in a set of points which, if not empty, consists of at most h intervals.

• The same is true (with m in place of n) for any of the m dimensional regions, $1 \le m \le n-1$, obtained by projecting \mathcal{R} on one of the coordinate spaces defined by equating a selection of n-m of the coordinates to zero.

Then

$$\mathsf{N}(\mathcal{R}) - \mathsf{V}(\mathcal{R}) \leq \sum_{m=0}^{n-1} h^{n-m} V_m,$$

where V_m is the sum of the m dimensional volumes of the projections of \mathcal{R} on the various coordinate spaces obtained by equating any n - m coordinates to zero, and $V_0 = 1$ by convention.

The assumptions of Lemma 4 satisfy, if the boundary of \mathcal{R} is the union of finitely many algebraic surfaces.

Distribution of irreducible polynomials

Notations: in this section $P(X) \in \mathbb{Z}[X]$ is monic, of degree d and with $|\overline{P}| < B$.

- $N_d(B)$: the number of polynomials P.
- $N_d^{(r,s)}(B)$: number of P(X), with signature (r,s).
- $I_d(B)$: the number of irreducible polynomials P.
- $I_d^{(r,s)}(B)$: number of irreducible polynomials P with signature (r,s).

Theorem 5 Let $d \ge 1$ and r, s be non-negative integers such that d = r + 2s. Let B > 0. Then there exist constants c_1, c_2 depending only on r, s, d such that

$$|N_d^{(r,s)}(B) - v_d^{(r,s)}B^{d(d+1)/2}| \le c_1 B^{d(d+1)/2 - 1}$$

and

$$|N_d(B) - v_d B^{d(d+1)/2}| \le c_2 B^{d(d+1)/2-1}.$$

Outline of the proof. It is clear that $P(X) \in \mathbb{Z}[X]$ monic, of degree d, with signature (r, s) and with $|\overline{P}| < B$ if and only if the vector of its coefficients belongs to $\mathcal{E}_d^{(r,s)}(B)$. Thus $N_d^{(r,s)}(B)$ is the number of lattice points in $\mathcal{E}_d^{(r,s)}(B)$.

The volume of $\mathcal{E}_d^{(r,s)}(B)$ is $v_d^{(r,s)}B^{d(d+1)/2}$.

The boundary of $\mathcal{E}_d^{(r,s)}(B)$ is the union of finitely many algebraic surfaces. \longrightarrow Apply the Theorem of Davenport:

$$|N_d^{(r,s)}(B) - v_d^{(r,s)}B^{d(d+1)/2}| \le \sum_{m=0}^{d-1} h^{d-m}V_m,$$

where h is independent from B.

 V_m is the sum of the *m* dimensional volumes of the projections of $\mathcal{E}_d^{(r,s)}(B)$ on the various coordinate spaces Let $\mathbf{v} \in \mathcal{E}_d^{(r,s)} \subset \mathcal{E}_d$. Then, we have the trivial bound $|v_i| < 2^d, i = 1, \ldots, d$. The projection of $\mathcal{E}_d^{(r,s)}(B)$ to any line parallel to the *i*-th coordinate axis is covered by an interval of length at most $O(B^i), i = 1, \ldots, d$. Thus

$$V_m \le O(B^{d(d+1)/2 - (1 + \dots + m)}) \le O(B^{d(d+1)/2 - 1}).$$

Theorem 6 Let $d \ge 1$ and r, s be non-negative integers such that d = r + 2s. Let B > 0. Then there exist constants c_3, c_4 depending only on r, s, d such that

$$|I_d^{(r,s)}(B) - v_d^{(r,s)}B^{d(d+1)/2}| \le c_3 B^{d(d+1)/2 - 1},$$

and

$$|I_d(B) - v_d B^{d(d+1)/2}| \le c_4 B^{d(d+1)/2-1}.$$

Outline of the proof. {irreducible polynomials} = {polynomials} \setminus {reducible polynomials}. If a polynomial of degree *d* is reducible then it has a divisor of degree at least $\lceil d/2 \rceil$. Notice that the signature of the divisors may differ from the dividend. Thus

$$I_d^{(r,s)}(B) \ge N_d^{(r,s)}(B) - \left(\sum_{j=\lceil d/2\rceil}^{d-1} N_j(B) N_{d-j}(B)\right)$$

Using Theorem 5 we obtain

$$\begin{split} I_d^{(r,s)}(B) &\geq v_d^{(r,s)} B^{d(d+1)/2} - \left(\sum_{j=\lceil d/2 \rceil}^{d-1} v_j B^{j(j+1)/2} v_{d-j} B^{(d-j)(d-j+1)/2} \right) \\ &+ O(B^{d(d+1)/2-1}). \end{split}$$

Now

$$B^{j(j+1)/2}B^{(d-j)(d-j+1)/2} = B^{j(j+1)/2 + (d-j)(d-j+1)/2}$$

and we have the estimation

$$\frac{(d-j)(d-j+1)}{2} + \frac{j(j+1)}{2} = \frac{d(d+1) - 2j(d-j)}{2} \le \frac{d(d+1)}{2} - 1$$

for the exponents. Thus

$$I_d^{(r,s)}(B) \geq v_d^{(r,s)} B^{d(d+1)/2} - O(B^{d(d+1)/2-1}).$$

The lower bound is an immediate consequence of Theorem 5.

Distribution of Salem polynomials

A polynomial with integral coefficients is *Salem polynomial* if all but one roots lie in and at least one on the unit circle. It is well known that the degree of a Salem polynomial is even, it has two real roots one of which is larger, the other is less then one and all others are non-real complex numbers, lying on the unit circle. Moreover they are reciprocal, i.e., $P(X) = X^d P(1/X)$.

Denote $S_d(B)$ the number of Salem polynomials $P(X) = X^{2d} + p_{d-1}X^{2d-1} + \ldots + p_{d-1}X + 1$ such that $|p_{d-1}| < B$. The number of irreducible polynomials among the Salem polynomials will be denoted by $S_d^{irr}(B)$.

Theorem 7 Let $d \ge 1$ and B > 0. Then there exist constants c_5, c_6 depending only on d such that

$$|S_d(B) - v_{d-1}^{(d-1,0)}B^{d-1}| \le c_5 B^{d-2}$$

and

$$|S_d^{irr}(B) - v_{d-1}^{(d-1,0)}B^{d-1}| \le c_6 B^{d-2}$$

hold.

Outline of the proof. Set $P(X)/X^d = Q(y)$, where y = X + 1/X, and deg Q = d. Q(y) is totally real, i.e. has signature (d, 0) and the coefficient of its d - 1-degree term is p_{d-1} .

Denote the largest root of P(X) by β . Then $1/\beta$ is an other root of P(X). Hence $|p_{d-1} - (\beta + 1/\beta)| < 2(d-1)$. Apart from

 $\beta + 1/\beta$ the zeroes of Q(y) are in modulus at most 2. Thus, if *B* is large enough, then $\beta + 1/\beta$ is the dominant root of Q(y).

The rest is analogous to the proof of the Pisot polynomial case.

Distribution of Pisot polynomials

A monic $P(X) \in \mathbb{Z}[X]$ is Pisot polynomial if all but one of its roots lie inside the unit circle. They are irreducible. $\mathcal{B}_d(M)$ is the set of coefficient vectors (b_2, \ldots, b_d) of Pisot or Salem polynomials of form $P(X) = X^d - MX^{d-1} - b_2X^{d-2} - \ldots - b_d \in \mathbb{Z}[X]$. Akiyama et al., 2008 proved:

$$\mathcal{B}_d(M) - v_{d-1}M^{d-1} = O(M^{d-1-1/(d-1)}).$$

Now we improve this.

Theorem 8 Let $d \ge 2$ Then we have

$$\mathcal{B}_d(M) - v_{d-1}M^{d-1} = O(M^{d-2}).$$

Outline of the proof. Let $\mathcal{E}_{d-1} = \mathcal{E}_{d-1}(1)$. Denote β the largest root of the Pisot polynomial P and let $P = (X - \beta)(X^{d-1} + r_{d-2}X^{d-2} + \ldots + r_0)$. For a fixed integer M > 0 let $\psi_M : \mathcal{E}_{d-1} \mapsto \mathcal{B}_d(M)$ be defined as $\psi_M(r_0, \ldots, r_{d-2}) = (r_{d-2}(M + r_{d-2}) - r_{d-3}, \ldots, r_1(M + r_{d-2}) - r_0, r_0(M + r_{d-2})).$

This is a continuous mapping, which is injective if M is large enough.

The volume of $\psi_M(\mathcal{E}_{d-1})$ is

$$\lambda_{d-1}(\psi_M(\mathcal{E}_{d-1})) = \int_{\mathcal{E}_{d-1}} \det(J_1) d_{r_0} \dots d_{r_{d-2}},$$

where J_1 denotes the Jacobian of ψ_M . One can show that $det(J_1)$ is a polynomial in M of degree d-1 with leading coefficient one and such that its other coefficients are polynomials in b_2, \ldots, b_d .

Thus

$$\lambda_{d-1}(\psi_M(\mathcal{E}_{d-1})) = M^{d-1} \int_{\mathcal{E}_{d-1}} dr_0 \dots dr_{d-2} + \sum_{j=0}^{d-2} M^j \int_{\mathcal{E}_{d-1}} p_j(r_0, \dots, r_{d-2}) dr_0 \dots dr_{d-2} = v_{d-1} M^{d-1} + O(M^{d-2}).$$

As ψ_M is an algebraic mapping and the boundary of \mathcal{E}_{d-1} is the union of finitely many algebraic surfaces, the same is true for $\psi_M(\mathcal{E}_{d-1})$.

Let $M > 2^d$. We show that $(b_2, \ldots, b_d) \in \mathbb{Z}^{d-1}$ is a lattice point of $\psi_M(\mathcal{E}_{d-1})$ iff $P(X) = X^d - MX^{d-1} - b_2X^{d-2} - \ldots - b_d$ is a Pisot or Salem polynomial. Thus

$$|\mathcal{B}_d(M)| = |\psi_M(\mathcal{E}_{d-1}) \cap \mathbb{Z}^{d-1}|.$$

From here on we may repeat the proof of Theorem 5 because the assumptions of Lemma 4 hold for $\psi_M(\mathcal{E}_{d-1})$. Finally we obtain

$$|\mathcal{B}_d(M)| = v_{d-1}M^{d-1} + O(M^{d-2}).$$

Combining the results of Theorems 8 and 7 with the observation that the exponent of M in the main term in the first one is much bigger than in the second one we immediately obtain

Corollary 9 Let $d \ge 2$ and M > 0 be integers. Denote $P_d(M)$ the number of Pisot polynomials of degree d and such that the coefficient of the term of degree d - 1 is -M. Then

$$P_d(M) = v_{d-1}M^{d-1} + O(M^{d-2}).$$