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Trinomials, which are divisible
by quadratic polynomials

TAMAS HERENDI and ATTILA PETHO*

Abstract. The reducibility of the trinomials in the form z" — Bzk — A are
examined. It is shown, that among the trinomials in the same class (i.e. some of the
parameters A, B,k and m are fixed) there are only finitely many wich has quadratic

factor.

1. Introduction

Let us consider the trinomial z™ — Bz* — A. Ribenboim [4] has shown
that if £ = 1 then for a fixed n and B there exist only finitely many A for
which the trinomial is divisible by a quadratic polynomial and similarly if n
and A is fixed then there exist only finitely many B for which the trinomial
has a quadratic factor. He used in the proof elementary steps only.

Schinzel in [5] then presented a much more general result in which he
proved among others that for fixed A there exist only finitely many n, k, B
for which the trinomial is divisible by any polynomial. He could prove similar
result for fixed B too. His proof is however not an elementary one.

We are also able to generalize Ribenboim’s result extending his proof
but keeping its elementaryness. Qur result is less general than Schinzel’s
result. We prove the following theorems:

Theorem 1. Let be given £k € N and A € Z \ {0}, then

(a) there exist only finitely many, effectively determinable polynomials
in the form z™ — Bz* — A, where n € N, B € Z\ {0} and gcd(k,n,12) = 1,
for which

z? —bz—al|z" — Bz - A
with a,b € Z. _
(b) if ged(k,n,12) > 2 where n € N then there exist only finitely many
effectively determinable polynomials in the form z" — Bz* — A , where
B ¢ Z\ {0} for which 2? — bz — a|z" — Bz* — A for an a,b € Z pair. ..
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Theorem 2. Let be given n,k € N and B € Z \ {0} then

(a) if ged(n, k,12) = 1 and n—k > 4 then there exist only finitely many
A € Z for which 2? —bz —a|z" — Bz* — A for an a,b € Z pair;

(b) if ged(n,k,12) > 2 and n — k > 4 then there exist infinitely many
A € Z for which z? — bz — a | 2™ — Bz* — A for an a,b € Z pair, but except
for finitely many values all the possible values of A is explicitely expressable
as a series.

Remark. Using properties of curves of genus at least 1, we were able
to handle the case n — k < 4 too. As Schinzel’s result are more general and
our proof is not elementary, we omit the details.

2. Auxiliary results

Let the polynomial sequence {F,,(z)},. , be defined as follows: Fy(z) =
Fi(z) =1, and if n > 2 then F,(z) = Fo_y(z) + ¢ - Froa(2).

Let define the polynomial sequence {f,(z,y)} o, as fu(z,y) = yl5] .
F,.(%).

Y

Remark. From Lemma 2 you can see that f,(z,y) is really a polyno-
mial and not a rational function.

Lemma 1. The series {F),(z)}52, has for any 1 < k < n the following
properties:

(8) Fa(2) - it (2) = Foos (2) - Fu(a) — (~1)F - 2% - F_y 1 (a);

(b) Fr(z) = Fai(2) - Fi(z) + z - Fog—1(2) - Fr—1(2).

PROOF. We prove only property (a), because the proof of (b) is similar.
Let £ = 1. Then n > 2. The equality in this case is true because

Fo(z) - Fo(z) = Fro1(2) - Fi(z) + - Frz(z),

where Fy(z) = Fi(z) = 1, and this is exactly the defining equation of F), if
n> 2.

Let now k£ > 2 and suppose that for every 0 < 7 < k the equality holds.
We know that

@ Fr(z) - Fi(z) = Fo(z) - (Fr-1(2) + 2 - Fez(z)) -
(II) Fr1(2) - Fi(z) = Fooi(z) - (Fi-1(z) + 7 - Fr_z(2))
and

L3

(—1)'; o Fa kg (2) = (<1)F 25 (Faci(0) + 2 Faogea (3))
- which is equal to
(UD) (~1)F - 0% - Fo gt (2) = (=1)* - 251 - (Fa_py2(2) + 2+ Faoi(2).
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Let consider the sum: I —II 4 I1T1:

Fo(z) - Fr(z) — Froa1(2) - Fi(z) + (—l)k L S {z)=
Fo(z) - Fro1(z) — Fooy(z) - Frog(z) — (—1)F~ 2% 1. Fro_k(z)+
2 (Fo(z) - Fo—a(z) —Fn_1(z) - Froq(z) + (-1)% - zF2 - Fr_kt1(2)) -

The right hand side of this equation is equal to zero by the induction hy-
pothesis, so the equality holds for & too.
Lemma 2. )
n+1
(€4at1)”
where 1 < 5 < [-721] and &, is a n 4 1-th primitive root of unity;
(b) F,(z) has a rational root if and only if ged(n 4 1,12) > 3.

PROOF.
(a) By definition we have Fy(z) = Fi(z) = 1, so deg (Fo(z)) = [$] and
deg (Fi(z)) = [3]. Let n > 2 and suppose that deg (Fi(z)) = [£] if k < n.
It is easy to see that the leading coeffitient of Fj(z) is positive. So
deg (Fr(z)) = deg (Fn-1(z) + 2 - Fra(z)) =

= max (deg (Fo-1(2)) , deg (Fuoafz)) +1) = [g] .

n

(a) The polynomial F),(z) has degree [2] and its roots are —

Let {unm}.-_, be a recurrence sequence with the definition: u, = 7-u,_; +
S Up—_z, where 7,5 # 0,72 + 4s # 0 and |ugp| + |u| > 0. Then u,, =
a-a™+b-m(m=0,1,2,...), where o, [ is the two different roots of the

polynomial 22 —7-2z — s and a = %, b= M2 (see e g [2]). Let

suppose now that ¢ is a root of F,,(z) and define {u,,} -_, by the following
recurrence:

U =uy =1 and Uy = Up_1 +T Up_y if m>2.
It is clear that F,,(¢) = up (m=0,1,2,...), and if t # —;11— then
VIita-1 <1—\/1+4t)m+\/1+4t+1 <1+«/1+4t)m_
21+ 4 2 21+ 4t 2 B
1 <1+\/1+4t)m+1 - (1—\/1+4t>’"+1
V1+ 4t 2 2 -
By the choice of ¢t we have 0 = F,,(t) = u,, which means

(1+‘/1+4t)n+1 (1—\/1+41t>”+1 e
2 - 7

2

Um =
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<1+m)”+1: (1—¢1+—4t)”“

2 2
From this we get
(1) I+vVitat) =€, 1-vVI+4&),

where 41 is a n41-th primitive root of unity, and 1 < j < n. Also j # ”—'2‘;1
(if it is integer), because in this case 14+ /1 + 4t = /1 + 4¢ - 1 would hold

giz-{hl
(ehat1)”
The next question is how many different values ¢ can have. If ; = 0 then
t = —% and it is easy to see that F), (—l) # 0 for any m = 0,1,2,....

which is impossible. From equation (1) we obtain t = —

_ n+1 £il+l
Further (£n+1+1) Gk where 0 < 4,5 < n+4+1and i # jif and

only if i+7 = n+1. It means that ¢ has at most [5] different values. We know

3]
that deg (F,(z)) = [%] which implies that F,(z) = H ( (g E_:ltrll) )

(b) Fo(z) has a rational root if and only if _(eilﬁfu) = B for j €

{1,2,..., [?]},p, qg € Z,q#0. This is eqliivalent toO:p-(ffL_H + 1)2—1—

, N2 : .
g<Eyy = o (551-%1) +(g+2p)¢) ., +p. Hence ¢, , has to be a oot of the

polynomial pz? + (g + 2p)z + p, i.e. £, is rational or a quadratic algebraic
number. But it is known that if £ is a k-th primitive root of unity, then its
degree is ¢(k), where (k) is the Euler-function. (k) < 2 if and only if
k€ {1,2,3,4,6}. From the proof of (a) it is clear that k>2 If k=3 then
t=-1, 1fk 4 then t = —— and if kK = 6 then t = —— . As fn+1 is primitive
k -th root of unity if n + 1 = j — k, thus F,(z) has a rational root if and
onlyif3|n+1lor4|n+1,ie gcd(n+1 12) > 3.

In the next step some properties of the series {f.(z,¥)} -
sented.

ne—oo aT€ pre-

Lemma 3. The series {f.(z,y)}ou has the property -~

n=—0oo

bon fa(@,9) = 4" ™2 fo i(2,9) + - faa(2,0)ifn € B,

where

S — 0, fn#0
=11, ifn=0.
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3. Basic lemmata

The following lemma generalizes a result of Ribenboim [4] and it is
basic for the proofs of the theorems.

Lemma 4.

Let n > 2,1 <k <n and a,b,A,B € Z. If 22 — bz — a divides
z™ — Bz* — A then

B- bk—l mod 2 flc—l (a,bZ) — pn-1 mod 2 | fn—l (a’,bZ) ]

Further if
(a) b1 med %, £ 5 [(a,0%) =0 thea 57— =043, £ (@,3%) = D and

A=aq- (bn—2 mod 2 _ fn—Z ((I,, b2) _B- bk—2 mod 2 'fk—z (a7b2)) )
(b) otherwise |

B pn—1 mod2 fn—l (CL, bZ)
T pk—1 mod 2 'fk—l (a,bz)

al A, B

kbn—k—l mod 2 | fn—k—l (a’ b2)
bk—l mod 2 , fk—l (a,bZ)

A= ak(—l)

PROOF.

(a) Assume that 2" — BzF — A = (2? — bz —a) - p(z) with p(z) =
"2 4 cp_3z™ 3 4+ gzt 4+ -+ 17 + ¢o. Similarly as in [4] we have
the following equations:

A:a,'C()
517k'B:a'61 +b'Co

(2) Oig-B=a e+ b-erqy—tis

Opnak - B=a+b-ch_3g—cn4
6n—1,k ‘B = b"— Cn-3
where 54‘—{1 Wi= g
77 L0 otherwise
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Using this we prove that if 1 <:<n— 2, then

(3) Crg—i = bz mod 2 fi(a,bz) _ Bbk—n-}-i mod 2 | fk—n—i(a,b)z-

By (2) it is easy to see that (3) holds for 7 = 1,2. Let 2 <1< n—2
and suppose that (3) holds for every j with 1 < j < 1. Then by (2) we get

Cnoz—i = G- Cn_z—(i-2) T b Cna—(i-1) = On—ik - B
=a-C -I-b-Cz——tsn__i,k-B
— bi—?. mod 2 03 _B- bk—n+i—2 mod 2 | C4 +B X 6n—i,k;

where

Cp = b2 ™42 f. ,(a,b*)— B- ph-nticzmod2 g (g bR)
Cy = bt ™42 £ (a,b*) — B- BF"H mod? . fy nyi-1(a,b?)
Cy = b1 ™4D) . £ (0,07) + @ - frnti-2(a,b?)

@, = Pt md ), g oo (@) 4 u- Fr—nyi-2(a,b%).

From this by Lemma 3 we get (3). Using (2) and (3) we obtain

0:a-c1+b-co—51,k~B
—a- (bn——3 mod 2 'fn—a(a,bz) _B .bk—B mod 2 | fk—s(a,bz)) +
+b-a- (bn—2m0d2 . fn—2 (U,,bz) -B- bk—2mod2 . fk—2 (a’bZ)) _ 61,k .B

= g3 med? . (2 md D f Ly (a,) 0 fama(@,7))
—B - (b= modt. (0 D) g (a,) +a fus(a:6)) +Bu)
Using Lemma 3 we get
(4) 0=t mod2. £ . (q,b?) — Bt fiy (a,0%),

which proves the first assertion. This implies pk—1mod2. £, (a,b%) =0 if
and only if b7t ™42 . £, (a,b?) = 0. By (2) and (3)

(5) A=a- (bn—Z mod 2 fn—z(a,bz) _B- bk—Z mod 2 | fk—z(a,ba)) )
(b) I pk-1mod2 . £ (a,bz) # 0 then from (4) we get

B pn—1 mod 2 | fn—l (a,bz)
~ pk-1mod2, fk-—l (a,bZ) :

(6) B
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and from (5) and (6), using Lemma 1 we obtain a | A and

Lonk-lmedz g (a,bz)
pk—1 mod 2 - fk—1(a, b?)

A= ak(—l)

Lemma 5. Let k,n € N and A € Z\ {0}. Then there exist only finitely
many, effectively computable a,b, B € Z such that 22 —bz—a | 2" — Bzk — A.

PROOF. Let a,b € Z be such that pF~1med2. 5, (g b?) # 0 and
2? — bz —a | 2" — Bz* — A. Then by Lemma 4 (b) a | A and

(7) 0=4»A 'bk—l mod 2 'fk:—l (a, b2) . ak(_l)kbn—k—l mod 2 'fn—k:—l (a,bZ) )

Because of a | A, @ may assume only finitely many different values. Let a be
fixed. Then the right hand side of (7) is a polynomial in b, which has only
finitely many roots, and the integer roots of it are effectively computable.
So there exist only finitely many possibilities for a,b (and they are effec-
tively computable). As fx_1 (a,b?) # 0, by Lemma 4 (b) B is explicitely
determinable from a and b so the numbers of the possible B is also finite
and the values of B are effectively computable. Let a,b now be such that
fr-1 (a,b?) = 0. By Lemma 2 (b)

a 1 1
S gy b
®) bze{ T 3}

By Lemma 4 (a) a | A and
(9) A=a- (bn—Z mod 2 fn—2 (a’b2) - B- bk—Z mod 2 'fk—z (a,bZ)) ,

where bF~2 mod2. £, (g,b?) # 0. ( Otherwise b' ™4 2. f; (a,b?) = 0 would
hold for every 7 and it is possible only when a,b = 0.) As a | A the cardinality
of the possible a-s is finite and by (8) the cardinality of the possible b-s is also
finite and effectively computable. Let fix now a and b. Then (9) is a linear
equation in B which has only one solution and the solution is explicitely
given. So we obtain that B has only finitely many possible values in both
cases and they are effectively computable.

By replacing y with y? in the definition of f,(z,y) it is easy to preve
the following:

Lemma 6. y" ™42 f (w,yz) = gyP Fn(y%)




68 Tamds Herendi and Attila Pethé

Lemma 7. Let suppose that ged(n, k) = m. Then

ng (yn—l e 'fn—l (zayz) 7yk_1 Bl fk—l (.’17, yZ)) =

— ym—l mod 2 'fm——l (m’yZ)

PROOF. By Lemma 2 (a) we know that F,(z) has [g] different real
roots. Let suppose that they are zq,..., Z[y]- Then

3]
Fo(z) =lc(F) - [] (e - =),

1=1

where lc (F},) is the leading coefficient of F},, which is 1 if n is even and n+1
if n is odd. Then by Lemma 6

3]
yn mod 2 fn (m,yz) :lc(Fn)H (.’12 — 7 _yZ) _yn mod2‘
e |

It is clear that (:z; —z; -yz) is irreducible, and by the unique factorization
in a polynomial ring, this is the only possible factorization of y™ ™°d2 .
j (w,yz). By Lemma 2(a) (z — ¢ - y2) |yt med? * fr1 (x,yz) if and only

if there exists j € {1,..., 2]} such that ¢t = —ﬁ. Of course, then for
all £, conjugate of t, (z —T-y2) | y"~* ™42 f,._; (z,9?).
If ¢ is such that

(1_ —1. yZ) I y'n.—l mod 2 fn—l (:L.’yZ)

and (x —t- yz) | gk=4 m°d‘2  fr—1 (x,yz) then there exist 7,1 € {1, e [?]}

such that (ﬁfjl)z = (E;ﬁcl)z from where we get either & = &L or & =
k_i. Without loss of generality we can suppose that £/ = Efc. It is easy
to see, if m = ged(n, k) then (fgl)m = (§Z)m, which means that £ is m-
th root of unity and so (m —1 -yz) | ym—lmed2 . £ (m,yz). Reversing,
if (z—t:y?) | ym ™42, f ;i (z,y?) then there exists ¢ € {I,..., [}]}

£ n

such that t = —m, and if m | n then there exists j € {1,..., [5]}
k i
such that ¢, = £ or £, = ¢, which means that (z — ¢ - y?) | yn~1 mod2.
fa-i (x,yz). We have m — 1 mod 2 = 1if and onlyif n — 1 mod 2 =1
and k—1 mod 2=1.Soif y |yn~L ™d2.f (a:,yz) and y | yk—1 modZ.
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fi-1 (z,9%) then y | y™~t ™ed2. f_ (z,y?) and vice versa. The leading
coeffitient of f,, 1 (a;,yz) is different from 1 if and only if m is even and in
this case it is equal to m. But then the leading coeffitient of f,_; (m, yz) is
equal to n and the leading coeflitient of fx_; (m, yz) is equal to k.

Lemma 8. Let D =y -(4z +y), U3 = w and Uy = 2a:+y2—\/l_)_

Then
1 n+1 mod 2
fn(a:)y): (5) 'C)

where

n+1 mod 2 n+1

'U1[2]—<Z/—\/5-U2
/D

PROOF. It is easy to see that f,(z,y) has the property Fn+§ (ac,y) S
(2z +79) - fu(z,y) — 2% - fu_2(z,y). From this similarly to the method used
in Lemma 2 for F,,(z) we get the statement of the Lemma.

. <y+\/D_U1> >n+1 mod 2

4. Proof of the theorems

Proof of Theorem 1.

(a) Let suppose that ged(k,n) = 1. At first we show that there ex-
ists an effectively computable upper bound for the possible n values. If
A # 0 is given then by Lemma 2 (b) using the definition of f, b*—1 mod2.
P16 b2) # 0. Then by Lemma 4 (b)

bn—k—l mod 2 | fn—k—l (a,bZ)

k=1¢_ 1\k
a|A and a"7(-1) bk—1 mod2. £, (g, b?)

| A.

Let assume now that n is given and a is fixed and suppose that b2 > 4a?.
Then if we substitute z by a and y by 4? in Lemma 8, we obtain D > 0, U; >
a? and U, < 1. Then there exists M, constant, such that Ifk—l (a, b2)| <
|Mabk_1| if b # 0 and from Lemma 8 follows that there exists m,, n, and

¢, > 0 such that if n > n, and |b| > m, thén as U; > bz—z

1 n+1 mod 2
In (a'abz) = (5) -C

n+1 mod 2 [m]
) e

1 n+1 mod 2 (b2 + \/E Ul
> Cq <2) g

vD
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n+1 mod 2
1\ 7+l mod2 (bz L \/'5>
Z ca . (-) . w bﬂ+1
2 /D
1
o e b'n,—l.
>c 5
Hence
bn—k——l mod 2 | ke ,b2
A> frn—k-1 (a )
bk—1 mod 2 . fk—l (abe)
c bn—k—Z
~e . bn——2k—2.
> 2 o

Because of the monotonity of the exponential function and the finiteness of
the number of the possible a-s there exists an upper bound for n depending
only on A. Let examine now the case b? < max (4a2, ma). There exist only
finitely many b satisfying the inequality. For these values we apply Theorem
3.1 from [2] and get

(10) fn (a7b2) > |U1|n—1——cl log(n—1)

where ¢; is effectively computable and depends finally on a and b. As we
have only finitely many possibilities for ¢ and b, ¢; is a constant and for n
large enough the exponent in (10) is positive. By a result of Dobrowolski (see
in [1]) |U1] > ¢; > 1 holds for any quadratic algebraic integers which are not
roots of unity, hence by (10) similarly to the previous case n is bounded. So
there exist only finitely many possible n-s satisfying the assumptions in the
theorem from which using Lemma 5 follows the statment of the theorem.

Suppose now that ged(k,n) > 1, but ged(k,n,12) = 1. If ¢ and b satisfy the
assumptions in the theorem then b*¥=1 med2. 7, (g, b?) isn’t zero otherwise
by Lemma 4 (a) 6771 med2. £, | (a, bz) would be zero, which is impossible.

Hence
pn—k—1 mod 2, fn——k—l (a,bZ)

bk—l mod 2 , fk—l (a7b2)

and the proof of the theorem in this case is the same as in the previous case.
(b) In this case we can divide the possible a,b pairs into two sets. In
the first set b¥—1 mod 2. ¢, . (a,bz) # 0. Similarly to the previous two cases
there exist only finitely many solution for B. In the second set p¥—1 mod 2.
fi—1 (a,b?) = 0. Then by Lemma 4 (a) b"~* ™4 2. f,_, (g,b?) = 0 . This
is possible if and only if one of the following statements holds:
1. nis even and b = 0, or

A = a*(-1)F
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2. 37 is one of the rational roots of Fo1(z) .
As A # 0 by Lemma 4 (a) a|A , so in case 1 ( & is also even )

A=a- (bn—z mod 2 fn—2 (a7b2) — B 'bk_2 mod 2 fk—z (a,b2)>

is finitely many linear equation for the possible B -s.

In case 2, as by Lemma 2, F),_; (z) has at most three different rational roots
and similarly to the previous case a|A , we have only finitely many a, b pairs
which satisfies the necessary conditions. By Lemma 3 if f,_; (a,bz) = i}
then f,_o (a,bz) # 0 so we have again finitely many linear equations for
the possible B -s.

Proof of Theorem 2.
(a) Let a,b,A € Z such that 22 — bz —a | 2" — Bz* — A. As B £ 0

similarly to Theorem 1 (b) %=1 m°d2. f, ; (q,b%) # 0. By Lemma 4

B- bk—-l mod 2 flc—l (a,bZ) — bn—l mod 2 | fnfl (a’bz) )

If we suppose that b = 0 then the equation is a polynomial equation for a,
which has only finitely many solution in ¢ so the number of possible values
for A is also finite ( and effectively determinable ).

Let suppose now that & # 0. Then

B . Fk—l((%) a

—nmk = Fa1(3)
As deg(Fr—1) = [551] and deg(Fn-1) = [Z5%], there exist real numbers
M, M,,z;, x5 so that if z > z; then |Fy_1(z)| < My - |z|[k_Tl] and if z > z,

then |F,_;(z)| > M; - |m|[ 7] (M1, M; > 0). Let 2o = max (1,z,z;) and
suppose that ’ > ’ > zo then

B-M1'|z%|[k%l] B-Fp 1(3)
|b7—k] > |bn—k| = P (bz) e

Asn—k>4and‘§%|_>_1weget

a

b2

[*=]

B- M B - M,
>
M, ~ M, -|bmF|
It means that there exists a constant My > 0 so that — My < 3z < M for all

the possible a, b € Z pairs. Hence there exists M > 0 so that IF;c 1 (bZ)l & M
for all the p0551b1e a, b pairs. Or which is the same,

B-M a
(11) Ibn kl > F,_ 1(57)
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min(|z; —z;|)
Let | = =2——— where z;...z[:-1 are the roots of the polynomial
2 =]

F._1(z). We have [ > 0 by Lemma 2. If min (|z1 — 1%') > [ then

a
Fn—l <b_2)

from where it follows that f
l

=5
=11

$=1

B

nfvf] & |b”‘k [ and there exist only finitely many

2

b € Z which is suitable for this. This together with the fact, that % is
bounded implies that there exist only finitely many possible a,b pair.
Let min (la:2 — b%—‘) < l. Obviously among the [z, - fg| < l inequalities hold

only one. Let suppose that ‘371‘0 - Z%I < l. Then

a n_3 a
F"“(iﬁ) 2 159 Jas, - 5]
hence using (11) we get
_ B8 ] i'
l[n;l] pr—k Z | Tig b2

Asb-f,_, (a, bz) # 050 z;, # 7. We assumed n—k > 4, hence the theorem
of Roth on approximation of algebraic numbers [3] implies that there exist
only finitely many suitable a, b pair for this approximation if ¢ is given. The
number of the roots of F,,_1(z) are finite so there exist only finitely many
possible a, b pair and so there exist only finitely many possible A values.
(b) Let ged(n, k,12) = m > 1. Then by Lemma 7

ng (yn——l mod 2 'fn—l (z’y2) ,yk—l mod 2 | fk—l (x7y2))

— ym—l mod 2 | fm—l (z,yZ) ]
Hence there exist g1(z,9), 92(z,y) € Z[z, y] such that
,yn—l mod 2 fn—-l (x,yZ) — 91(!E,y) 'ym—l mod 2 fm—l (w,y2) ,

yk—l mod 2 'fk—l (m’yZ) o gz(x’y) .ym—l mod 2 fm—l (a:,yz) .

We have by Lemma 4

“

B-gs(z,y)-y™ ™42 £ (2,97) = ai(z,y) -y 042 £ (2, 97)
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We devide the set of pairs a,b € Z into two classes according as
(1) bm—l mod 2 | fm—l (a’bz) — 0;
(11) bm—l mod 2 | fm—l (a’b2) ;é 0.

In the case (i) by Lemma 2 (b) the values of a,b are explicitely deter-
minable and so the possible values of A are infinitely many but they are
explicitely determinable as a series.

In the case (ii) we can simplify the equation by b™~! ™ed2. 7, (q,b?)
and with the simplified eqation can be solved in the same way as in (a).
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