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Let α1 = 1, α2, . . . , αm be linearly independent algebraic numbers

over Q and put K := Q(α1, . . . , αm). Let n := [K : Q]. For any

α ∈ K, denote by α(i) the conjugates of α. Put

l(i)(X) = X1 + α
(i)
2 X2 + . . . + α

(i)
n Xn

for i = 1, . . . , n. There exists a non-zero a0 ∈ Z such that the

form

F (X) := a0NK/Q(α1X1 + . . . + αmXm) = a0

n∏
i=1

l(i)(X)

has integer coefficients. Such a form is called a norm form.

The equation

a0NK/Q(α1x1 + . . . + αmxm) = b (1)

in x1, . . . , xm ∈ Z is called a norm form equation.



If the Q vector space spanned by α1, . . . , αm has a subspace,

which is proportional to a full Z-module of an algebraic number

field, different from Q and the imaginary quadratic field, then

α1Z + . . . + αmZ is called degenerate.

In that case it is easy to see, that (2) can have infinitely many

solutions.

For non-degenerate norm form equations W.M. Schmidt (1971)

proved that the number of their solutions is finite. This result is

ineffective.

For a large class of norm form equations K. Győry and Z.Z.

Papp (1978): finiteness + explicit upper bounds.



Motivation

Buchmann and Pethő found twenty years ago, as a byproduct of

a search for independent units that in the field K := Q(α) with

α7 = 3, the integer

10 + 9α + 8α2 + 7α3 + 6α4 + 5α5 + 4α6

is a unit. This means that the diophantine equation

NK/Q(x0 + x1α + . . . + x6α6) = 1 (2)

has a solution (x0, . . . , x6) ∈ Z7 such that the coordinates form

an arithmetic progression.



Our goals: Generalize (2) in three directions, and investigate

those solutions which form an arithmetic progression:

• we consider arbitrary number fields

• the integer on the right hand side of equation (2) is not

restricted to 1

• it is allowed that the solutions form only nearly an arithmetic

progression

• compare with related results.



Theoretical results

Let K := Q(α) be an algebraic number field of degree n and

m ∈ Z an integer. Consider the equation

NK/Q(x0 + x1α + x2α2 + . . . + xn−1αn−1) = m. (3)

Let X = max{|x0|, . . . , |xn−1|}. We say that the sequence {x0, . . . , xn−1}
forms nearly an arithmetic progression if there exists d ∈ Z and

0 < δ ∈ R such that

|(xi − xi−1)− d| ≤ X1−δ, i = 1, . . . , n− 1. (4)



Theorem 1. [Bérczes, Pethő (2004)] Let α be an algebraic

integer of degree n ≥ 3 and put K := Q(α). Suppose that

β :=
nαn

αn − 1
−

α

α − 1

is an algebraic number of degree at least 3, over Q. Then there

exists an effectively computable constant c1 > 0 depending only

on n, m and the regulator of K such that for any 0 ≤ δ < c1 and

any solution of equation (3) with the property (4) we have

|xi| < B for i = 0, . . . , n− 1,

where B is again an effectively computable constant depending

only on n, m, δ, the regulator of K, and on the height of α.



In the special case when δ = 1 we proved a nearly complete

finiteness result.

Theorem 2. [Bérczes, Pethő (2004)] Let α be an algebraic

integer of degree n ≥ 3 over Q and put K := Q(α). Equation

(3) has only finitely many solutions in x0, . . . , xn−1 ∈ Z such that

x0, . . . , xn−1 are consecutive terms of an arithmetic progression,

provided that non of the following two cases hold

(i) α has minimal polynomial of the form

xn − bxn−1 − . . . − bx + (bn + b− 1)

with b ∈ Z;

(ii) β := nαn

αn−1 −
α

α−1 is a real quadratic number.



Remark. Case (i) appears quite often. Indeed, elementary com-

putation shows that the polynomial xn−bxn−1−. . .−bx+(bn+b−1)

is irreducible for n = 2 if b 6∈ {−3,0,12,15} and is irreducible for

n = 3 if b 6∈ {−14,0}.

In contrast we found only one quartic integral α with defining

polynomial x4 +2x3 +5x2 +4x +2 such that the corresponding

β is a real quadratic number. It is a root of x2−4x+2. Allowing

however α not to be integral we can obtain a lot of examples.

Problem 1. Does there exist infinitely many exceptions?



Theorem 3. [Bérczes, Pethő (2004)] For any n ∈ N (n ≥ 3)

there exists an algebraic integer α of degree n over Q such that

the equation

NK/Q(x0 + x1α + x2α2 + . . . + xn−1αn−1) = ±1, (5)

where K := Q(α), has a solution (x0, . . . , xn−1) ∈ Zn having coor-

dinates which are consecutive terms in an arithmetic progression.



More precisely, the following statements are true:

(i) If αn = 2, n ≥ 3, then for odd n ∈ N the n-tuples (2n −
1,2n−2, . . . , n), (−2n+1,−2n+2, . . . ,−n), (−1,−1, . . . ,−1) and

(1,1, . . . ,1);

for even n ∈ N the n-tuples (2n − 1,2n − 2, . . . , n), (−2n +

1,−2n+2, . . . ,−n), (−1,−1, . . . ,−1), (1,1, . . . ,1), (−4n+1,−4n+

3, . . . ,−2n + 1) and (4n− 1,4n− 3, . . . ,2n− 1)

are the only solutions of equation (5) which form an arithmetic

progression.

(ii) If αn = 3, n ≥ 3, then for each odd n ∈ N the n-tuples

(−3n+1
2 , −3n+3

2 , . . . , −n−1
2 ), (3n−1

2 , 3n−3
2 , . . . , n+1

2 ) are the only so-

lutions of equation (5) which form an arithmetic progression,

and for even n ∈ N there are no such solutions at all.



On the proof of Theorem 1

Put ci := (xi − xi−1) − d. Then equation (3) can be written in

the form

NK/Q

((
αn − 1

α − 1

)
x0 +

(
nαn+1 − nαn − αn+1 + α

(α − 1)2

)
d + µ

)
= m,

where µ = c1α+ c2α2 + . . .+ cn−1αn−1. It can be transformed to

NK/Q

(
αn − 1

α − 1

)
NK/Q(x0 + βd + λ) = m,

where β := nαn

αn−1 −
α

α−1 and λ := µ α−1
αn−1.



Lemma 1. [Sprindžuk, 1974] Let K be an algebraic number

field of degree n ≥ 3 over Q. Let β′ ∈ ZK be of degree at least

three. Consider the equation

NK/Q(x + β′y + λ′) = m (6)

in x, y ∈ Z and λ′ ∈ ZK with |λ′| < max{|x|, |y|}1−δ,0 < δ <

1. Then there exist effectively computable constants c1, c2 > 0

depending only on n and the regulator of K such that for the

solutions of equation (6) with 0 < δ < c1 we have

max{|x|, |y|} < B
c21/δ log(1/δ)
0 ,

where the effectively computable constant B0 depends only on

n, m and on the height of β′.



On the proof of Theorem 3

If the minimal polynomial of α is xn − a, then equation (5) can
be transformed to the form

NK/Q

(
1

(α − 1)2

)
NK/Q (x0(a − 1)(α − 1) + d(an(α − 1)− (a − 1)α)) = ±1,

which can be rewritten as

(−x0(a − 1)− dan)n + (−1)n+1a (x0(a − 1) + dan− d(a − 1))n = ±(a − 1)2.

Put X := −x0(a−1)−dan and Y := −x0(a−1)−dan+d(a−1).

So we get the equation

Xn − aY n = ±(a − 1)2.



The following two lemmas complete the proof of Theorem 3.

Lemma 2. [Bennett; 2001] If n ≥ 3 is an odd integer, then the
pairs (1,0), (−1,0), (1,1) and (−1,−1), and if n ≥ 3 is an even
integer then the pairs (1,0), (−1,0), (1,1), (−1,−1), (−1,1)
and (1,−1) are the only solutions of the equation

Xn − 2Y n = ±1 X, Y ∈ Z.

Lemma 3. [Bennett, Vatsal, Yazdani; 2004] The pairs (−1,1)
and (1,−1) are the only solutions of the equation

Xn − 3Y n = ±4 X, Y ∈ Z

where n ≥ 3 is an odd integer. For even integers n ≥ 3 the above
equation has no solutions.



Computational experiences

Theorem 4. [Bérczes, Pethő (200?)] Let α be a root of the

irreducible polynomial xn − a ∈ Z[x], and put K := Q(α). The

equation

NK/Q(x0 + x1α + x2α2 + . . . + xn−1αn−1) = 1 (7)

has no solutions in integers x0, . . . , xn−1 which are consecutive

elements of an arithmetic progression, if 4 ≤ a ≤ 100 (with the

possible exception a = 93 and n = 31,312).



To prove this result, similarly to the proof of Theorem 3, we

transform our equation (7) to

Xn − aY n = (a − 1)2 (8)

with X := −x0(a−1)−dan and Y := −x0(a−1)−dan+d(a−1).

Now we try to completely solve equation (8) for 4 ≤ a ≤ 100.

Clearly, it is enough to consider the cases where n is an odd

prime, or 4.



Lemma 1 The only solutions of equation (8) for 4 ≤ a ≤ 100,

if a 6= 93 or if a = 93 and n 6= 31,312 , are those listed in the

following Table.

n a (X, Y )

3 9 (−8,−4), (−2,−2), (4,0)
6 9 (2,0), (−2,0)
3 10 (1,−2), (11,5)
3 19 (7,1)
3 28 (−27,−9), (−3,−3), (9,0)
6 28 (3,0), (−3,0)
3 29 (1,−3)
3 36 (13,3)
3 37 (10,−2)
3 38 (7,−3), (11,−1)
3 57 (−8,−4)
3 65 (−64,−16), (−4,−4), (16,0)
6 65 (4,0), (−4,0)
12 65 (2,0), (−2,0)
3 66 (1,−4)



n a (X, Y )

3 73 (8,−4)
3 74 (47,11)
3 93 (118,26)
4 5 (6,4), (−6,4), (−6,−4), (6,−4), (2,0), (−2,0)
4 10 (3,0), (−3,0)
4 17 (4,0), (−4,0)
8 17 (2,0), (−2,0)
4 26 (5,0), (−5,0)
4 37 (6,0), (−6,0)
4 50 (7,0), (−7,0)
4 65 (8,0), (−8,0), (12,4), (−12,4), (−12,−4), (12,−4)
4 82 (9,0), (−9,0)
8 82 (3,0), (−3,0)
4 90 (37,12), (−37,12), (−37,−12), (37,−12)
5 33 (−8,−4), (−2,−2), (4,0)
10 33 (2,0), (−2,0)
5 34 (1,−2)



The method contains the following ingredients:

• Baker’s method, for bounding n in terms of a (Bakery)

• Finding contradictions (mod p)

• Solving the remaining equations via MAGMA, where possible

• Using theory of modular forms



Shanks’ simplest cubic field:

What happens if we are choosing another parametrized family

of fields, e.g. Shanks’ simplest cubic.

Let fa = x3− (a− 1)x2− (a +2)x− 1 and denote by α one of its

zeroes.



Theorem 5. [Bérczes, Pethő, Ziegler, (200?)] The only solu-

tion to

|Nk/Q(x0 + x1α + x2α2)| ≤ |2a + 1|

such that x0 < x1 < x2 is an arithmetic progression are

(x0, x1, x2) = ±(−2j,−j,0), (−j,0, j), (0, j,2j); |j| ≤ |2a + 1|
except when

a = 1, (x0, x1, x2) = ±(−7,−2,3), (−3,−1,1), (−1,3,7)

a = 2, (x0, x1, x2) = ±(−97,−35,27), (−36,−13,10), (−27,−10,7),

(−19,−7,5), (−1,2,5), (−4,5,14), (−7,9,25), (−9,13,35), (−25,36,97)

a = 4, (x0, x1, x2) = ±(−7,−2,3), (−3,−1,1), (−1,3,7)

a = 7, (x0, x1, x2) = ±(−5,−1,3)

a = 16, (x0, x1, x2) = ±(−28,−3,22)



Putting x0 = X − Y, x1 = X, x2 = X + Y we obtain

|Nk/Q(β)| ≤ |2a + 1|, β = (1 + α + α2)X − (1− α2)Y.

By Lemmermeyer and Pethő (1995) β is associated to 1 or one

of the conjugates of α − 1.

We need an independent system of units with maximal rank and

its index in the group of units of Z[α]! By E. Thomas (1979)

any two different conjugates of α form such a system.

The rest is then a careful analysis of linear form in logarithms of

algebraic numbers and formal numerical analysis of the appearing

numbers.



Related results on elliptic curves:

Let E/Q be an elliptic curve. An arithmetic progression on E is

a sequence of at least three points P1, . . . , Ps ∈ E(Q) whose x-

coordinate form an arithmetic progression (A. Bremner, 1999).

To find three-by-three magic squares whose entries are perfect

squares is related to arithmetic progression on E. He proved that

there exist infinitely many elliptic curves over Q such that each

of them admits an arithmetic progression of length 8.



Allowing quartic models of elliptic curves G. Campbell (2003)

found examples on which are lying 9 points in arithmetic pro-

gression.

Let Pt(x) = (x2 − 9x − 4t)
∏9

i=0(x − i), where

t ∈ Q \ {±1,±2,±4,−5,−6,−8,−11}. By U. Maciej (2005) there

exist polynomials Qt(x), Ft(x) with rational coefficients such that

Ft(x) of degree 4 and with Pt(x) = Qt(x)2 − Ft(x). This implies

that on the elliptic curves y2 = Ft(x) there are lying 10 points

whose x coordinate form an arithmetic progression.

Starting from a polynomial of degree 4, whose coefficients de-

pend on 5 parameters, than specializing the parameters appro-

priately there is constructed infinitely many quartic elliptic curves

containing 12 points in arithmetic progression.



Problem 2. Does there exist an absolute bound on the

length of arithmetic progressions lying on an elliptic curve?

An upper bound depending on the rank of the curve, assuming

it is given in Weierstrass normal form exists by a result of J.

Silverman.



Problem 3. What about, if we are interested in the solu-

tions of norm form equations? More precisely, consider the

solutions (x0, . . . , xn−1) of

NK/Q(x0 + x1α + x2α2 + . . . + xn−1αn−1) = m. (9)

Give an upper bound on its solutions such that the x0 coordi-

nates form an arithmetic progression. Using the theory of S-unit

equations such an upper bound can be proved, which depends on

the parameters of the equation, but does there exists a bound,

which depends only on the degree of the field. For example

does there exist Pell equations, which have arbitrary long

arithmetic solutions?


