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1 Introduction

Let IK be a quartic number field with Galois group D8 and denotes IL = Q(
√

m)
its quadratic subfield. As in the paper [2] we assume that the extension IK/IL
has a relative integral basis and IK is given in the form IK = Q(

√
µ), with

µ = e+f
√

m
2 beeing a squre free integer in IL.

Extending and making more explicite the results of [2] we are given in this
paper a method for the resolution of the index form equation

IK/Q(x1, x2, x3) = J, (1)

where J denotes a given non-zero integer. We are given also an algorithm for
establishing the minimal index of the field IK.

Our method is based on an algorithm, which solves diophantine equations
of type

Gn = x2 + D, (2)
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where D is a given integer and Gn denotes the n−th term of a linear recurrence
sequence of order two. The presented method does not work for all equations
of form (2), but we are able to characterise the cases when it can be applied
successfully.

Our notations will be the same as in [2], if needed we refer equation ’x’ of
[2] as (1.x).

2 Translation of (1) to (2)

The proof of the following two statements are essentially the same as the proof
of Proposition 1 and Theorem 1 of [2]. In the sequel α′ denotes the conjugate
of α ∈ IL.

Proposition 1 Let J ∈ ZZ. x = (x1, x2, x3) ∈ ZZ3 is a solution of (1) if and
only if there exist j1, j2 ∈ ZZ such that j1j2 = J and

x2
3 + (w + w′)x3x4 + ww′x2

4 = j1 (3)

and
l12(x)l23(x)l34(x)l41(x) = j2(w − w′)2. (4)

Theorem 1 If the system of equations (3) and (4) has a solution x ∈ ZZ3, then
there exists a v ∈ ZZ such that

v2 = j2
1

e2 − f2m

4

(
c2 − d2m

4

)2

+ 4j2h
2m (5)

holds.

Theorem 2 Assume that the system of equations (3) and (4) has a solution
x ∈ ZZ3. Let ε ≥ 1 be the fundamental unit of ZZIL and B be a maximal set of non-
associated elements of ZZIL with norm j1. Then there exist β ∈ B; y, n, v ∈ ZZ; v
satisfying (5) such that

(e + f
√

m)(c + d
√

m)2β2ε2n + (e− f
√

m)(c− d
√

m)2β′2ε′2n

2
= my2 +8v. (6)

holds. Further, if m ≡ 2, 3 (mod 4) then

x3 =
βεn + β′ε′n

2
, x4 =

βεn − β′ε′n

2
√

m
and x2 =

−2(bx3 + ax4) + y

8

and if m ≡ 1 (mod 4) then

x3 =
−w′βεn + wβ′ε′n√

m
, x4 =

βεn − β′ε′n√
m

and x2 =
−2bx3 − (a + b)x4 + y

4
.
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Proof Assume that x ∈ ZZ3 is a solution of (1). Then there exist by
Proposition 1 and by Theorem 1 integers j1, j2, v ∈ ZZ for which (3), (4) and (5)
hold.

If m ≡ 2, 3 (mod 4) then (3) has the form

x2
3 −mx2

4 = j1.

Hence there exist β ∈ B, n ∈ ZZ with

x3 +
√

mx4 = βεn.

This implies that x3 and x4 have the form given in the theorem.
Inserting x3 and x4 into (1.19) we obtain

(mA3 + A4 + A34
√

m)β2ε2n + (mA3 + A4 −A34
√

m)β′2ε′2n

4m
= y2

1+A0−j1(mA3 −A4)
2m

.

(7)
Using that we have g = 0, h = 2 in the actual case, the constants appearing in
7 become

A3 = 4m(c2e + d2me + 2cdfm)
A4 = 4m2(c2e + d2me + 2cdfm) = mA3

A34 = 8m2(c2f + d2mf + 2cde)
A0 = 32mv.

Hence the third summand staying on the right hand side of 7 is 0, and

mA3 + A4 + A34

√
m = 8m2(e + f

√
m)(c + d

√
m)2.

Thus 7 has the form

2m
[
(e + f

√
m)(c + d

√
m)2β2ε2n + (e− f

√
m)(c− d

√
m)2β′2ε′2n

]
= y2

1+32mv.

As in the actual case e and f are even and m is square-free, 2m divides y1, say
y1 = 2my. Dividing the last equation by 4m we get (6) at once.
If m ≡ 2, 3 (mod 4) then the proof is similar and is left to the reader. 2

3 Properties of recurrence sequences

Let P, Q ∈ ZZ such that P 2 + 4Q 6= 0 and denote by α, β the (distinct) zeros of
x2 − Px−Q. For n ∈ ZZ≥0 and even n ∈ ZZ in case |Q| = 1 we set

Vn(P, Q) = αn + βn,

Un(P, Q) =
αn − βn

α− β
,
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and

Wn(P,Q) =
{

Vn(P, Q) if P is odd
Vn(P,Q)/2 otherwise.

It is easy to see that for even P also Vn is even and for odd P the number Vn

is even if and only if n ≡ 0 (mod 3). The following properties can be proved for
n, l ∈ ZZ without difficulties:

2Un+l = UnVl + UlVn (8)
2Vn+l = VnVl + (α− β)2UnUl (9)

V2n = V 2
n − 2(−Q)n (10)

U2n = UnVn (11)
Vn | Vnm for all odd m. (12)

Lemma 1 Let |Q| = 1 and n = 2km ∈ ZZ with k ≥ 1. Additionally, if P is odd
let m 6≡ 0 (mod 3) and if Q = 1 let m be even. Then the congruences

Un+l ≡ −Ul (mod W2k−1m), (13)
Vn+l ≡ −Vl (mod W2k−1m)

hold for all l ∈ ZZ.

Proof We only prove (13) because the proof of the other congruence is
similar. By (8),(11) and (10) we obtain

2Un+l = UnVl + UlVn ≡ UlVn (mod Vn/2)

≡ −2Ul(−Q)n/2 (mod Vn/2).

If Q = −1 or if Q = 1 and m is even we get

2Un+l ≡ −2Ul (mod Vn/2).

If P is even then Vn/2 is even too, otherwise (2, Vn/2) = 1 because 3 6 |m.
Dividing the last congruence by 2 we get (13). 2

This lemma can be generalized to all second order recurrence sequences. If
all terms of a sequence {Gn}∞n=0 satisfy the equation

Gn+2 = PGn+1 + QGn

then x2 − Px−Q is called the characteristic polynomial of {Gn}.
Theorem 3 Let {Gn} be a second order recurrence sequence of integers with
characteristic polynomial x2−Px−Q. Let n, k and m be as in Lemma 1. Then
the congruence

Gn+l ≡ −Gl (mod W2k−1m) (14)

is satisfied for every l ∈ ZZ.
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Proof It is well known that

Gn =
aαn − bβn

α− β

for a = G1−βG0, b = G1−αG0 and n ∈ ZZ. Hence a short calculation calculation
yields

Gn = G1Un + QG0Un−1. (15)

Using (13) we get (14) immediately. 2

4 Background of the first sieving procedure

In the sequel
( x
m

)
denotes the Jacobi symbol for x, m ∈ ZZ,m > 0. For an

integer m fix an complete residue system mod m and let r(m) denote the length
of the minimal period of the sequence {Un mod m}. It follows from (10) that
if {Gn} denotes a recurrence sequence with the same characteristic polynomial,
as {Un} then the minimal period of {Gn mod m} divides r(m). This time Q
is arbitrary. The following lemma can be used very efficiently to prove that (2)
is not solvable or to localize its solutions in a few residue classes with respect
to an appropriate module. For a, b ∈ ZZ [a, b] will denote the least common
multiple of a and b.

Lemma 2 Let D ∈ ZZ, S = {p1, ..., pt} a set of prime numbers, R = [r(p1), ..., r(pt)]
and M = {m1, ...,ms} with 0 ≤ m1 < m2 < ... < ms < R. If there exists for
all m ∈M an 1 ≤ i ≤ t such that

(
Gm −D

pi

)
= −1 (16)

then all solution n, x ∈ ZZ of (2) satisfy n 6≡ m (mod R), for all m ∈M.

Proof Assume that n, x ∈ ZZ is a solution of (1) with n (mod R) ∈M. We
have (

Gn −D
p

)
= 1 or 0 (17)

by (2) for all primes p.
On the other hand there exists by the assumption of the lemma a pi ∈ S with
(16). As n ≡ m (mod R) and r(pi) divides R we have n ≡ m (mod r(pi)). Thus
Gn ≡ Gm (mod pi) and the equations (17) and (16) are contradictory. 2

The idea to use modular method for the resolution of (2) goes back to Wun-
derlich [8]. The combination of it with effective upper bound for the solutions
was applied by Pethő for establishing the cubes [5] and the fifth powers [6] in
the Fibonacci sequence. An ”intelligent“ implementation is described in Nemes
[4].
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5 The second sieving procedure.

The disadventage of the first sieving procedure is that if (2) has a solution
n, x ∈ ZZ then we are not able to localize it in its residue class mod R. Therefore
we need another method to prove that for all but one elements of the residue
class mod R1 containing n equation (2) is not soluble. Here R1 denotes an other
module, which is (at least we hope) not much bigger as R.
Such a method was found by Cohn [1] and applied also by Ribenboim [7]. In
the next lemma we formulate the background of the algorithm. We assume in
the sequel that for the occouring recurrence sequences |Q| = 1.

Lemma 3 Let m,D ∈ ZZ, S = {p1, ..., pt} a set of prime numbers with pi >
3, 1 ≤ i ≤ t. Assume that there exist a, b1, ..., bt ∈ ZZ>0 such that there exist for
every α ≥ a integers β1, ..., βt ∈ ZZ such that 0 ≤ βi ≤ bi, i = 1, ..., t and

(
−Gm −D

W
2αpβ1

1 · · · pβt

t

)
= −1. (18)

Then (2) has at most one solution n, x ∈ ZZ with

n ≡ m (mod 2a+1pb1
1 · · · pbt

t ) (19)

and this is n = m.

Proof Let n, x ∈ ZZ be a solution of (2) with (19). Then there exists a
h ∈ ZZ such that n = m2a+1sh, where s = pb1

1 · · · pbt
t . Let h = ±2ch1 with h1

odd. Then V2a+c+1s divides V2a+c+1sh1 by (12) and

Gn −D ≡ −Gm −D (mod W2a+cs)

by Lemma 1. Put α = a + c ≥ a. Then there exist by the assumption
β1, ..., βt ∈ ZZ with 0 ≤ βi ≤ bi, i = 1, ..., t satisfying (18). As by (12) we
have V

2αpβ1
1 · · · pβt

t
divides V2αpb1

1 · · · pbt
t

the last congruence implies

Gn −D ≡ −Gm −D (mod W
2αpβ1

1 · · · pβt

t
).

This together with (18) contradicts that n, x is a solution of (2). 2

How to use this lemma?
We can apply Jacobi’s reciprocity law almost automatically because of the fol-
lowing property of the sequence Wn.

W4n(P, Q) ≡
{ −1 (mod 4) if P is odd

1 (mod 4) if P is even
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is true for any n ∈ ZZ, which is not divisible by 3. The proof is a simple
application of (12). Choosing α ≥ 2 and combining the last congruence with
(18) we get (

−Gm −D
W

2αpβ1
1 · · · pβt

t

)
= ±

(
W

2αpβ1
1 · · · pβt

t
Gm + D

)
,

where the sign on the right hand side depends only on the sign of Gm + D and
of the parity of P .
To be able to apply Lemma 3 we have to analyze the sequence Vn more carefully.
This is done in the next section.

6 Analysis of the second sieving procedure

For fixed t,M ∈ ZZ>0 define

v(t,M, n) ≡ Vt2n (mod M)

for every n ∈ ZZ, where we take the smallest non-negative residues (mod M).
It is obvious that the sequence {v(t,M, n)}∞n=0 is periodic. Let e(t,M) and
r(t,M) the length of the minimal preperiod, normalized such that e ≥ 1, and
the minimal period of {v(t,M, n)}∞n=0 respectively. Then we have

Lemma 4 Let t be odd and M > 1 then

r(t,M)|r(1,M) and e(t,M) ≤ e(1,M). (20)

Proof We prove (20) by induction on t. It is obviously true for t = 1.
Assume that it is true for any all u with 1 ≤ u < t. Put e = e(1,M) and
r = r(1,M). Then

v(u,M, e) ≡ v(u,M, r + e) (mod M) (21)

immediately follows by the induction hypothesis for all 1 ≤ u < t, u odd. Fur-
thermore to prove (20) for t, it is sufficient to prove (21) for u = t. For u = 1
equation (21) means by the definition of Vn

α2e

+ β2e ≡ α2e+r

+ β2e+r

(mod M). (22)

Taking the t-th power of (22), using the binomial theorem and the identity(
t
j

)
=

(
t

t−j

)
we get

(t−1)/2∑
j=0

(
t

j

) (
αj2e

β(t−j)2e

+ α(u−j)2e

βj2e
)

≡
(t−1)/2∑

j=0

(
t

j

) (
αj2e+r

β(t−j)2e+r

+ α(u−j)2e+r

βj2e+r
)

(mod M).(23)
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We have j < t− j, αβ = −Q and e ≥ 1, hence

αj2e

β(t−j)2e

= β(t−2j)2e

α(t−j)2e

βj2e

= α(t−2j)2e

.

Analogous identities hold if we replace e by e + r. Thus (23) implies

(t−1)/2∑

j=0

(
t

j

) (
V(t−2j)2e − V(t−2j)2e+r

) ≡ 0 (mod M).

As t− 2j < t for j > 0 and t− 2j is always odd, all the summands with j > 0
staying on the left hand side of the last congruence, are 0 by the inductions
hypothesis. The remaining congruence is exactly (21) with u = t, and the
lemma is proved. 2

We are now in the position to be able to characterize those values of n,D
for which the result of Lemma 4 can be applied successfuly. We remark that if
n and D are fixed then −Gn −D is a fixed integer, say M .

Theorem 4 Let |M | > 1 be an odd integer. If there exist integers m1,m2 such
that e(1,M) ≤ m1,m2 ≤ e(1,M) + r(1,M) and

(
W2m1

M

)(
W2m2

M

)
= −1,

then there exists for all m, ε such that e(1, M) ≤ m ≤ e(1,M) + r(1,M) and
ε ∈ {1,−1} a prime p > 3 for which

(
W2mp

M

)
= ε

holds.

Proof Take e = e(1,M) and r = r(1,M) for simplicity. Denotes R = R(M)
the minimal length of period of the sequence {Vn mod M}∞n=−∞. We remark
that this sequence is for all M purelly periodic because |Q| = 1. Let R = 2su,
where u is odd. Starting, if necessary, with a longer preperiod as the minimal
one, we may assume without loss of generality that

(
W2m1

M

)
= ε,

e = m1 ≥ s and m1 ≤ m. There exists by Dirichlet’s theorem on primes in arith-
metical progressions a prime p which satisfies the congruence p2m ≡ 2m1 (mod R).
This implies V2mp ≡ V2m1 (mod M) and as M is odd we get W2mp ≡ W2m1 (mod M)
from which the assertion of the theorem follows at once. 2

Combining the results of Theorem 2 and Lemma 4 we get immediately
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Corollary 1 Let {Gn} be a recurrence sequence with |Q| = 1, D ∈ ZZ and take
M = Gm + D. Let {Vn} be the recursive sequence defined by the zeros of the
characteristic polynomial of {Gn}. Assume that there exist integers m1, m2 such
that e(1,M) ≤ m1,m2 ≤ e(1,M) + r(1,M) and

(
W2m1

M

)(
W2m2

M

)
= −1,

then there exist an integer a ≤ e(1,M) + r(1,M) + 1 and primes p1, . . . , pt > 3
such that (2) has at most one solution n, x ∈ ZZ with n ≡ m (mod 2ap1 · · · pt)
and this is n = m.
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