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We present theoretical and computational results concerning an
optimization problem for lattices, related to a generalization of
the concept of dual lattices. Let � be a k-dimensional lattice in
R n (with 0 < k ≤ n), and p, q ∈ R + ∪ {∞}. We define the p, q-
norm Np,q(�) of the lattice � and show that this norm always
exists. In fact, our results yield an algorithm for the calculation
of Np,q(�). Further, since this general algorithm is not efficient,
we discuss more closely two particular choices for p, q that arise
naturally. Namely, we consider the case (p, q) = (2, ∞), and also
the choice (p, q) = (1, ∞). In both cases, we show that in general,
an optimal basis of � as well as Np,q(�) can be calculated.
Finally, we illustrate our methods by several numerical examples.

1. INTRODUCTION

Let Λ be a k-dimensional lattice in R n , 0 < k ≤ n. We
call

Λ̂ := {x̂ ∈ R n : (x̂, x) ∈ Z for all x ∈ Λ}

the dual set of Λ. A lattice Λ∗ in R n is called a dual lattice
of Λ if Λ̂ = Λ∗ ⊕ H holds for some subspace H of R n . In
other words, Λ∗ is a dual lattice of Λ if there exists a
subspace H of R n such that every a ∈ Λ̂ can be uniquely
written in the form a = b + h, with b ∈ Λ∗, h ∈ H. As is
well known, if k = n (i.e., Λ is a full lattice in R n ), then
Λ̂ is just the dual (or polar or reciprocal) lattice of Λ (see,
e.g., [Lekkerkerker 69]). In that case, we have Λ∗ = Λ̂ and
H = {0}. In Section 2, we show that dual lattices exist
for every lattice Λ and give some of their basic properties.

Let p, q ∈ R + ∪ {∞}, and let L ⊂ R n be a k-
dimensional lattice. Then the p, q-size of L is

|L|p,q = min
(a1 ,...,ak )

|(|a1 |p , . . . , |ak |p)|q ,

where (a1 , . . . , ak ) runs through all bases of L, and |v|r =
|vt|r is the Lr -norm of a vector v with vt = (v1 , . . . , vn ) ∈
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R n given by

|v|r = |vt|r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n∑

i=1

|vi |r
)1/r

, if r ∈ R + ,

max{|v1 |, . . . , |vn |}, if r = ∞.

Then the p, q-norm of the lattice Λ is defined by

Np,q (Λ) = min
Λ∗

|Λ∗|p,q , (1–1)

where Λ∗ runs through all the dual lattices of Λ. By the
norm equivalence theorem, every bounded region con-
tains only finitely many vectors of a lattice L ⊂ R n .
Hence the size |L|p,q exists for every lattice. As we shall
see later, the minimum in (1–1) also exists, so Np,q (Λ) is
well defined, too.

It is worth mentioning that if k = n, i.e., if we con-
sider full lattices, the above notions are well known
and are of great importance in lattice theory and
in many of its applications (see, e.g., the books
[Lekkerkerker 69, Pohst and Zassenhaus 89] and the pa-
pers [Kannan and Lovász 88, Schnell 92]). On the other
hand, the problem of finding N1,∞(Λ) when k = n − 1
naturally arises in the context of solving S-unit equa-
tions (see [Hajdu 09]).

In this paper, we take up the problem for general
0 < k ≤ n and p, q. First, we show that Np,q (Λ) exists for
every p, q, and Λ. In fact, our results yield an algorithm
for the calculation of Np,q (Λ). However, since this gen-
eral algorithm is not really efficient, we discuss two par-
ticular cases separately. Namely, we consider the natural
case (p, q) = (2,∞), and also the choice (p, q) = (1,∞),
when, as we have indicated already, the problem arises
from lattices connected to the unit groups of algebraic
number fields. In both cases, we show that an optimal
basis of Λ can be explicitly calculated. Finally, we illus-
trate our methods by several numerical examples. At this
point, our intention is to present some illustrative mate-
rial rather than to stress the computations to the limit.

2. SOME BASIC PROPERTIES OF DUAL LATTICES

In this section, we give some basic properties of dual lat-
tices. On the one hand, this notion is a natural general-
ization of the usual concept of the dual lattice of a full
lattice. On the other hand, we need to establish a way of
working effectively with dual lattices.

Recall that the set

Λ̂ := {x̂ ∈ R n : (x̂, x) ∈ Z for all x ∈ Λ}

is called the dual set of a k-dimensional lattice Λ in
R n (0 < k ≤ n). As we mentioned already, if k = n (i.e.,
Λ is a full lattice in R n ), then Λ̂ is the dual (or po-
lar or reciprocal) lattice of Λ (see, e.g., [Lekkerkerker 69,
Kannan and Lovász 88, Schnell 92]). Our first aim is to
describe the structure of Λ̂ in the general case.

Theorem 2.1. Let a1 , . . . , ak be an arbitrary, but fixed,
basis of Λ. Take vectors bi ∈ R n (i = 1, . . . , k) such that

(bi, aj ) =

{
1, if i = j,

0, otherwise,
1 ≤ i, j ≤ k.

Write Λ∗ for the lattice generated by b1 , . . . , bk , and let
Λ⊥ be the orthogonal complement of the subspace of R n

generated by a1 , . . . , ak . Then we have

Λ̂ = Λ∗ ⊕ Λ⊥,

that is, every b ∈ Λ̂ can be uniquely written as

b = a∗ + a⊥ with a∗ ∈ Λ∗, a⊥ ∈ Λ⊥. (2–1)

Further, here Λ∗ and Λ⊥ are uniquely determined in the
following sense. Let L and H be a lattice and a subspace
in R n , respectively, such that

Λ̂ = L ⊕ H.

Then we have H = Λ⊥, and both

L ⊆ Λ∗ + Λ⊥ and Λ∗ ⊆ L + Λ⊥.

In particular, dim(L) = k and dim(H) = n − k.

Proof. First, we show that every element of Λ̂ can be
written in the form (2–1). For this, let b ∈ Λ̂ be arbitrary.
Then we have

(b, ai) = ti , ti ∈ Z, i = 1, . . . , k.

Put

a∗ := t1b1 + · · · + tk bk and a⊥ := b − a∗.

Then we obviously have a∗ ∈ Λ∗. Moreover, by the defini-
tion of the vectors bi (i = 1, . . . , k), a∗, and a⊥, we obtain

(a⊥, ai) = (b − a∗, ai) = (b, ai) − (a∗, ai)
= (b, ai) − (t1b1 + · · · + tk bk , ai)
= ti − ti = 0, i = 1, . . . , k.

Hence we get that a⊥ ∈ Λ⊥ is also valid, which proves
that Λ̂ = Λ∗ + Λ⊥.

To prove the uniqueness of the representation (2–1) of
b ∈ Λ̂, take arbitrary vectors ak+1 , . . . , an ∈ R n such that
a1 , . . . , ak , ak+1 , . . . an are linearly independent (over R ).
Then we see that Λ̂ contains the dual lattice of the full
lattice generated by a1 , . . . , an in R n . Hence Λ̂ is not
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included in any proper subspace of R n , which shows that
dim(Λ∗) + dim(Λ⊥) = n must hold. Hence the uniqueness
of the representation (2–1) follows immediately. Thus we
have proved that Λ̂ = Λ∗ ⊕ Λ⊥.

Assume now that we also have Λ̂ = L ⊕ H with some
lattice L and subspace H in R n . Suppose that h ∈ H \
Λ⊥. Take an arbitrary t ∈ R and observe that by th ∈ Λ̂,
we have

(th, ai) = t(h, ai) ∈ Z, i = 1, . . . , k.

However, this is clearly possible only if

(h, ai) = 0, i = 1, . . . , k.

This yields h ∈ Λ⊥, a contradiction. Hence we have H ⊆
Λ⊥. Assume next that h ∈ Λ⊥ \ H. Observe that for t ∈
R , we have th ∈ Λ̂. Thus by Λ̂ = L ⊕ H, for every t ∈
R , there exist vectors ut ∈ L and vt ∈ H such that th =
ut + vt . Since L is a countable set, the vectors ut (t ∈ R )
cannot be distinct. Thus there exist t1 , t2 ∈ R with t1 �=
t2 such that ut1

= ut2
. This yields

(t2 − t1)h = (ut2
+ vt2

) − (ut1
+ vt1

) = vt2
− vt1

.

However, since vt1
, vt2

∈ H and H is a subspace, we
get that (t2 − t1)h ∈ H. Hence also h ∈ H, a contradic-
tion. This shows that Λ⊥ ⊆ H must also be valid. Thus
H = Λ⊥. In particular, we obviously have dim(H) =
dim(Λ⊥) = n − k.

On the other hand, since by 0 ∈ H = Λ⊥, we have
both L ⊆ Λ̂ and Λ∗ ⊆ Λ̂, we immediately obtain both
L ⊆ Λ∗ + Λ⊥ and Λ∗ ⊆ L + Λ⊥. So we have only to prove
that dim(L) = k. Assume to the contrary that dim(L) >

k. (Since Λ̂ = L ⊕ H and dim(H) = n − k, dim(L) < k

is clearly impossible.) Let �1 , . . . , �k ∈ L be linearly inde-
pendent elements (over R ) such that

L0 ∩ H = {0}, (2–2)

where L0 is the linear subspace of R n generated by the
vectors �1 , . . . , �k . Since Λ̂ = L ⊕ H, such vectors exist.
By our assumption dim(L) > k, we can find a vector � ∈
L \ L0 . Observe that � ∈ Λ̂, and put

(�, ai) = ti ∈ Z, i = 1, . . . , k. (2–3)

Since dim(L0) = k and dim(H) = n − k, by (2–2) we can
write

� = c1�1 + · · · + ck �k + h (2–4)

with some c1 , . . . , ck ∈ R and h ∈ H, which are uniquely
determined. By (h, ai) = 0 (i = 1, . . . , k), this yields

(�, ai) = (c1�1 + · · · + ck �k + h, ai) = di,1c1 + · · · + di,k ck ,

i = 1, . . . , k, (2–5)

where di,j = (�j , ai) ∈ Z for 1 ≤ i, j ≤ k. Combining
(2–3) and (2–5), we obtain the system of linear equations⎛

⎜⎜⎝
d1,1 . . . d1,k

...
. . .

...
dk,1 . . . dk,k

⎞
⎟⎟⎠

⎛
⎜⎜⎝

c1
...
ck

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

t1
...
tk

⎞
⎟⎟⎠ (2–6)

for c1 , . . . , ck . One can easily check that the matrix on
the left-hand side of (2–6) is invertible. Thus, using that
di,j ∈ Z, 1 ≤ i, j ≤ k, we get that c1 , . . . , ck ∈ Q . So there
exists a nonzero integer t such that tci ∈ Z for all i =
1, . . . , k. However, by (2–4), this yields that we have two
distinct representations for t� ∈ Λ̂ of the form u + v with
u ∈ L and v ∈ H, given by

t� + 0 =
(
(tc1)�1 + · · · + (tck )�k

)
+ th.

This is a contradiction, showing that indeed dim(L) = k,
and the theorem follows.

As a simple consequence we obtain the following state-
ment, which yields a complete and explicit characteriza-
tion of the dual lattices of Λ.

Corollary 2.2. Let a∗
1 , . . . , a

∗
k be an arbitrary, but fixed,

basis of Λ∗. Then, using the notation of Theorem 2.1, we
have the following. For every h1 , . . . , hk ∈ Λ⊥, the lattice
L generated by the vectors a∗

1 + h1 , . . . , a
∗
k + hk is a dual

lattice of Λ.
Conversely, suppose that Λ̂ = L ⊕ H, where L and

H are a lattice and a subspace in R n , respectively.
Then L (as a lattice) has a unique basis of the form
a∗

1 + h1 , . . . , a
∗
k + hk with some h1 , . . . , hk ∈ Λ⊥.

Proof. The first part of the statement immediately fol-
lows from the observation that since a∗

1 , . . . , a
∗
k is a basis

of Λ∗ and Λ∗ ⊕ Λ⊥ = Λ̂, we have Λ̂ = L ⊕ Λ⊥.
To prove the second part of the statement, ob-

serve that since Λ∗ ⊆ Λ̂, and also H = Λ⊥, there exist
b1 , . . . , bk ∈ L and h1 , . . . , hk ∈ Λ⊥ such that a∗

i = bi + h′
i

(i = 1, . . . , k). That is, we have

a∗
1 + h1 , . . . , a

∗
k + hk ∈ L

with

h1 = −h′
1 , . . . , hk = −h′

k ∈ Λ⊥.

Note that obviously, the above vectors are linearly inde-
pendent (over R ). We show that they form a basis of L

as a lattice as well. Let b ∈ L be arbitrary. Then since
a∗

1 , . . . , a
∗
k is a basis of the lattice Λ∗, by Theorem 2.1 we

can write

b = t1a
∗
1 + · · · + tka∗

k + a⊥, t1 , . . . , tk ∈ Z, a⊥ ∈ Λ⊥.
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On the other hand, we also have that the linear combi-
nation

t1(a∗
1 + h1) + · · · + tk (a∗

k + hk )

belongs to L. Thus we have

t1h1 + · · · + tkhk − a⊥ ∈ L ∩ H,

which yields

t1h1 + · · · + tkhk = a⊥.

That is, b is a linear combination of a∗
1 + h1 , . . . , a

∗
k +

hk with integral coefficients, so the latter vectors indeed
form a basis of the lattice L.

Finally, assume that

a∗
i + hi, a

∗
i + h′

i ∈ L

for some i ∈ {1, . . . , k}, with hi, h
′
i ∈ H. Then we have

hi − h′
i ∈ L ∩ H, whence hi = h′

i . This proves the unique-
ness of the vectors hi (i = 1, . . . , k), and the statement
follows.

Remark 2.3. In view of Theorem 2.1 and Corollary 2.2,
we see that the dual set Λ̂ can be decomposed as a direct
sum L ⊕ H of a lattice and a subspace of R n “almost”
uniquely. More precisely, the subspace H is uniquely de-
termined, while the lattice is determined “modulo” H. In
particular, if Λ is a full lattice, then H = {0}, and L = Λ̂
is uniquely determined. In that case, L is called the dual
lattice of Λ. Thus in the general situation 0 < k ≤ n, it
is natural to call the decomposing lattices L dual lattices
of Λ.

Now we give a reformulation of Corollary 2.2 for bases
of Λ, since this will prove to be useful later on. We shall
need the following notion. Let A = (a1 , . . . , ak ) be a sys-
tem of linearly independent vectors in R n (0 < k ≤ n).
A system B = (b1 , . . . , bk ) is called a dual system of A if

(bi, aj ) =

{
1, if i = j,

0, otherwise,
1 ≤ i, j ≤ k.

Note that B forms a linearly independent system. In par-
ticular, if k = n, i.e., A is a basis of R n , then B is the
dual basis for A.

Corollary 2.4. Let A = (a1 , . . . , ak ) be a basis of the lattice
Λ. Then there is a one-to-one correspondence between
the dual systems of A and the dual lattices of Λ. More
precisely, every dual lattice L of Λ has a unique basis
B = (b1 , . . . , bk ) that is a dual system of A.

Proof. Let B = (b1 , . . . , bk ) be a dual basis of A. Observe
that a system B′ = (b′1 , . . . , b

′
k ) of vectors in R n is a dual

system of A if and only if

b′i = bi + hi with some hi ∈ Λ⊥ (i = 1, . . . , k).

Hence the statement is an immediate consequence of
Corollary 2.2.

The last property we give concerning dual lattices is
the following. Note that once again, this property is a
generalization of the corresponding one from the classical
case k = n.

Corollary 2.5. Let L be a dual lattice of Λ. Then Λ is also
a dual lattice of L.

Proof. Using that B = (b1 , . . . , bk ) is a dual system of
A = (a1 , . . . , ak ) if and only if A is a dual system of B,
by the already known properties of dual lattices, one can
easily check that L̂ = Λ ⊕ L⊥ holds. Hence the statement
immediately follows.

3. THE NORM Np,q IN THE GENERAL CASE

We begin by extending the notion of the norm Np,q to
bases of Λ. The reason is that later on, instead of lattices
we will work with their bases. First, let B = (b1 , . . . , bk )
be a system of linearly independent vectors in R n . Then
the p, q-size of the system B is defined by

|B|p,q =
∣∣|b1 |p , . . . , |bk |p

∣∣
q
.

As above, let Λ be a k-dimensional lattice in R n (with
0 < k ≤ n), and let A = (a1 , . . . , ak ) be any basis for Λ.
The p, q-norm Np,q (A) of the system A is defined in the
following way:

Np,q (A) = min
B

|B|p,q ,

where B runs through all the dual systems of A.
Throughout the section, let p, q ∈ R + ∪ {∞} be fixed.

Note that a priori, it is not clear whether Np,q (A) and
Np,q (Λ) exist. However, we shall show that these norms
(i.e., the minima) always exist.

Theorem 3.1. For every basis A = (a1 , . . . , ak ) of Λ,
Np,q (A) exists.

Proof. Calculate the vectors â1 , . . . , âk having the follow-
ing properties:
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(i) for all i, j ∈ {1, . . . , k}

(âi , aj ) =

{
1, if i = j,

0, otherwise,

(ii) âi⊥Λ⊥, that is (âi , a
⊥) = 0 for all a⊥ ∈ Λ⊥ (i =

1, . . . , k).

For this procedure and other standard methods used,
see, e.g., the book [Pohst and Zassenhaus 89]. Note that
property (i) just means that Â = (â1 , . . . , âk ) is a dual
system of A. In particular, by Corollary 2.4, Â is a basis
of a dual lattice of Λ. In fact, property (ii) is not impor-
tant for the proof of the present statement, although the
vectors â1 , . . . , âk play an important role later on.

Remark 3.2. Observe that by Corollary 2.2, we have that
B = (b1 , . . . , bk ) is a dual system of A if and only if bi

belongs to the hyperplane âi + Λ⊥ for every i = 1, . . . , k.

Continuing the proof, for 1 ≤ i ≤ k, let μi be the small-
est nonnegative real number such that (âi + Λ⊥) ∩ μiGp

is nonempty, where Gp is the unit sphere with respect to
the Lp -norm in R n . Since Gp is compact, μi exists. Let
b∗i ∈ (âi + Λ⊥) ∩ μiGp , and let B = (b1 , . . . , bk ) be any
dual system of A. Then we have |b∗i |p ≤ |bi |p , whence

|(|b∗1 |p , . . . , |b∗k |p)|q ≤ |(|b1 |p , . . . , |bk |p)|q .

Thus Np,q (A) exists; in particular, we have

Np,q (A) = |(|b∗1 |p , . . . , |b∗k |p)|q .

The proof is complete.

Remark 3.3. From the proof of Theorem 3.1 it follows that
the vectors b∗1 , . . . , b

∗
k realizing the minimum Np,q (A) are

independent of q.

Theorem 3.4. Let Λ be a k-dimensional lattice of R n with
k ≤ n. Then for every positive real t, Λ has only finitely
many bases of p, q-norm smaller than t, and these bases
can be effectively determined.

Proof. Let A = (a1 , . . . , ak ) be an arbitrary, but fixed,
basis of Λ. It is sufficient to “bound” all k × k unimodular
matrices U such that Np,q (AU) < t.

First observe that if U is a k × k unimodular matrix,
then a system B′ = (b′1 , . . . , b

′
k ) is a dual system for A′ =

AU if and only if

B′t = U−1

⎛
⎜⎜⎝

b1
...
bk

⎞
⎟⎟⎠

with some dual system B = (b1 , . . . , bk ) of A. Thus by
Remark 3.2, we have

B′t = U−1

⎛
⎜⎜⎝

â1 + h1
...

âk + hk

⎞
⎟⎟⎠ = U−1

⎛
⎜⎜⎝

â1
...

âk

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

h′
1
...

h′
k

⎞
⎟⎟⎠ ,

where h1 , . . . , hk , h′
1 , . . . , h

′
k ∈ Λ⊥. Here we used that Λ⊥

is a subspace of R n . Write bi,1 , . . . , bi,k and ui,1 , . . . , ui,k

for the entries of b′i and the ith row of U−1 for i = 1, . . . , k,
respectively. Then by the above equality, we have

b′i = ui,1 â1 + · · · + ui,k âk + h′
i , i = 1, . . . , k.

Observe that here h′
i is orthogonal to the vectors

â1 , . . . , âk . Thus by the Pythagorean theorem, we obtain

|b′i |22 = |ui,1 â1 + · · · + ui,k âk |22 + |h′
i |22 , i = 1, . . . , k.

(3–1)

On the other hand, letting B′ be such that |B′|p,q =
Np,q (AU), we have∣∣(|b′1 |p , . . . , |b′k |p)∣∣q < t,

implying

|b′i |2 < c(p, q, n, t), i = 1, . . . , k. (3–2)

Here c(p, q, n, t) is a positive constant depending only on
p, q, n, t, and we used the equivalence of the norms Lr

over the space R n .
Now combining (3–1) and (3–2), noting that A is cho-

sen to be arbitrary but fixed, we get

|ui,1 â1 + · · · + ui,k âk |2 < c(p, q, n, t), i = 1, . . . , k.

Observe that this inequality means that for every i =
1, . . . , k, ui,1 â1 + · · · + ui,k âk is a vector of a fixed lattice
inside a bounded region. This implies that these vectors,
whence all entries of U−1 , can be effectively bounded and
determined. Hence the same is true for all entries of U ,
and the theorem follows.

Our next result, besides showing that Np,q (Λ) exists,
provides a tool for its explicit calculation.
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Theorem 3.5. For every k-dimensional lattice Λ of R n

with 0 < k ≤ n, Np,q (Λ) exists. Further, we have

Np,q (Λ) = min
A

Np,q (A), (3–3)

where A runs through all the bases of Λ.

Proof. In view of Theorem 3.4, we know that the min-
imum on the right-hand side of (3–3) exists. Let A =
(a1 , . . . , ak ) be a basis of Λ realizing this minimum. We
have only to show that for every dual lattice Λ∗ of Λ, we
have |Λ∗|p,q ≥ Np,q (A).

For this purpose, let B = (b1 , . . . , bk ) be a dual basis
of A with

Np,q (A) = |B|p,q = |(|b1 |p , . . . , |bk |p)|q .
Let L be the dual lattice of Λ generated by b1 , . . . , bk .
Let B′ = (b′1 . . . , b′k ) be any other basis of L. Then by
Corollaries 2.4 and 2.5, we can take a basis a′

1 , . . . , a
′
k of

Λ such that B′ is a dual system of A′. By the minimality
of Np,q (A), this gives

|(|b1 |p , . . . , |bk |p)|q = Np,q (A) ≤ Np,q (A′)
≤ |(|b′1 |p , . . . , |b′k |p)|q .

Hence for the size of L, we obtain that

|L|p,q = |(|b1 |p , . . . , |bk |p)|q = Np,q (A).

Now let Λ∗ be any dual lattice of Λ, and take a basis
b∗1 , . . . , b

∗
k in Λ∗ such that

|Λ∗|p,q = |(|b∗1 |p , . . . , |b∗k |p)|q .

Take a basis A∗ = (a∗
1 , . . . , a

∗
k ) in Λ such that B∗ =

(b∗1 , . . . , b
∗
k ) is a dual system of A∗. Then using again the

minimality of Np,q (A), we have

|Λ∗|p,q = |B∗|p,q ≥ Np,q (A∗) ≥ Np,q (A).

Thus we conclude that for an arbitrary dual lattice Λ∗

of Λ,

|Λ∗|p,q ≥ |L|p,q

is valid. This proves that Np,q (Λ) exists, and Np,q (Λ) =
|L|p,q . Further, we also have

Np,q (Λ) = Np,q (A),

and the theorem is proved.

Remark 3.6. Since the proofs of the previous results are
constructive, we obtain an algorithm for the determina-
tion of the norm Np,q (Λ) for all p, q. This can be given
in the following way.

3.1. Algorithm 0: Np,q

Execute the following steps:

1. Let A = (a1 , . . . , ak ) be any basis of Λ. Determine the
value Np,q (A) using Theorem 3.1.

2. Using Theorem 3.4 , determine all bases A∗ of Λ that
satisfy Np,q (A∗) ≤ Np,q (A).

3. Choose the basis from those obtained in step 2 for
which Np,q (A∗) is minimal. Then Np,q (Λ) = Np,q (A∗).

Although Algorithm 0 theoretically finds Np,q (Λ), it
is not efficient from a practical point of view. Especially,
step 2 is very time-consuming. In the following two sec-
tions we investigate the problem of developing substan-
tially more efficient algorithms for determining Np,q in
two special cases, namely for (p, q) = (2,∞) and (1,∞).

4. THE CASE ( p, q) = (2,∞)

When (p, q) = (2,∞), the norm N2,∞(A) can be immedi-
ately obtained for any basis A = (a1 , . . . , ak ) of Λ.

Lemma 4.1. For every basis A = (a1 , . . . , ak ) of Λ, we
have

N2,∞(A) = |(|â1 |2 , . . . , |âk |2)|∞ ,

where the vectors â1 , . . . , âk are defined in the proof of
Theorem 3.1

Proof. Since |âi |2 ≤ |bi |2 holds for all bi ∈ âi + Λ⊥, the
statement trivially follows.

Remark 4.2. Lemma 4.1 holds for arbitrary values of q,
not only for q = ∞.

Now we indicate how one could approximate N2,∞(Λ)
efficiently for any lattice Λ. Take an arbitrary basis
A = (a1 , . . . , ak ) of Λ. Then by Lemma 4.1, with the
basis Â = (â1 , . . . , âk ) we have N2,∞(A) = |Â|2,∞. Fur-
ther, writing Λ∗ for the lattice generated by Â, by the
choice of the vectors in Â in the proof of Theorem 3.1,
we see that Λ∗ is contained in the orthogonal comple-
ment subspace of Λ⊥. Since this is valid for any basis
of Λ, one can easily check that N2,∞(Λ) = |Λ∗|2,∞ with
the particular Λ∗ defined above. Thus a basis reduction
(starting from Â) yielding a “small” basis of the lattice
Λ∗ provides a good approximation of N2,∞(Λ). For this
purpose, the LLL algorithm [Lenstra et al. 82] (see also
[Pohst and Zassenhaus 89]) can be efficiently used. Note
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that this approach works for any value of q, not only for
q = ∞.

Now we give a heuristic method for which there is no
guarantee that it will work. However, if it does, it gives
N2,∞(Λ) very quickly.

4.1. Algorithm 1: N2,∞
Starting with an arbitrary basis a1 , . . . , ak of Λ, execute
the following steps:

1. Find the vectors â1 , . . . , âk as in the proof of Theo-
rem 3.1.

2. Compute the successive minima and the correspond-
ing vectors b1 , . . . , bk of the lattice L generated by
â1 , . . . , âk .

3. Check whether b1 , . . . , bk form a basis of L by com-
puting whether the determinant of the basis transfor-
mation matrix is ±1.

4. If b1 , . . . , bk does not form a basis of L, then output
a failure message and terminate. Otherwise, output
N2,∞(b1 , . . . , bk ).

If b1 , . . . , bk form a basis, then by Lemma 4.1, we
have N2,∞(Λ) = N2,∞(b1 , . . . , bk ). This happens, in fact,
in all the cases we have considered, which is not surpris-
ing, since we have used lattices related to number fields,
and such lattices behave nicely in general. However, it is
well known that it may happen that the successive min-
imal vectors do not form a basis of the lattice (see, e.g.,
[Pohst and Zassenhaus 89]). In that situation we should
switch back to Algorithm 0, with p = 2 and q = ∞.

5. THE CASE ( p, q) = (1,∞)

For (p, q) = (1,∞), the situation is more complicated. In
what follows, we develop a method for finding the norm
N1,∞(Λ) of a lattice Λ. Note that in view of Theorem 3.5,
we know that N1,∞(Λ) always exists.

We need to find a system B = (b1 , . . . , bk ) (a dual sys-
tem for some basis A of Λ) such that

|B|1,∞ = max(|b1 |1 , . . . , |bk |1) = N1,∞(Λ).

We shall, in fact, construct such a system B. The first
algorithm we give is an adaptation of Algorithm 1 to this
case.

5.1. Algorithm 2a: N1,∞
We heuristically expect that the basis obtained in Algo-
rithm 1 is the one that corresponds to the norm N1,∞,
too. Therefore after executing the first three steps (which

are the same as in Algorithm 1), we continue with this
basis and do further examinations. So starting with some
rows a1 , . . . , ak of Λ, execute the following steps:

1. Find the vectors â1 , . . . , âk as in the proof of Theo-
rem 3.1.

2. Compute the successive minima and the correspond-
ing vectors b1 , . . . , bk of the lattice L generated by
â1 , . . . , âk .

3. Check whether b1 , . . . , bk form a basis of L, i.e., com-
pute whether the determinant of the basis transfor-
mation matrix is ±1.

4. If this does not hold, then output a failure message
and terminate. Otherwise, continue with the following
steps.

5. By Lemma 5.1, calculate the norm of the system
b1 , . . . , bk . That is, for all i = 1, . . . , k, find the norm
of the shortest vector in bi + Λ⊥, with respect to | · |1 .
Observe that since the intersection of bi + Λ⊥ and the
set {x ∈ R n : |x|1 ≤ 1} is a convex polytope, it can be
done by solving a standard linear programming prob-
lem. Take the maximum of these norms, that is, the
norm N1,∞(b1 , . . . , bk ).

6. Find all “short vectors” in the lattice whose Euclidean
lengths are between the largest successive minimum
and N1,∞(b1 , . . . , bk ).

7. For all “short vectors” b, find the norm of the shortest
vector in b + Λ⊥ with respect to | · |1 . If these norms
are greater than or equal to N1,∞(b1 , . . . , bk ), then set
the value of the logical variable MINIMAL to true;
otherwise, set MINIMAL to false.

8. Output the vectors b1 , . . . , bk , the norm
N1,∞(b1 , . . . , bk ), and the variable MINIMAL.

The vectors b1 , . . . , bk obtained in step 2 in fact form a
basis in all the cases we have considered. However, as we
have mentioned already, this is not guaranteed, and in
such cases, we should return to Algorithm 0, with p = 1
and q = ∞.

If the output value of MINIMAL is true, then we have
N1,∞(Λ) = N1,∞(b1 , . . . , bk ). Otherwise, our algorithm
fails to find the norm N1,∞(Λ). Unfortunately, that
has happened several times. (Note, however, that the
value of the norm N1,∞(b1 , . . . , bk ) provided by the
algorithm is not too far from N1,∞(Λ). This can be
easily seen from the inequalities between the norms
| · |1 and | · |2 .) However, even if the algorithm does
find the norm N1,∞(Λ), it has to list many “short
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vectors” in step 6 (which can be done by the method
of [Fincke and Pohst 85]), and finding them is very
time-consuming. This means that the algorithm is not
efficient enough, and therefore we develop another.

First we prove three statements that form the basis of
this new algorithm.

Let H be a subspace of R n and let b ∈ R n be a nonzero
vector orthogonal to H, and write T = b + H. Further,
write H∗ for the subspace

H∗ = {tb + h | t ∈ R , h ∈ H}.
The first theorem gives a method to find the shortest

element of T with respect to | · |1 .

Lemma 5.1. Let e be a vector in H∗ of the form e = t0b +
h with some t0 > 0 and h ∈ H such that |e|1 = 1 and
t0 is maximal with this property. Then b0 = e/t0 is the
shortest element of T with respect to | · |1 , with |b0 |1 =
1/t0 .

Proof. Obviously, e is well defined, and b0 ∈ H∗. Sup-
pose that b′ ∈ T and |b′|1 = c < 1/t0 = |b0 |1 . Write b′ =
b + h′. Then letting e′ = b′/c, we have both |e′|1 = 1 and
e′ = (1/c)b + (1/c)h′, which by 1/c > t0 , contradicts the
definition of t0 . Hence the assertion follows.

The next statement shows that the shortest vector in
T with respect to | · |1 cannot be “too short.”

Lemma 5.2. For every b′ ∈ T , we have |b′|1 ≥ |b|2 .

Proof. Since b is orthogonal to H, it is the shortest vector
in T with respect to | · |2 . Hence for every b′ ∈ T , we have

|b′|1 ≥ |b′|2 ≥ |b|2 ,
and the proof is complete.

Now let b1 , . . . , bk be linearly independent vectors in
R n . The third statement shows that if a linear combina-
tion of these vectors is “short” with respect to | · |2 , then
the coefficient vector must also be “short.”

Lemma 5.3. Let a = λ1b1 + · · · + λkbk be a linear combi-
nation of b1 , . . . , bk with some λ1 , . . . , λk ∈ R such that
|a|2 < c with some positive real number c. Then we have

|λ|2 < c
√

μ,

where λ = (λ1 , . . . , λk ), and μ is the largest eigenvalue of
the matrix RtR. Here R is a left inverse of the matrix

S = (b1 , . . . , bk ).

Proof. Observe that we have a = Sλ, whence Ra = λ.
Thus writing ‖R‖ for the operator norm of R, i.e.,
‖R‖ = sup|x|2 ≤1 |Rx|2 , and using the well-known asser-
tion ‖R‖ =

√
μ, we get

|λ|2 = |Ra|2 ≤ ‖R‖ · |a|2 =
√

μ|a|2 < c
√

μ,

and the statement follows.

5.2. Algorithm 2b: N1,∞
Starting with any rows a1 , . . . , ak of Λ, execute the fol-
lowing steps:

1. Find the vectors â1 , . . . , âk as in the proof of Theorem
3.1. Initially, put B = (â1 , . . . , âk ).

2. Using Lemma 5.1, calculate the norm N1,∞ of this
system. Write c for this value.

3. Observe that by Lemma 5.2, if the actual system B =
(b1 , . . . , bk ) is not best possible, then there exists a
unimodular matrix U such that for the system B′ =
(b′1 , . . . , b

′
k ) with B′t = UBt, |b′i |2 < c holds for all i =

1, . . . , k. Then by Lemma 5.3, we get that the | · |2-
norm of each row of U is less than c

√
μ. Checking

all possible matrices U , we find the best basis B, and
hence also the norm N1,∞(Λ).
(a) Actually, we start by checking special matrices U

that differ from the identity matrix in only one
row. This row contains 1 as the main diagonal en-
try, and all the other entries are zeros except for
one value. The absolute value of the exceptional
entry is smaller than

√
c2μ − 1. (That is, the ab-

solute value of the exceptional entry is chosen not
to violate the property that the | · |2-norm of each
row of U is less than c

√
μ.)

(b) After doing step 3a as many times as possible, we
check the unimodular matrices U of general shape
having the property that the | · |2-norm of each
row is < c

√
μ.

Step 3a is the heart of the algorithm. Practically
speaking, it means that we would like to change the
longest basis vector to another one that is a sum of this
vector and a constant multiple of another basis vector.
This can be done very quickly every time. We expect that
after doing so as many times as possible, the basis ob-
tained gives the norm N1,∞ of the lattice. This indeed
happens in the considered cases, and it is demonstrated
in step 3b. Indeed, after executing step 3b, in each con-
sidered case we get the same basis as after executing step
3a. Note that step 3b is very time-consuming but must be
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n Rank of Λ N2,∞ Time (sec) n Rank of Λ N2,∞ Time (sec)

5 1 1.469 0.02 15 3 1.039 0.11
7 2 1.126 0.02 16 3 0.709 0.25
8 1 0.802 0.00 17 7 0.597 7.71
9 2 0.886 0.02 18 2 0.886 0.01
10 1 1.469 0.01 19 8 0.559 4.32
11 4 0.798 0.33 20 3 1.039 0.11
12 1 0.537 0.02 21 5 0.874 0.69
13 5 0.711 0.49 22 4 0.798 0.33
14 2 1.126 0.02

TABLE 1. The norm N2 ,∞ of the unit lattices of maximal real subfields of cyclotomic fields using Algorithm 1.

done to have all possible bases checked that can give the
norm N1,∞ of the lattice. In contrast with Algorithm 2a,
Algorithm 2b never fails to find N1,∞(Λ).

6. EXAMPLES

In our numerical investigations we work with lattices cor-
responding to the unit group of number fields and ran-
dom lattices with real and integer entries. We apply the
algorithms given in the previous sections to compute the
norms N1,∞ and N2,∞ of the lattices under consideration.
The algorithms were implemented in the computer alge-
bra package Magma and were run on a PC having two
Intel Xeon 3.00-GHz processors. Thus a comparison of
the efficiency of the different methods is realistic.

Let K be an algebraic number field of degree n. We
have s real embeddings and t pairs of complex embed-
dings K → C with n = s + 2t. Order them such that
σ1 , . . . , σs are the real ones and σs+1 , σs+1 , . . . , σs+t , σs+t

the pairs of complex ones. For α ∈ K , write

∣∣∣α(i)
∣∣∣ =

{
|σi(α)|, for i = 1, . . . , s,

|σi(α)|2 , for i = s + 1, . . . , s + t.

The units of the ring of integers of K form a group. As is
well known, this group is finitely generated of rank r =
s + t − 1. Therefore, every unit η ∈ UK can be written as

η = εb0
0 εb1

1 · · · εbr
r .

Here ε1 , . . . , εr is a fundamental system of units, and ε0 is
a primitive root of unity in K . The lattice corresponding
to the unit group of K is generated by the vectors(

log |ε(1)
i |, . . . , log |ε(r+1)

i |
)

, i = 1, . . . , r.

In Sections 6.1 and 6.2 we present our results con-
cerning these unit lattices for maximal real subfields of

cyclotomic fields and number fields of the form Q ( n
√

2),
respectively. In both cases we use Algorithm 1, Algorithm
2a, and Algorithm 2b described in the previous sections
to find N2,∞ and N1,∞ of the lattices in question. We
summarize the results of our computations in Tables 1–6.

In Section 6.3, we consider a large number of random
lattices with integer entries. In the random case, we used
again the algorithms described in Sections 4.1, 5.1, and
5.2 to find N2,∞ and N1,∞ of the lattices in question.

6.1. Maximal Real Subfields of Cyclotomic Fields

Let Q (ζn ) denote the nth cyclotomic field (n > 2), i.e.,
the field obtained by adjoining a primitive nth root of
unity ζn to the rational numbers. Note that

[Q (ζn ) : Q ] = ϕ(n),

where ϕ(n) denotes Euler’s totient function. The max-
imal real subfield of Q (ζn ) is Q (ζn )+ = Q (ζn + ζ−1

n ),
which is of degree ϕ(n)/2. Consider the unit lattice of
Q (ζn )+ . Note that the unit rank is ϕ(n)/2 − 1, since we
have only real embeddings. Again, we summarize the re-
sults of our computations in Tables 1–3.

Table 1 gives in separate columns the value of n, the
rank of the lattice Λ in question, the norm N2,∞(Λ) ob-
tained by Algorithm 1, and the processing time in each
case.

In the columns of Table 2 we indicate the value of n,
the rank of the lattice Λ in question, whether the vectors
corresponding to the successive minima form a basis,
whether the vectors corresponding to the successive min-
ima form a basis of minimal norm (to be more precise,
this means that the “successive basis” is of minimal norm
if the algorithm finds that there are no “short vectors”
whose norm | · |1 is smaller than this value; however,
as will be seen later, sometimes it happens that the
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n (sec) Rank of Λ Basis? Of minimal norm? Norm N1,∞ of the successive basis Time

5 1 yes no 2.159 0.01
7 2 yes yes 1.541 0.02
8 1 yes yes 1.135 0.01
9 2 yes yes 1.245 0.02
10 1 yes no 2.159 0.01
11 4 yes yes 1.356 0.38
12 1 yes yes 0.759 0.01
13 5 yes yes 1.410 0.84
14 2 yes yes 1.541 0.02
15 3 yes yes 2.078 0.15
16 3 yes no 1.166 0.25
17 7 yes yes 1.284 24.28
18 2 yes yes 1.245 0.03
19 8 yes yes 1.344 288.11
20 3 yes no 2.078 0.14
21 5 yes yes 1.763 1.29
22 4 yes yes 1.356 0.38

TABLE 2. Result of Algorithm 2a in case of maximal real subfields of cyclotomic fields.

n Rank of Λ Initial norm obtained in step 2 Number of iterations in step 3a N1,∞ Time (sec)

5 1 2.078 0 2.078 0.01
7 2 1.541 0 1.541 0.02
8 1 1.135 0 1.135 0.01
9 2 1.245 0 1.245 0.03
10 1 2.078 0 2.078 0.01
11 4 1.608 3 1.356 0.60
12 1 0.759 0 0.759 0.02
13 5 1.946 5 1.410 2.15
14 2 1.541 0 1.541 0.03
15 3 2.078 0 2.078 0.20
16 3 1.166 2 1.135 0.31
17 7 1.910 8 1.284 75.64
18 2 1.245 0 1.245 0.03
19 8 1.873 15 1.344 1091.30
20 3 2.078 0 2.078 0.21
21 5 2.040 3 1.763 4.16
22 4 1.608 3 1.356 0.57

TABLE 3. The norm N1 ,∞ of the unit lattices of maximal real subfields of cyclotomic fields using Algorithm 2b.
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n Rank of Λ N2,∞ Time (sec) n Rank of Λ N2,∞ Time (sec)

2 1 0.802 0.02 10 5 0.344 1.12
3 1 0.525 0.02 11 5 0.289 1.71
4 2 0.546 0.03 12 6 0.329 1.65
5 2 0.419 0.17 13 6 0.262 3.11
6 3 0.438 0.07 14 7 0.296 12.36
7 3 0.350 1.59 15 7 0.245 3.71
8 4 0.397 0.41 16 8 0.280 56.72
9 4 0.321 0.58 17 8 0.232 63.62

TABLE 4. The norm N2 ,∞ of the unit lattices of fields Q ( n
√

2) using Algorithm 1.

“successive basis” is the optimal basis, but the algorithm
cannot prove this), the norm N1,∞ obtained by Algorithm
2a and corresponding to the “successive basis,” and the
processing time. The table shows that in about one-
fourth of the cases, Algorithm 2a does not solve the prob-
lem of finding the norm N1,∞ of the lattice, i.e., the norm
corresponding to the “successive basis” is not best pos-
sible. Therefore, we needed to develop another method.

As can be seen from Table 3, Algorithm 2b fulfills the
required task, i.e., it finds the norm of the lattice in all
the cases. Table 3 contains the following data: the value
of n, the rank of the lattice Λ in question, the initial norm
obtained in step 2 of Algorithm 2b, and the number of it-
erations in step 3a required to find the optimal basis. We
mention here that step 3b never provides a smaller norm
than the one obtained in step 3a. However, it must be

executed. We remark that we stopped the computations
in Algorithm 2b at n = 22 because of time-consumption
problems. The rows for n = 20 in Tables 2 and 3 show
that both algorithms actually find the optimal basis, but
it is not proved by Algorithm 2a; it is done only by Al-
gorithm 2b.

6.2. Unit Lattice of K = Q
(

n
√

2
)

Consider the unit lattice of the number field K = Q ( n
√

2).
The unit rank is �n/2�, since we have one or two real
embeddings depending on the parity of n, and all the
other embeddings are complex ones. We summarize the
results of our computations in Tables 4–6. We remark
that we stopped the computations at n = 17 because of
time-consumption problems in Algorithm 2b. Tables 4–6

n Rank of Λ Basis? Of minimal norm? Norm N1,∞ of the successive basis Time (sec)

2 1 yes yes 1.135 0.02
3 1 yes yes 0.742 0.02
4 2 yes yes 0.772 0.03
5 2 yes yes 0.592 0.18
6 3 yes yes 0.742 0.11
7 3 yes yes 0.588 1.66
8 4 yes yes 0.651 0.73
9 4 yes yes 0.548 1.38
10 5 yes no 0.743 8.52
11 5 yes no 0.543 15.06
12 6 yes no 0.743 134.10
13 6 yes no 0.503 255.80
14 7 yes no 0.700 3977.23

TABLE 5. Result of Algorithm 2a in case of fields Q ( n
√

2).
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n Rank of Λ Initial norm obtained in step 2 Number of iterations in step 3a N1,∞ Time (sec)

2 1 1.135 0 1.135 0.01
3 1 0.742 0 0.742 0.00
4 2 0.817 1 0.772 0.02
5 2 0.592 0 0.592 0.02
6 3 0.883 1 0.742 0.04
7 3 0.588 0 0.588 0.05
8 4 0.705 1 0.651 0.19
9 4 0.566 1 0.548 0.31
10 5 0.651 3 0.620 1.9
11 5 0.543 1 0.526 2.55
12 6 0.755 8 0.678 143.03
13 6 0.503 0 0.503 32.66
14 7 0.696 4 0.594 297.69
15 7 0.565 3 0.504 311.97
16 8 0.769 8 0.585 15973.09
17 8 0.581 2 0.464 5833.39

TABLE 6. The norm N1 ,∞ of the unit lattices of fields Q ( n
√

2) using Algorithm 2b.

FIGURE 1. Number of iterations needed to calculate N1 ,∞ for random lattices of rank k = 5 in Z7 .
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contain the same type of data as Tables 1–3. It is obvious
from the tables that we could go further with the value
of n with Algorithm 2b. Indeed, Algorithm 2a caused a
memory overflow already in case of n = 15. Furthermore,
we can see, for example from the rows of n = 13, 14 in
Tables 5 and 6, that even when both programs solve the
problem, Algorithm 2b is much faster than Algorithm 2a.

6.3. Random lattices

We considered a large number of random lattices of rank
k in Zn , 0 < k ≤ n, whose entries are vectors in the range
[−10, 10]. We started by running both Algorithms 2a and
2b, and it turned out that Algorithm 2a is much slower
and less efficient also in this case as well. Therefore, we
used Algorithm 2b in our computations.

We considered pairs (n, k) that satisfy 5 ≤ n ≤ 10 and
n − 4 ≤ k ≤ n − 1. For each pair (n, k), we generated
1000 random lattices and ran Algorithm 2b on them. The
outputs were evaluated in Excel. Since the cases are sim-
ilar to each other, we show only one example. Let n = 7
and k = 5. Figure 1 is a histogram showing the frequen-
cies of the distinct values of the number of iterations
needed in step 3a of Algorithm 2b to calculate N1,∞(Λ).
The diagram appears to follow a normal distribution (as
do the diagrams obtained for other values of n and k).
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