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Abstract

Finite binary sequences are constructed by using linear recursion

modulo p and the Legendre symbol, and their pseudorandom proper-

ties are studied.

1 Introduction

C. Mauduit and A. Sárközy [3, pp. 367-370] introduced the following

�nite measures of pseudorandomness of binary sequences.

For a binary sequence

EN = {e1, . . . , eN} ∈ {−1, +1}N ,

write

U(EN , t, a, b) =
t∑

j=1

ea+jb
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and, for D = (d1, . . . , d`) with non-negative integers 0 ≤ d1 < · · · < d`,

V (EN ,M, D) =
M∑

n=1

en+d1 . . . en+d`
.

Then the well-distribution measure of EN is de�ned as

W (EN) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣∣∣∣∣
t∑

j=1

ea+jb

∣∣∣∣∣ ,

where the maximum is taken over all a, b, t such that a ∈ Z, b, t ∈ N and

1 ≤ a + b ≤ a + tb ≤ N , while the correlation measure of order ` of EN is

de�ned as

C`(EN) = max
M,D

|V (EN ,M, D)| = max
M,D

∣∣∣∣∣
M∑

n=1

en+d1 . . . en+d`

∣∣∣∣∣ ,

where the maximum is taken over all D = (d1, . . . , d`) and M such that

M + d` ≤ N .

In this paper we will study �nite binary pseudorandom sequences which

are de�ned by a linear recursion over Fp. More exactly, let x1, . . . , xh ∈ Fp

be the �rst h elements of the sequence, c1, . . . , ch ∈ Fp be the coe�cients in

the linear recursion, so for n > h

xn ≡ c1xn−1 + c2xn−2 + · · ·+ chxn−h (mod p). (1)

In order to transform the sequence {x1, x2, . . . } in a binary sequence {e1, e2, . . . }
we de�ne

en =





(
xn

p

)
if p - xn,

1 if p | xn,
(2)

where
(

xn

p

)
denotes the Legendre symbol.

From the de�nition of xn it is clear that the sequence {xn} is periodic with
a period T , and then the sequence {en} is also periodic with T . Considering
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only the �rst T elements of the sequence {en} we get a �nite binary sequence

{e1, e2, . . . , eT} = ET , and we will study the pseudorandom properties of this

sequence.

Unfortunately we cannot estimate the pseudorandom measures of all se-

quences ET de�ned by this way, however, we will describe a large class of

linear recursions for which the sequence ET has strong pseudorandom prop-

erties.

It is well known that the elements of the sequence {xn} de�ned in (1) can

be expressed by the roots of the characteristic polynomial

xh − c1x
h−1 − c2x

h−2 − · · · − ch ≡ 0 (mod p).

Suppose that this polynomial has h distinct roots in F∗p: λ1, . . . , λh. Then

there exist constants a1, . . . , ah ∈ Fp such that

xn ≡ a1λ
n
1 + · · ·+ ahλ

n
h (mod p)

for all n ∈ N. Let λ ∈ Fp such that all roots λi (1 ≤ i ≤ h) are powers

of λ (e.g. λ can be a primitive root, or in the special case when all λi are

quadratic residues modulo p, then λ can be the square of a primitive root

modulo p). Let λi = λki for 1 ≤ i ≤ h and max{k1, . . . , kh} = k. Then

xn ≡ a1λ
k1n + · · ·+ ahλ

khn = f(λn) (mod p)

where f(x) ∈ Fp[x] is a polynomial of degree k. Then for the sequence

{e1, e2, . . . } we have

en =





(
f(λn)

p

)
if p - f(λn)

1 if p | f(λn).
(3)
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The sequence {en} is periodic with a period T , where now T can be the

multiplicative order of λ.

Since for not every linear recursion {xn} can we write the sequence {en}
in form (3), it is more practical to de�ne the sequence {en} by (3), and

determine the linear recursion from this form. More exactly:

De�nition 1 Let p be an odd prime, λ ∈ F∗p be of multiplicative order T

and f(x) ∈ Fp[x] be a polynomial of degree k. Then de�ne the sequence

ET = {e1, . . . , eT} by (3).

Throughout the paper we will use this de�nition and these notations: the

numbers p, k, λ, T and the polynomial f(x) will be de�ned as in De�nition 1.

The next question is that how can we determine the linear recursion for

the sequence {xn} (where xn ≡ f(λn) mod p) from the polynomial f(x) ∈
Fp[x] and the number λ ∈ Fp. Write f(x) in the form

f(x) = a1x
k1 + · · ·+ ahx

kh .

Then by computing the coe�cients �−ci� of the characteristic polynomial

(x− λk1) . . . (x− λkh) = xh − c1x
h−1 − · · · − ch,

we obtain that the linear recursion for the sequence {xn} is

xn ≡ c1xn−1 + c2xn−2 + · · ·+ chxn−h (mod p).

We will give estimates for the pseudorandom measures of ET de�ned in

De�nition 1, but these upper bounds will be non-trivial only if k, the degree

of the polynomial f(x) is ¿ p1/2−ε for some ε > 0. For the well-distribution

measure we obtain the following:
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Theorem 1 Suppose that f(x) is not of the form cxα(g(x))2 with c ∈ Fp,

α ∈ N, g(x) ∈ Fp[x]. Then

W (ET ) < 5kp1/2 log p.

Clearly, if f(x) is of the form c (g(x))2, then the sequence ET contains

only +1's or ET contains only −1's except at most k/2 pieces of +1, since if

g(i) ≡ 0 (mod p) then ei = 1 and otherwise ei =
(

c(g(λi))2

p

)
=

(
c
p

)
. If f(x)

is of the form cx(g(x))2, then ei =
(

c
p

) (
λ
p

)i

for g(i) 6≡ 0 (mod p), thus the

sequence ET is almost (apart from at most k/2 pieces of ei's) periodic with

2.

In case of the correlation measure there is no non-trivial general upper

bound:

Let ` | T and f(x) be of the form f(x) = ϕ(x)ϕ(λT/`x) where ϕ(x) ∈ Fp[x]

has no zero in Fp. Then for the sequence ET de�ned in (3) we will prove that

C`(ET ) ≥ T

`
,

which means that for small ` | T , the correlation measure of order ` is large.

Indeed, by the de�nition of the correlation measure of order `, ϕ(λn+T ) =

ϕ(λn), the multiplicative property of the Legendre symbol and ϕ(λn+iT/`) 6= 0

for i ∈ N we get

C`(ET ) ≥
∣∣∣∣∣∣

T/`∑
n=1

enen+T/`en+2T/` . . . en+(`−1)T/`

∣∣∣∣∣∣

=

∣∣∣∣∣
T/∑̀
n=1

(
ϕ(λn)ϕ(λn+T/`)

p

)(
ϕ(λn+T/`)ϕ(λn+2T/`)

p

)
. . .

(
ϕ(λn+(`−1)T/`)ϕ(λn)

p

)∣∣∣∣∣

=

∣∣∣∣∣∣

T/`∑
n=1

(
ϕ(λn)ϕ(λn+T/`) . . . ϕ(λn+(`−1)T/`)

p

)2
∣∣∣∣∣∣
= T/`
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which was to be proved.

Thus for ` | T there exists a polynomial f(x) for which C`(ET ) is large.

This example shows that to assure that the correlation measure of order ` is

small one needs further assumptions on the polynomial f(x) and the integers

T and `. We will use the following de�nition.

De�nition 2 We say that the polynomials ϕ(x), ψ(x) ∈ Fp[x] are equivalent:

ϕ ∼ ψ, (4)

if there are c ∈ F∗p, γ ∈ N such that ϕ(x) = cψ(λγx).

Clearly, this is an equivalence relation. Next we give an upper bound for

the correlation measure of order `:

Theorem 2 Let β ∈ N be the largest integer with xβ | f(x) (thus xβ+1 -

f(x)). Suppose that at least one of the following 4 conditions holds

a) ` = 2, and f(x)/xβ is not of the form g(xσ) or cxα(g(x))2 with σ, α ∈ N,
(σ, T ) ≥ 2, c ∈ Fp and g(x) ∈ Fp[x].

b) f(x)/xβ is not of the form cxα(g(x))2 with α ∈ N, c ∈ Fp and g(x) ∈ Fp[x],

T (the order of λ) is a prime and either min{(4k)`, (4`)k} ≤ T or 2 is a

primitive root modulo T ;

c) Consider the factorization f(x)/xβ = ϕβ1

1 (x) . . . ϕβu
u (x) where βi ∈ N

and ϕi(x) is irreducible over Fp. Suppose that there is an equivalence

class de�ned by the relation ∼ in (4), which contains exactly one factor

ϕj (1 ≤ j ≤ u) amongst the irreducible factors of f(x)/xβ, moreover the
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multiplicity of this irreducible factor ϕj in the factorization of f(x)/xβ is

βj = 1;

d) k − β (the degree of the polynomial f(x)/xβ) and ` are odd.

Then

C`(ET ) ≤ 5k`p1/2 log p.

In Theorem 2a) we are able to handle the case ` = 2 completely. Clearly,

if f(x) is of the form g(xσ) with g(x) ∈ Fp[x], σ ∈ N and (σ, T ) ≥ 2,

then the sequence ET is periodic with the period T/(T, σ), and thus the

correlation measure of order 2 is greater than
∑T−T/(T,σ)

n=1 enen+T/(T,σ) = T −
T/(T, σ). (Similar situation holds if f(x) is of the form xg(xσ) since then

en = −en+T/(T,σ)).

In Theorem 2b), c) and d) we study the case ` > 2, and while these con-

ditions are su�cient to assure that the correlation measure is small, they are

not necessary. It is an important open question to describe all polynomials

f(x), integers T and ` for which the correlation measure of order ` is small.

(We remark that a similar additive problem with a prime modulus in place

of T was studied in [1].)

Usually, for a �xed polynomial f(x) it is not easy to check whether condi-

tion c) in Theorem 2 holds. We will show that for a large class of polynomials

f(x) ∈ Fp[x] condition c) holds, and thus the correlation measure is small.

These polynomials will be characterized by their zeros:

Corollary 1 Suppose that f(x) has a zero ρ 6= 0 ∈ Fp of multiplicity 1, such
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that f(x) has no other zero of the form λiρ with 1 ≤ i ≤ T − 1. Then

C`(ET ) ≤ 5k`p1/2 log p.

Using this corollary we get, e.g., the following:

Corollary 2 Suppose that the order of λ is T = (p− 1)/2, all the k zeros of

f(x) are in Fp, and one of the zeros is quadratic non-residue modulo p, while

the other k − 1 zeros are quadratic residues modulo p. Then

C`(E(p−1)/2) ≤ 5k`p1/2 log p.

Finally we would like to specify our results to the special case when h = 2,

i.e., the order of the linear recursion is 2:

Corollary 3 Assume that h = 2, i.e., (1) is of the form

xn ≡ c1xn−1 + c2xn−2 (mod p) (5)

and assume that we have (
c2
1 + 4c2

p

)
= 1.

Denote the zeros of the characteristic polynomial of the linear recursion

(5) by λ1 and λ2 (λ2
i − c1λi − c2 ≡ 0 (mod p)), then λ1, λ2 ∈ Fp. Suppose

that λi 6≡ x2/x1 (mod p) for i = 1, 2.

Denote the multiplicative order of λ2/λ1 by T , and de�ne the sequence

ET = {e1, . . . , eT} by (2). Then we have

W (ET ) ≤ 9p1/2 log p

and

C`(ET ) ≤ 9`p1/2 log p.
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Here, the condition that x2/x1 is not the root of the characteristic poly-

nomial is necessary, since if λ1 ≡ x2/x1 (mod p), the xn ≡ x1λ
n
1 , and thus

the sequence {en} is periodic with period 2.

2 Proofs

The following lemma is a generalization of Lemma 3.3 in [4], and the

proof is also similar. Indeed, in [4] only that case is studied when λ is a

primitive root, while Lemma 1 holds for all λ ∈ F∗p.

Lemma 1 Let p be a prime, χ be a multiplicative character of order d with

2 ≤ d ∈ N, λ ∈ F∗p be of multiplicative order T , M, K ∈ N with K ≤ T .

Suppose that f(x) ∈ Fp[x] has exactly s distinct ones among its zeros.

(i) If f(x) is not of the form cxα (g(x))d with c ∈ Fp, α ∈ N g(x) ∈ Fp[x].

Then ∣∣∣∣∣
M+K∑

n=M+1

χ(f(λn))

∣∣∣∣∣ ≤ 4sp1/2 log p. (6)

(ii) If f(x) = cxα (g(x))d with c ∈ F∗p, α ∈ N and g(x) ∈ Fp[x], where

T - p−1
d

α, then ∣∣∣∣∣
M+K∑

n=M+1

χ(f(λn))

∣∣∣∣∣ ≤
d

2
. (7)

Proof of Lemma 1

If p or T ≤ 2 Lemma 1 is trivial, therefore we may assume that p, T ≥ 3.

We will reduce the problem to the estimate of complete sums:

Lemma 2 Let p be a prime, χ be a multiplicative character of order d with

2 ≤ d ∈ N, λ ∈ F∗p be an element of multiplicative order T . Suppose that
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f(x) ∈ Fp[x] has s distinct ones among its zeros, and f(x) is not of the form

cxα (g(x))d with c ∈ F∗p, α ∈ N, g(x) ∈ Fp[x]. Then we have
∣∣∣∣∣

T∑
n=1

χ(f(λn))

∣∣∣∣∣ ≤ sp1/2. (8)

Proof of Lemma 2

The order of λ is T thus λn (for n = 1, . . . , T ) runs over all the T di�erent

(p− 1)/T -th powers modulo p except 0. Moreover for �xed λ and n,

λn = x(p−1)/T

has exactly (p− 1)/T solutions in x. Thus replacing λn by x(p−1)/T in (8) we

get ∣∣∣∣∣
T∑

n=1

χ(f(λn))

∣∣∣∣∣ =
T

p− 1

∣∣∣∣∣
p−1∑
n=1

χ(f(x(p−1)/T ))

∣∣∣∣∣ . (9)

Now, we will need the following lemma:

Lemma 3 Let p be a prime, χ be a character of order d > 1. Suppose that

f(x) ∈ Fp[x] has exactly s distinct ones among its zeros and it is not of the

form f(x) = c (g(x))d with c ∈ Fp, g(x) ∈ Fp[x]. Then
∣∣∣∣∣
p−1∑
n=1

χ(f(x)

∣∣∣∣∣ ≤ (s− 1)p1/2.

Proof of Lemma 3

This can be derived from A. Weil's theorem [6] (an elementary proof of

which can be found in [5]); see [2], [3].

Next we return to the proof of Lemma 2. We prove that f(x(p−1)/T ) is

not of the form c (g(x))d with c ∈ F∗p, g(x) ∈ Fp[x].

Consider the factorization of f(x) over Fp:

f(x) = c(x− α1)
k1 . . . (x− αs)

ks ,
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where c ∈ Fp and α1, . . . , αs ∈ Fp are di�erent numbers. Denote by ε1, . . . , ε(p−1)/T ∈
Fp the (p− 1)/T di�erent solutions of the congruence

x(p−1)/T ≡ 1 (mod p)

in x, and for each αi (1 ≤ i ≤ s) let ρi ∈ Fp be a number with

ρ
(p−1)/T
i = αi.

Then the factorization of f(x(p−1)/T ) over Fp is

f(x(p−1)/T ) = c

s∏
i=1

(x(p−1)/T − ρ
(p−1)/T
i )ki ,

= c

s∏
i=1

(x− ε1ρi)
ki . . . (x− ε(p−1)/T ρi)

ki .

Suppose that in Fp

εuρi = εyρj (10)

for some 1 ≤ u, y ≤ (p− 1)/T and 1 ≤ i, j ≤ s. Then

(εuρi)
(p−1)/T = (εyρj)

(p−1)/T ,

αi = αj,

i = j.

Then if u 6= y (so εu 6= εy) from (10) we obtain that ρi = ρj = 0 (i = j), so

αi = 0.

Since f(x) is not of the form cxα (g(x))d with c ∈ F∗p, α ∈ N and g(x) ∈
Fp[x], thus f(x) has an αv 6= 0 zero (1 ≤ v ≤ s) of multiplicity tv, where d - tv.

Then ε1ρv is a zero of f(x(p−1)/T ) with the same multiplicity tv, and since

d - tv, thus f(x(p−1)/T ) is not of the form c (g(x))d with c ∈ F∗p, g(x) ∈ Fp[x].
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The polynomial f(x) has exactly s distinct zeros, thus the polynomial

f(x(p−1)/T ) (in x) has at most sp−1
T

distinct zeros. Using Lemma 3 and (9)

we get ∣∣∣∣∣
T−1∑
n=0

χ(f(λn))

∣∣∣∣∣ ≤
T

p− 1

(
s
p− 1

T
p1/2

)
= sp1/2,

which completes the proof of Lemma 2.

Since the order of λ is T , there exists a character χ1 of order p − 1 for

which

χ1(λ) = e(
1

T
). (11)

Throughout the proof of Lemma 1 χ1 will denote a character of order p− 1

with (11). Since χ is a character of order d in Lemma 1, thus there exists an

integer m with (m, d) = 1 and

χ = χ
m(p−1)/d
1 . (12)

First we prove part i) in Lemma 1. Let 1 ≤ γ ≤ p− 2 be an integer. We

prove that the polynomial xγ (f(x))m(p−1)/d is not of the form cxα (g(x))p−1

with c ∈ Fp, α ∈ N and g(x) ∈ Fp[x]. Indeed, f(x) has a zero 0 6= β ∈ Fp

with multiplicity t, which is not divisible by d. Then the multiplicity of β in

xγ (f(x))m(p−1)/d is tm(p− 1)/d, and as d 6 |tm the integer tm(p− 1)/d is not

divisible by p− 1.

Using (12) and Lemma 2 we obtain
∣∣∣∣∣
T−1∑
n=0

χ(f(λn))χ1(λ
nγ)

∣∣∣∣∣ =

∣∣∣∣∣
T−1∑
n=0

χ1(λ
nγ(f(λn))m(p−1)/d))

∣∣∣∣∣ ≤ (s + 1)p1/2. (13)

By (11) we have

T−1∑
γ=0

χ1(λ
γ(n−y)) =





T if T | n− y

0 otherwise.
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By this and K ≤ T we get
∣∣∣∣∣

M+K∑
n=M+1

χ(f(λn))

∣∣∣∣∣ =

∣∣∣∣∣
M+T∑

n=M+1

χ(f(λn))
M+K∑

y=M+1

1

T

T−1∑
γ=0

χ1(λ
γ(n−y))

∣∣∣∣∣

=

∣∣∣∣∣
1

T

T−1∑
γ=0

(
M+K∑

y=M+1

χ1(λ
−γy)

)(
M+T∑

n=M+1

χ(f(λn))χ1(λ
nγ)

)∣∣∣∣∣

≤ 1

T

T−1∑
γ=0

∣∣∣∣∣
M+K∑

y=M+1

χ1(λ
−γy)

∣∣∣∣∣

∣∣∣∣∣
T−1∑
n=0

χ(f(λn))χ1(λ
nγ)

∣∣∣∣∣ .

For γ = 0 we have
∣∣∣∑T−1

n=0 χ(f(λn))χ1(λ
nγ)

∣∣∣ =
∣∣∣∑T−1

n=0 χ(f(λn))
∣∣∣, which is less

than sp1/2 by Lemma 2, thus
M+K∑

n=M+1

χ(f(λn)) ≤ 1

T

T−1∑
γ=1

∣∣∣∣∣
M+K∑

y=M+1

χ1(λ
−γy)

∣∣∣∣∣

∣∣∣∣∣
T−1∑
n=0

χ(f(λn))χ1(λ
nγ)

∣∣∣∣∣ + sp1/2.

(14)

By (13) we have
∣∣∣∣∣

M+K∑
n=M+1

χ(f(λn))

∣∣∣∣∣ ≤
(s + 1)p1/2

T

T−1∑
γ=1

∣∣∣∣∣
M+K∑

y=M+1

χ1(λ
−γy)

∣∣∣∣∣ + sp1/2. (15)

Denoting the distance α to the nearest integer by ||α||, and using |1− e(α)| ≥
4||α|| and (11) we get |1− χ1(λ

γ)| =
∣∣1− e

(
γ
T

)∣∣ ≥ 4|| γ
T
||. By using this and

the sum of geometric progression we obtain
T−1∑
γ=1

∣∣∣∣∣
M+K∑

y=M+1

χ1(λ
−γy)

∣∣∣∣∣ ≤
T−1∑
γ=1

2

4|| γ
T
|| ≤

T/2∑
γ=1

T

γ
≤ T (log(T/2)+1) ≤ 1.45 T log T.

(16)

By T ≤ p− 1, (15) and (16) we get the statement of Lemma 1 i).

It remains to prove part ii) in Lemma 1. Suppose that f(x) = cxα (g(x))d

with c ∈ F∗p, α ∈ N, g(x) ∈ Fp[x]. Since the order of the character χ is d we

have: ∣∣∣∣∣
M+K∑

n=M+1

χ(f(λn))

∣∣∣∣∣ =

∣∣∣∣∣
M+K∑

n=M+1

χ(λαn)

∣∣∣∣∣ .
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By this, the sum of geometric progression, (11), (12) and |1− e(α)| ≥ 4 ‖ α ‖
we get:
∣∣∣∣∣

M+K∑
n=M+1

χ(f(λn))

∣∣∣∣∣ ≤
2

|1− χ(λα)| =
2∣∣∣1− e

(
m(p−1)α

dT

)∣∣∣
≤ 1

2 ‖ m(p−1)α
dT

‖
. (17)

T | p−1 thus m(p−1)α/T is an integer. On the other hand by the condition

of Lemma 1 ii) we have T - (p − 1)α/d, so d - (p − 1)α/T . (m, d) = 1 thus

d - m(p − 1)α/T also holds. Therefore ‖ m(p−1)α
dT

‖≥ 1
d
. Using this and (17)

we get Lemma 1 ii).

Proof of Theorem 1

Assume that a, b, t ∈ N and 1 ≤ a + b ≤ a + tb ≤ T . We will give an

upper bound for U(EN , t, a, b).

The order of λb is T/(T, b). Clearly, for �xed a and b, f(λax) ≡ 0 (mod p)

has at most k solutions in x, thus f(λa+bj) ≡ 0 (mod p) has at most k

solutions in j with 1 ≤ j ≤ t ≤ T/(T, b). Write h(x) = f(λax). Then

de�ning
(

a
p

)
as 0 for p | a, we have

|U(EN , t, a, b)| =
∣∣∣∣∣

t∑
j=1

ea+jb

∣∣∣∣∣ ≤
∣∣∣∣∣

t∑
j=1

(
f(λa+bj)

p

)∣∣∣∣∣ + k

=

∣∣∣∣∣
t∑

j=1

(
h((λb)j)

p

)∣∣∣∣∣ + k. (18)

f(x) and h(x) are of the same degree, and if f(x) is not of the form

c (g(x))2 or cx (g(x))2 with c ∈ F∗p, g(x) ∈ Fp[x], then this also holds for

h(x). Thus we may apply Lemma 1 with
(

n
p

)
, 2, λb, T/(T, b) and h(x) in

14



place of χ(n), d, λ, T and f(x), then we obtain that

|U(EN , t, a, b)| ≤
∣∣∣∣∣

t−1∑
j=0

(
h((λb)j)

p

)∣∣∣∣∣ + k ≤ 4kp1/2 log p + k

≤ 5kp1/2 log p.

which completes the proof.

Proof of Theorem 2

Consider any D = (d1, . . . , d`) with non-negative integers d1 < · · · < d`

and positive integer M with M + d` ≤ T . Clearly for �xed d, f(λn+d) ≡ 0

(mod p) has at most k solutions in n with 1 ≤ n ≤ T , thus (de�ning
(

0
p

)
by

0) we have

|V (EN ,M, D)| =
∣∣∣∣∣

M∑
n=1

en+d1 . . . en+d`

∣∣∣∣∣ ≤
∣∣∣∣∣

M∑
n=1

(
f(λn+d1)

p

)
. . .

(
f(λn+d`)

p

)∣∣∣∣∣

+ k` =

∣∣∣∣∣
M∑

n=1

(
f(λn+d1) · · · f(λn+d`)

p

)∣∣∣∣∣ + k`. (19)

If ϕ2(x) | f(x) for a ϕ(x) ∈ Fp[x], then in De�nition 1 the polynomials f

and f/ϕ2 generate almost the same sequences:
(

f(λn)
p

)
=

(
f/ϕ2(λn)

p

)(
ϕ(λn)

p

)2

=
(

f/ϕ2(λn)
p

)
if ϕ(λn) 6≡ 0 (mod p), so if f(λn) 6≡ 0 (mod p). From this follows

that (19) also holds with f/ϕ2 in place of f , thus throughout the proof of

Theorem 2 we may suppose that f is squarefree. We will use the following

lemma.

Lemma 4 Suppose that f(x) is squarefree, and at least one of the 4 condi-

tions a), b), c), d) in Theorem 2 holds. Then the polynomial

h(x)
def
= f(λd1x) · · · f(λd`x)

cannot be of the form c (g(x))2 or cx (g(x))2 with c ∈ F∗p, g(x) ∈ Fp[x].

15



We will prove Lemma 4 later. The degree of the polynomial h(x) is k`,

thus from (19) by using Lemma 1 and Lemma 4 we obtain

|V (EN , M,D)| ≤ 4k`p1/2 log p + k` ≤ 5k`p1/2 log p.

which was to be proved. Thus to complete the proof of Theorem 2 it remains

to prove Lemma 4.

Proof of Lemma 4

Write f(x) in the form xβq(x), where x - q(x). Then x - q(λd1x) · · · q(λd`x),

thus h(x) = f(λd1x) · · · f(λd`x)) is of the form c(g(x))2 or cx(g(x))2 with

c ∈ Fp, g(x) ∈ Fp[x], if and only if q(λd1x) · · · q(λd`x) is of the form c(g(x))2

with c ∈ Fp, g(x) ∈ Fp[x].

In order to complete the proof of Lemma 4 we will prove that h̃(x)
def
=

q(λd1x) · · · q(λd`x) is not of the form c(g(x))2 with c ∈ Fp, g(x) ∈ Fp[x].

First consider the case when condition a) holds in Theorem 2. We prove

that the polynomial h̃(x) = q(λd1x)q(λd2x) cannot be of the form c (g(x))2

with c ∈ F∗p, g(x) ∈ Fp[x].

Let L denote the splitting �eld of q(x). Then

q(x) = c

k∏
i=1

(x− αi)

with c ∈ Fp, αi ∈ L, i = 1, . . . , k and α1, . . . , αk are pairwise distinct. It

follows that

q(λd1x) = cλd1k

k∏
i=1

(x− αi/λ
d1)

and

q(λd2x) = cλd2k

k∏
i=1

(x− αi/λ
d2).

16



We have αi/λ
d1 6= αj/λ

d1 whenever i 6= j. Assume that h̃(x) = c (g(x))2.

Then all the roots of h̃(x) have multiplicity 2 and there exists a permutation

π : {1, . . . , k} → {1, . . . , k} such that

αi/λ
d1 = απ(i)/λ

d2 1 ≤ i ≤ k.

We obtain

απ(i) = λd2−d1αi 1 ≤ i ≤ k.

This implies

απs(i) = λs(d2−d1)αi

for any s ∈ Z and 1 ≤ i ≤ k.

Let σ denote the multiplicative order of λd2−d1 , i.e. let λσ(d2−d1) = 1.

Then πσ is the identical permutation and we obtain

(x− αi)(x− λ(d2−d1)αi) . . . (x− λ(σ−1)(d2−d1)αi) = xσ − ασ
i , i = 1, . . . , k.

Thus σ | k and σ > 1 because λd2−d1 6= 1. Hence q(x) splits into factors of

the form xσ − ασ
i , i.e. q(x) = g(xσ) with σ > 1.

Since σ is the order of λd2−d1 and T is the order of λ, we also have

T | σ(d2 − d1). |d2 − d1| < T thus (σ, T ) ≥ 2, which contradicts condition a)

in Theorem 1.

In order to prove Lemma 4 if one of the conditions b) and c) holds in

Theorem 2, write q(x) as the product of irreducible polynomials over Fp,

then these irreducible factors are distinct. Let us group these factors so

that in each group the equivalent irreducible factors are collected (using the

equivalence relation described in De�nition 2). We will use the following

lemma.

17



Lemma 5 Suppose that q(x) is squarefree, and h̃(x) = q(λd1x) · · · q(λd`x) is

of the form c (g(x))2 with c ∈ F∗p, g(x) ∈ Fp[x]. Let c1ϕ(λa1x), . . . , crϕ(λarx)

be a group formed by equivalent irreducible factors of q(x), and write A =

{a1, . . . , ar}, D = {d1, . . . , d`}. Then for all γ ∈ ZT

a + d ≡ γ (mod T ), a ∈ A, d ∈ D

has even number of solutions.

Proof of Lemma 5

Writing h̃(x) = q(λd1x) · · · q(λd`x) as the product of irreducible polyno-

mials over Fp, all the polynomials ϕ(λai+djx) with 1 ≤ i ≤ r, 1 ≤ j ≤ ` occur

amongst the factors. All these polynomials are equivalent, and no other ir-

reducible factor belonging to this equivalence class will occur amongst the

irreducible factors of h̃(x).

Since distinct irreducible polynomials cannot have a common zero, each

of the zeros of h̃(x) is of even multiplicity, if and only if in each group formed

by equivalent irreducible factors of h̃(x), every polynomial of form ϕ(λγx)

occurs with even multiplicity, i.e., for even numbers of pairs (ai, dj). From

this the statement of the lemma follows.

Next we return to the proof of Lemma 4. Clearly, if one of the conditions

b) and c) holds in Theorem 1, then there exists a group for which one of the

following holds

i) T (the order of λ) is a prime, and either |A| = r, |D| = ` with min{(4r)`, (4`)r} ≤
T or 2 is a primitive root modulo T ,

ii) |A| = 1.

18



In the cases i) and ii) we may use the following addition theorem type

lemma:

Lemma 6 Let A,D ⊆ ZT with |A| = r, |D| = `. Suppose that one of the

following 3 conditions holds

a) min{r, `} = 1,

b) T is a prime and min{(4r)`, (4`)r} ≤ T ,

c) T is a prime and 2 is a primitive root modulo T .

Then there exists a γ ∈ ZT such that

a + d ≡ γ (mod T ), a ∈ A, d ∈ D

has exactly one solution.

Using Lemma 6 we get that the conclusion of Lemma 5 cannot hold,

thus h̃(x) = q(λd1x) · · · q(λd`x) cannot be of the form c(g(x))2 with c ∈ F∗p,
g(x) ∈ Fp[x] if one of the condition a), b) and c) holds in Theorem 2. This

proves Lemma 4 in these cases, but it remains to prove Lemma 6.

Proof of Lemma 6

a) If min{r, `} = 1 without loss of generality we may suppose that r = 1,

so A = {a1} and D = {d1, . . . , d`}. Then all the sums of the form a + d with

a ∈ A, d ∈ D are a1 + d1, . . . , a1 + d` and they are di�erent modulo T , which

proves the assertion.

b) See the proof of Theorem 2 in [1].

c) See the proof of Theorem 3 in [1].
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This completes the proof of Lemma 6, thus we verify Lemma 4 if one

of the conditions a), b) and c) holds in Theorem 2. If the condition d)

holds, then Lemma 4 is trivial, since the degree of the polynomial h(x) =

f(λd1x) · · · f(λd`x) is odd since k and ` are odd, thus h(x) cannot be of the

form c (g(x))2 with c ∈ Fp, g(x) ∈ Fp[x]. So Lemma 4 always holds, and as

we have seen, from this Theorem 2 follows.

Proof of Corollary 1

Since ρ is a root of f(x) of multiplicity 1, there is an irreducible factor

ϕ(x) of multiplicity 1 in the factorization of f(x) for which ρ is a root of

ϕ(x): ϕ(x) | f(x) but ϕ2(x) - f(x) and ϕ(ρ) = 0.

All polynomials equivalent to ϕ(x) are of the form cϕ(λγx). These ir-

reducible polynomials (except ϕ(x)) cannot be in the factorization of f(x):

cϕ(λγx) | f(x) is not possible for T - γ, since f(x) has no other root then

ρ of the form λiρ, but cϕ(λγx) has a root of this form: x = λT−γρ. Thus

condition c) holds in Theorem 2, so Corollary 1 follows from Theorem 2.

Proof of Corollary 2

Let ρ be the only one root which is quadratic non-residue modulo p. Since

the order of λ is (p − 1)/2, λ is a quadratic residue modulo p. Thus λiρ is

a quadratic non-residue modulo p, but f(x) has no other quadratic residue

root then ρ. Using Corollary 1 we get the statement.

Proof of Corollary 3

First we extend slightly Lemma 1 in the special case when the multiplica-

tive character is the Legendre symbol.

Lemma 7 Let p be a prime, ν1, ν2 ∈ F∗p, where ν2 is of multiplicative order
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T , and K, M ∈ Fp with K ≤ T . Suppose that f(x) ∈ Fp[x] has exactly s

distinct ones among its zeros, x - f(x) and f(x) is not of the form c(g(x))2

with c ∈ Fp, g(x) ∈ Fp[x]. Then we have
∣∣∣∣∣

M+K∑
n=M+1

(
νn

1 f(νn
2 )

p

)∣∣∣∣∣ ≤ 8sp1/2 log p.

Proof of Lemma 7

Using the triangle-inequality, the multiplicative property of the Legendre

symbol and
∣∣∣
(

νi

p

)∣∣∣ = 1 we get

∣∣∣∣∣
M+K∑

n=M+1

(
νn

1 f(νn
2 )

p

)∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣

M+K∑
n=M+1

n≡0 (mod 2)

(
νn

1 f(νn
2 )

p

)
∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

M+K∑
n=M+1

n≡1 (mod 2)

(
νn

1 f(νn
2 )

p

)
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

M+K∑
n=M+1

n≡0 (mod 2)

(
f(νn

2 )

p

)
∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

M+K∑
n=M+1

n≡1 (mod 2)

(
f(νn

2 )

p

)
∣∣∣∣∣∣∣∣
.

From this by using Lemma 1 we get the statement of Lemma 7.

Next we return to the proof of Corollary 3. Since
(

c21+4c2
p

)
= 1, the two

roots of the characteristic polynomial: λ1 and λ2 are di�erent and ∈ Fp.

Thus xn is of the form

xn ≡ a1λ
n
1 + a2λ

n
2 ≡ λn

1 (a1 + a2(λ2/λ1)
n) (mod p)

with a1, a2 ∈ Fp. Since x2/x1 is not the root of the characteristic polynomial,

thus ai 6≡ 0 (mod p) for i = 1, 2. De�ne f(x) ∈ Fp[x] by f(x) = a1 + a2x.

Then

xn ≡ λn
1f((λ2/λ1)

n) (mod p).

Assume that a, b, t ∈ N and 1 ≤ a + b ≤ a + tb ≤ T . We will give an

upper bound for U(EN , t, a, b).
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For �xed a and b, xa+jb ≡ λa+jb
1 (a1 + a2(λ2/λ1)

a+jb) ≡ 0 (mod p) has at

most one solution in j with 1 ≤ a + jb ≤ T . Then similarly to (18) we get

|U(EN , t, a, b)| ≤
∣∣∣∣∣

t∑
j=1

(
λa+jb

1 f((λ2/λ1)
a+jb)

p

)∣∣∣∣∣ + 1.

Using Lemma 7 we get

|U(EN , t, a, b)| ≤ 8p1/2 log p + 1 ≤ 9p1/2 log p

which was to be proved.

Consider any D = (d1, . . . , d`) with non negative integers d1 < · · · < d`

and positive integer M with M + d` ≤ T . We give an upper bound for

V (EN ,M, D). Similarly to (19) we get

|V (EN ,M, D)| ≤
∣∣∣∣∣

M∑
n=1

(
λnj

1 λd1+···+d`
1 f((λ2/λ1)

n+d1) . . . f((λ2/λ1)
n+d`)

p

)∣∣∣∣∣ + `.

If f((λ2/λ1)
d1x) · · · f((λ2/λ1)

d`x) is not of the form c(g(x))2 with c ∈ Fp,

g(x) ∈ Fp[x], then we can use Lemma 7 and obtain

|V (EN ,M, D)| ≤ 8`p1/2 log p + ` ≤ 9`p1/2 log p,

which was to be proved.

In order to complete the proof of Corollary 3 we prove that f((λ2/λ1)
d1x) · · · f((λ2/λ1)

d`x)

is not of the form c(g(x))2 with c ∈ Fp, g(x) ∈ Fp[x]. The degree of each

of the polynomials f((λ2/λ1)
dix) (1 ≤ i ≤ `) is 1 (in x), thus these polyno-

mials are irreducible. Their product is a constant multiple of a square of a

polynomial, only if there exist 1 ≤ i < j ≤ ` and c ∈ Fp with

f((λ2/λ1)
dix) = cf((λ2/λ1)

djx),

a1 + a2(λ2/λ1)
dix = ca1 + ca2(λ2/λ1)

djx.
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From this it follows by ai 6≡ 0 (mod p) that c ≡ 1 (mod p) and thus

di ≡ dj (mod T )

which is impossible, since 1 ≤ di < dj ≤ T . This completes the proof.
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