On the solutiocn of the equation Gn=P(x)x

Attila Pethd (Debrecen,Kdln)

1. Introduction

Let GO,Gi,A,BEZ, and G =AGH-BG for n»1. Let « and B

n+il n-12
denote the rootslof the characteristic polynomial XzeAX+B of Gn'
Finally let D=A%-y4B - the discriminant of Gn -5 a=61’560> b=Gl—aGo
and C=ab.The recurrence is called non-degenerated,if g/p is not
a root of unity and C#0.

Under the assumption of non-degeneracy T.N. Shorey and
C.L. Stewart (93] proved that all integer solutions X n,q -

ixi,q_2 of the Diophantine equation
(1) G _=dx%, 0£a€Z
n

satisfy max{n,lxl,q}spl, where C1 is an effectively computable

constant depending only on A,B,GO,G and d.

1

Let S dgenote the set of all nonzero integers composed of
primes pl,...,ptez. Then A.Pethd [6] proved that if (A,BJ=1 then
all integer solutions x,q,n,d -|x|,g>2, C#d€S of (1) satisfy

max{n, |x|,q,d}<C,, where C2 is an effectively computable constant

depending only oi A,B, G Gi’pl""’pt

Let P(x)€zlx]l and aenote by H(P) and deg(P) the helght,
i.e. the maximum of the absolut values of the ccefficients of
P(x), and the degree of P(x) respectively. In this paper we are

dealing with the more general Diophantine equation_ 
(2) G =dxT+P(x) .

If |Bl=1, Gn is non-degenerated, and P{(x) is a constant

polynomial, then C.L. Stewart [10lwas able to prove that (2)

* This work was written when the author was a visitor at the
Universitdt zu K&ln with the fellowship of the Alexander von
Humboldt-Stiftung.



has only finitely many effectively computable integer solutions
X,n,q with |x|>1, g>2.

' This result was extended by I. Nemes ana A.Peths [4]. They
=1,
and H(P)<h, deg(P)<min{q(1l-y),q-3} , where h and Y denote posi-

tive real numbers, then all integer solutions n,x,q with |x|>1

proved that if Gy is a non-degenerated recurrence with |B

of (2) satisfy max{n,lxi,q}<C2, where Co is an effectively com-
putable constant depending only on A, GO,Gl,d,h and Y.

For generalizations of this results we refer to T.N. Shorey
and C.L. Stewart [9], P. Kiss [2] ana I. Nemes and A. Petho [Uu]

We shall prove in this paper (Theorem 3) that if P(x) is a
fixed polynomial and g>deg(P)+2, then (2) has only finitely many
effectively computable sclutions n,|x|>1,q. This result is best
possible in the restriction on q, as was shown in [5].

I. Nemes and A. Pethd [5] have given a necessary condition
under which the equation

N _ k
(3) Gn-P(x)—akx tooota

has infinitely many solutions. They have characterized the solu-
tions in x too. In Theorem 1 we make more precise this characteri-
zasion and describe the solutions in n. The result is a generali-

zation of the well known SkolemsLech-Mahler Theorem.
2. Results

Let T, (x) denote the k-th Tshebishef polynomial, i.e. let
T (x)=2, T (x)=x, Tk(x)=ka_1(x)-Tk_2(x).

Theorem 1. Let Gn be a linear recurrence with |B|=1, and

P(x)€z[x] . Assume that (3) has infinitely many integer solutions

n and x.

(i) If o#B then the set of solutions in n is _equal to the

union of a finite set and a finite number of arithmetical prog-

ressions.



(ii) If k>1, then the set of integers ka, x+a,

runs through the solutions of (3) is equal to the union of a

-1 where x

finite set and a finite number of recurrences with discriminants

Di such that D/Di are squres of integers.

¢iii) If Gn is non-degenerated and k>2, then

2ka 2a
(1) P(x)=e. Tl (—=F x + —1),
nvk nvE
where q=-B"C/D,E=2(k-1)a’ ,-lka and  e,n=+1.

k-1 k"k-2

Remark 1. (iii) and in a weaker form (ii) were proved by
I.Nemes and A.Pethd [5]

Remark 2. (i) is a generalization of the well known Skolem-
Lech-Mahler theorem, which 1is true for more general exponential
sums too. It seems to be an interesting question, whether (1)
has a generalization to higher order recurrences, or second

order recurrences with |[B|>1.

Let Rn be a recursive sequence with RO=O, R, =1 anc with a
B_g™y/v/D. Let further

K__ ¥

prime discriminant. Then C=1 and Rn=(a

R§=an+8n with the same a, and B, then C =-D. The Fibonacci

and Lucas sequences satisfy this conditions.

Theorem 2. Put Gn:Rn and assumge that (3) has infinitely

many integer solutions. Then k is odd, k/n and there exist inte-

gers 10,11 such that 11x+lO=Rn/k.

e

Put bn=Ri and assume that (3) has infinitely many integer

solutions. Then k/n and there exist integers 11y such that

x+1 :RX
o “n/

either 1. x+1 =R or 1
——— o n/k —

1 k 1 k*



Theorem 3. Let G be a non-degenerated recurrence with [B|=1

and P(x)€Z[x], O#d&Z. There exists an effectively computable cons-

tant C, depending only on A’Go’Gl’d’ and P(x) such that all integer

solutions n,|x|>1, g>deg(P)+2 of (2) satisfy max{n,lx],q}<c3.
3. Proofs

Proof of Theorem 1. Let us assume first that Gn 1s degene-

rated but o#B8 . If C=0 then we may assume a=Gl—BGO=O, i.e BeE Q,
hence £€Z, since it is an algebraic integer. By the assumption
laB|=1, so B=1 or -1, and a=-B. Assume now that a/f is a root
of unity. Then |a/B|=1, and by the assumption |aB|=1, sola
Hence we have seen that if Gn is degenerated, then a and B are
roots of unity, consequently Gn i1s a periodic sequence of inte-
gers. This proves (i) and (ii) for degenerated sequences.

From now on we assume that G  is non-degenerated, and {x1>1p\.
By |B|=1 is D>0, and so are a and B quadratic irrationalities.
Hence Gn tends to infinity. If deg(P)=0 then (3) has only fini-
tely many solutions.let deg(P)=1, i.e. P(x)=a ,x+a_, a;#0. Then.

1
Gn (mod al) is periodaic, henese the set of solutions n of (3)
looks like described in (i).
In the following we assume that Gn is non-degernerated and
deg(P)>2. (iii) and in a weaker form (ii) were proved by Nemes

ana Pethd [5]. To make our argument clear and complete, we give

here the sketsh their proof.



Write Gn=(aan—b8n)/(a~8) and Hn=aan+b6n. Then H_€Z and

(5) pe% + ucgR=g? .
I n

Let us replace Gn to P(x) in (5), then we have an elliptic equation

in the unknowns Hn and x with infinitely many distinct solutions

(6) Q(x)=DP(x)% + 4" = K’

By the famous theorem of C.L. Siegel [8], (6) has only finitely
many solutions, if Q(x) has at least three simple zeros. We have
seen that this condition is realized except when P(x) is a solu-

tion of the following polynomial equation
. 2 S ¢ R, 2
(7) DP(x)® + u4CB = P’(x)“R(x),

where R(x)€ Q[x] is of degree two without multiple roots. To solving
(7) we applied a lemma of Schinzel [7] (Lemma 6, pages 26=-28) and
proved (iii).

Finally we showed that if x and n is a sualution of (3) then
either P’(x)=0 or there exists an integer z such that

2 2
(8) D(ka, x+a, ;) -2"=DE.

From this follows that D/zz. Let D=d1d§, where dl

denotes a quadrat-
free integer. d1 is at least two because of the non-degeneracy.

Let z=d,d,u, then (8) 1s equivalent to the equation

)2-d. u?=E.

(39) (ka, x+a 1

k k=1

Let K=Q(/d1) and M the modul of K generated by 1,vd Let vy

1q



be a fundamental unit in the group of units with norm 1 of the
multiplicatorring of M. We may assume without loss of generality
]X\)l. Let §’ denote the conjugate of the element §€K. By the
theory of norm form equations (See Borevich=-Shafarevich [1] )
there exists finitely many non-associated elements 6"""St €M
such that the elements of M with norm E are precisely those of
form Giyh, where 1<i<t, and h runs over the integers.

Let x be a solution of (9). Then there exist integers h and
i (1fi<t) such that

' h

(10) 2ka, x+2a

) h
K k=1 “93¥

2 3
+ Giy

. . ) h h . hey sh,, 12
By (iii) Gn-P(x)-e/qu((GiY; +6iy’ )/nvE). But 6iY Giy’ /(nvE)“=1,

so by the well known property of the Tshebishef polynomials

$. §?
B i1 (k_kh ivk_ ,kh
(11) Gn-E{q(ﬁ7E) Y +€/q(ﬁ?f) v? .

(3) has by the assumption infinitely many solutions in n,
so there exist some i for which (11) has infinitely many solutions.

To solve this equation we apply the following

h
Theorem M (M. Mignotte [3]). Suppose that u =P (m)a? 5
i=1
Ie n
Vo= z Qi(n)Bi , where the P’s and Q’s are non zero polynomials
i=1
and [a [>la |>... 2fa |5 [B1[>]82]2--0 2[6 [, Joal>1, [B1]>1.

Then (Mi) There exists an effectively computable integer m such

that, for m>m - the equation

(12) u_=v



implies Pl(m)a? z Ql(n)B? :

(Mii) If (12) has an infinity of solutions then a, and 81

1

are multiplicately dependent.

(Miii) When P1 and Q1 are constants, the set of solutions

(m,n) of (12) is equal to the union of a finite set and a finite

number of arithmetical progressions.

It is clear that (11) fulfiles the conditions of (Miii), from
which follows (i) at once. (ii) is finally a consequence of (i)

and (10).

Remark 3. One can deduce from Theorem M, that Gnand Hn
are closely related to the sequences staying on the right hand
side of (10J. Of course, the infinite part of the set of solutions
(n, h) of (11) is covered by finitely many arithmetical progressi-

ons. Let m,=u,t+u, and n,=v, t+v

t 1 2 t 1 27 t=1,2,... a pair of this. With

VLK

2 »V ok

the notations ?:Yk, Ei=e/q(6i/n/E)k Y , ai=e/q(65/evh)k Y R
a=aa “/(a-B) and B=-bB “/(a-B) (11) becomes the form
Lt

u
Za 1 o+ Bg T = 3%t 4oa.g .

u,t vlt

Now (Mi) yields aa g Ei? . Both § and a are units in

Q(/dl), so i1f 1t denotes a fundamental unit in this field with

|T]>1 then there exist integers U,V>0 such that ?=TV and a=TU .

(viV—ulU)t
Hence a/c¢. =1 satisfies for all t=0,1,... , This means
: Vi M1 K
vlv—u1U=O, ézéi, and ¥ “=oa ~. Finally evq/(nvE) EQ(ﬁdl),and its

conjugate is either itself or -1 times itself.



Proof of Theorem 2. For k=1 is Theorem 2 trivial. Hense we may

assume k >2. Bqth Rn and Ri are non-degenerated, so P(x) satisfies

(W),
Let we first examine the case Gn=Rn’ Then q=1/enD with the

notation -Bn=1/en. In comparison the leading coefficients of (k)

we have
a =7=iﬁ(2ka /nv’E)k
k vEn k *
This follows that k is odd and E=enDF2, with an FeZ. So
2kak 2kak
=/enD = Ve Dl,, or equivalently 2ka, =1,DF with an 1,€Z.
nvE ne DF

In comparison the constant terms of (4) we have analogously

2a =1 DF, with an 1 €Z.
o o)

k-1
From the proof of Theorem 1 we know that x satisfies (8),

which has actually the form
3.2 Z 2. 2.2
D™F (11X+lo) Z —HenD F*,
Hence z is divisible by DF. Let z=DPy, then
. 2 2 i
D(llx+lo) y —hen.

This means that 11X+10:Rm for an m, and by (iii)

R =eT, (/€ DR )/Ve D .
From this follows k/n at once.
We discuss now the case anRi' If E=F2 or *Fz, with an integer
F ( this satisfies always if k is odd) then we can prove the asser-
tion as in the foregoing case.

Let us assume that E=fF? with integers f,I and |f|#1 quad-



2ka

o~

k I_‘Zka = Za
T =vf JTF =Vl ana similairly k-1 .|
n n nV??

ratfree. Then

o
with integers lo’ll' After cancellation with F2 we have from (8)

(13) D*e?(1 x+1 ) %-y? = uDf.

If f would have an prime divisor p such that p%DX, then p

would divide the left hand side of (13) but it do not divide

MD*f. Hence f=DX or -D* and 11X+lo = Rm, for some m, finally k/n.

Proof of Theorem 3. Take v=1/2, deg(P)=k, H(P)=max lail.
By the a theorem of Nemes and Pethd [4] there exists an effecti-

vely computable constamt C

) depending only on A5G ,6 k and H(P)

1,
such that all integral solutions n, |x|>1, g>max{k+3,2k} of (2)

satisfy
max{n,|x|, ql< C,.

If k<3 then we have nothing to prove. Hence we may assume k>3,
or equivalently 2k>k+3. We shall see that if k+3<q<2k then (2) has
finitely many sclutions.
Let us assume that there exists a q, with k+3<qc<2k such that
(2) has infinitely many solutions. Then by (iii) the polynomial
k

qd q
Q(x)=dx © 4+ P(x) = dx O+akx teoota fulfiles (#). Actually are

E=0, but 2qod#0 therefore Q(x) can not have the form (4).
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