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Abstract. In these notes we investigate elements with special patterns in

their representations in number systems in algebraic number fields. We con-

centrate on periodicity and on the representation of rational integers. We
prove under natural assumptions that there are only finitely many S-integers

whose representation is periodic with a fixed period. We prove that the same

holds for the set of values of polynomials at rational integers.

1. Introduction

Let K denote an algebraic number field with ring of integers ZK. Let γ ∈ ZK and
D ⊂ Z be a complete residue system modulo γ containing zero. Then the pair (γ,D)
is called a number system in ZK. With the special choice Dγ = {0, 1, , . . . , |N(γ)| −
1}, which is a complete residue system modulo γ, (γ,Dγ) will be called canonical
number system.

The element β ∈ ZK is representable in (γ,D) if either β = 0 or there exist
L = L(γ) ∈ Z and b0, b1, . . . , bL ∈ D, bL 6= 0 such that

(1.1) β =

L∑
i=0

biγ
i.

To fix the terminology γ will be called the basis, D the digit set of the number
system, while L+1 the length of the representation. Plainly, if such a representation
exists then it is unique. The set of representable elements will be denoted by
R(γ,D). If R(γ,D) = ZK then we say that (γ,D) has the finiteness property. For
β = 0 we set (0)(γ,D) = 0, and if β admits the representation (1.1) then we put
(β)(γ,D) = b0b1 . . . bL, which are finite words over the alphabet D. If the number
system is fixed then we will simply write (β)γ instead of (β)(γ,D).

With the choices K = Q, γ = 10 and D10 = {0, 1, . . . , 9} we obtain our fa-
miliar decimal system. In this number system only the non-negative integers
are representable; to represent the negative integers we need the sign, i.e. Z =
R(10,D10)∪ (−R(10,D10)), hence the decimal system does not admit the finiteness
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property. In 1885 Grünwald [6] showed among others that Z = R(−10,D10), i.e,
with the application of negative basis one could forget the sign. (In return the
algorithms for addition, multiplication and division with rest become more compli-
cated.)

Since the middle of the last century many generalization appeared, see Knuth
[10], Penney [12], B. Kovács [11], Pethő [13], Pethő and Thuswaldner [16] and
Evertse, Győry, Pethő and Thuswaldner [4]. Because of space limitation we cannot
detail the rich and expanding theory of number systems, but refer to the good
overview of Kirschenhofer and Thuswaldner [9].

The investigation of integers with simple or special decimal expansion fascinate
people, and lead often to hard diophantine problems. For example it is still an
unsolved problem to determine all integers, which are repunits in two different
bases. An integer n is called repunit in the integer base g ≥ 2, if (n)g = 1` for some
` ≥ 1. For details see Section 5.

In these notes we concentrate on elements with special patterns in their rep-
resentations in number systems. We concentrate on periodicity and on the repre-
sentation of rational integers. In Section 2 we investigate the representations of
S-integers. We prove under natural assumptions that there are only finitely many
S-integers whose (γ,D)-representation is periodic with a fixed period, see Theorem
2.2. In the next section we prove that the same holds for the set of values of poly-
nomials at rational integers. Moreover the corresponding Theorem 3.1 is effective.
In Section 4 we fix a word w ∈ Z∗ and k ≥ 2 and present a procedure, which finds
all essentially different number systems (γ,D) of number fields of degree k and all
rational integers n such that (n)(γ,D) = w. We show that if k = L(w), L(w) − 1
then, under natural assumptions, there are infinitely many such number systems
and integers. Otherwise our procedure indicates that there are only finitely many
such objects. Finally, in Section 5 we specialize our former results to repunits.

Our results mirrors, the intuitive fact that both S-integers and rational inte-
gers are minorities among the integers of an algebraic number field. In contrast
the asymptotic formula of Dumont, Grabner and Thomas [2] for the frequency
of occurrences of finite words in the representation of rational integers in number
systems of algebraic number fields shows some regularity.

In the sequel we will use frequently that if the number system (γ,D) in ZK
admits the finiteness property then |γ(j)| > 1 holds for all conjugates of γ. This
fact was proved first by Vince [20], and rediscovered several times, see e.g. Kovács
[11] and Pethő [13].

2. Periodic S-integers

For an alphabet (set) A denote A∗ the set of finite words on A including the
empty word λ. The set A∗ is equipped with the concatenation operation. For
w ∈ A∗ and k ≥ 1 we write wk = w . . . w, the k-times concatenation of w. This
definition is extended to k = 0 by setting w0 = λ for all w ∈ A∗. If a word
can be written as w1w

k then it is called periodic, furthermore w1 is called its
preperiod and w its period. In this section we are dealing with elements having
periodic representation in a number system (γ,D). For any given w,w1 ∈ D∗ there
are infinitely many elements whose representation has preperiod w1 and period w.
They are the elements with (β)γ = w1w

k for some k ≥ 0. We prove that some sets
have finite intersection with this set.
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S-unit equations play a vital role in our proofs. Now we define them. For
an algebraic number field K denote MK its set of places. Let S ⊂ MK be finite
including all archimedean places, and denote ZS the set of S-integers of K, i.e., the
set of those elements α ∈ K with |α|v ≤ 1 for all v ∈ MK \ S. The set ZS forms a
ring, its group of units is denoted by Z∗S .

Consider the weighted S-unit equation

(2.1) α1X1 + · · ·+ αsXs = 1,

where s ≥ 2, α1, . . . , αs are non-zero elements of K and the solutions x1, . . . , xs
belong to Z∗S . A solution x1, . . . , xs of (2.1) is called degenerate if there exists a
proper subset I of {1, . . . , s} such that

∑
i∈I αixi = 0. The next theorem was

proved by Evertse [3] and independently by van der Poorten and Schlickewei [19],
see also [5].

Theorem 2.1. Equation (2.1) has only finitely many non-degenerate solutions
in x1, . . . , xs ∈ Z∗S.

For a finite set S ⊂ ZK we will denote by Γ(S),Γ∗(S) the multiplicative semi-
group, the multiplicative group generated by S respectively. Let 0 /∈ A,B ⊂ ZK be
finite. Put

S(A,B, s) = {α1µ1 + · · ·+ αsµs : αj ∈ A, µj ∈ Γ(B)}.

For example, if K = Q,A = {1},B = {2, 3} then

S(A,B, 2) = {2a3b + 2c3d : a, b, c, d ≥ 0}.

The elements α1, . . . , αs ∈ K are called multiplicatively dependent if there ex-
ist u1, . . . , us ∈ Z, u1 6= 0 such that αu1

1 · · ·αus
s = 1. Otherwise they are called

multiplicatively independent.
Now we are in the position to formulate our first result.

Theorem 2.2. Let (γ,D) be a number system with finiteness property in ZK,
and w,w1 ∈ D∗. Let 0 /∈ A,B ⊂ ZK be finite such that the elements of {γ} ∪ B
are multiplicatively independent. Then there are only finitely many U ∈ S(A,B, s)
such that (U)γ = w1w

k.

Remark 2.3. This is the finite version of Corollary 2.3 of [15]. More precisely
we derived Corollary 2.3 of [15] from Theorem 2.2 without explicitly stating it.
We realized this fact only after the publication of [15]. Because, by our opinion,
Theorem 2.2 is interesting itself we decided to formulate it here.

Proof. Let w1 ∈ D∗ be given. By unicity of expansions there is at most one
U with (U)γ = w1. Thus our statement is true if w = λ. From here on we assume
w 6= λ.

Let w = d0 . . . dh−1 and q = d0 + d1γ + . . . + dh−1γ
h−1. Set q0 = 0 if w1 = λ,

and q0 = f0 + f1γ + . . . + fg−1γ
g−1 provided w1 = f0 . . . fg−1. Finally let U =

α1µ1 + · · · + αsµs, αj ∈ A, µj ∈ Γ(B). It is enough to show that if (U)γ = w1w
k

then k is bounded. Indeed, if k is bounded then w1w
k can take finitely many values,

but by our first claim (U)γ = v, v ∈ D∗ holds for at most one U ∈ S(A,B, s).
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Now assume that (U)γ = w1w
k holds for some k > 0. It means nothing else

then

α1µ1 + · · ·+ αsµs = q0 + γg
k−1∑
i=0

γih
h−1∑
j=0

djγ
j

= q0 + γg
k−1∑
i=0

qγih

= q0 + qγg
γhk − 1

γh − 1

=
qγg

γh − 1
γhk + q0 −

qγg

γh − 1
.

Setting

αs+1 =
qγg

γh − 1
, αs+2 = q0 −

qγg

γh − 1

we get the equation

α1µ1 + · · ·+ αsµs = αs+1γ
hk + αs+2.

By the fact mentioned at the end of the Introduction |γ| > 1, hence γh 6= 1 and
αs+1, αs+2 are well defined. Plainly αj ∈ K, j = 1, . . . , s+2 and αj 6= 0, k = 1, . . . , s
by assumption. It is easy to see that αs+1 6= 0 holds too.

In the sequel we have to distinguish the cases αs+2 = 0 and αs+2 6= 0. As
the argumentation is similar in both cases we detail here only the case αs+2 6=
0. Dividing by αs+2 6= 0 and letting α̂j = αj/αs+2, j = 1, . . . , s and α̂s+1 =
−αs+1/αs+2, µs+1 = γhk we get

(2.2) α̂1µ1 + · · ·+ α̂s+1µs+1 = 1.

Let S be the set of places of K, which includes the archimedean ones, and
those which correspond to prime ideal divisors of γ or some element of B. Plainly
S is a finite set. Set Γ1 = Γ∗(γ,B), Then the elements of Γ1 are S-units and,
hence, (2.2) an S-unit equation. If there are infinitely many U ∈ S(A,B, s) such
that (U)γ = w1w

k then k has to take arbitrary large values and, hence, (2.2) has

infinitely many solutions in (µ1, . . . , µs+1) ∈ Γ∗(B)s×Γ1 ⊂ Γs+1
1 , which means that

γ appears solely in µs+1 and its exponents in the solutions are not bounded. In the
sequel we derive from (2.2) new equations in less unknowns such that all but one
coordinate of the solution vectors belong to Γ∗(B), only one - µs+1 - belongs to Γ1.

As (2.2) has infinitely many solutions in Γs+1
1 , i.e. in S-units, Theorem 2.1

implies that there is a proper subset I ⊂ {1, . . . , s+ 1} such that the equation

(2.3)
∑
i∈I

α̂iµi = 0

has infinitely many solutions (µi)i∈I ∈ Γ
|I|
1 , where |I| denotes the size of I. We

show that there is such a subset which contains s+ 1.
Indeed, assume that s+ 1 /∈ I for all I ⊂ {1, . . . , s+ 1} such that the equation

(2.3) admits infinitely many solutions (µi)i∈I ∈ Γ
|I|
1 . As the number of such sets is
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at most 2s, there is an ∅ 6= I ⊆ {1, . . . , s} such that the equation

(2.4)
∑

i∈{1,...,s+1}\I

α̂iµi = 1

is again a S-unit equation of the shape (2.2), but in less summands. Moreover if
(µ1, . . . , µs+1) ∈ Γ∗(B) × Γ1 is a solution of (2.2) such that µi, i ∈ I satisfy (2.3)
then µi, i ∈ {1, . . . , s + 1} \ I satisfy (2.4), thus it has infinitely many solutions in
(µi)i∈{1,...,s+1}\I ∈ Γ∗(B)s−|I| × Γ1. Assume that I is maximal in the sense that if
I ⊂ I ′ ⊆ {1, . . . , s} then

∑
i∈{1,...,s+1}\I′ α̂iµi = 1 has only finitely many solutions

in µi ∈ Γ∗(B), i ∈ {1, . . . , s} \ I ′ and µs+1 ∈ Γ1.
As (2.4) admits infinitely many S-unit solutions µi ∈ Γ1, i ∈ {1, . . . , s+ 1} \ I,

Theorem 2.1 implies the existence of I1 ⊂ {1, . . . , s+1}\I such that
∑
i∈I1 α̂iµi = 0

has infinitely many solutions µi ∈ Γ1, i ∈ I1. Thus, by our assumption s+ 1 /∈ I1,
and as µs+1 = γhk, the equation

∑
i∈({1,...,s+1}\I)\I1 α̂iµi = 1 has to have infinitely

many solutions µi ∈ Γ1, i ∈ ({1, . . . , s + 1} \ I) \ I1. Set I ′ = I ∪ I1. Then
I ⊂ I ′ ⊆ {1, . . . , s} and ({1, . . . , s+1}\I)\I1 = {1, . . . , s+1}\I ′, which contradicts
the maximality of I, i.e. I = {1, . . . , s}.

Hence αs+1µs+1 = 1 holds for infinitely many µs+1 = γhk ∈ Γ1. This means
that αs+1γ

hk = 1 holds for infinitely many k. Thus γ is a root of unity, which is
impossible because |γ| > 1.

In the sequel we assume s + 1 ∈ I. By possible renumbering we may assume
I = {1, . . . , s1, s+ 1} with some 1 ≤ s1 < s. (The case I = {s+ 1} is impossible.)
Hence

s1∑
i=1

α̂iµi + α̂s+1µs+1 = 0

has infinitely many solutions in µi ∈ Γ∗(B), i = 1, . . . , s1, µs+1 ∈ Γ1. As the
elements of B ∪ {γ} is multiplicatively independent there is a prime ideal ℘ of
ZK , which divides γ, but no elements of B. Dividing this equation by −α̂s1µs1 and
setting α̂j ← −α̂j/α̂s1 , µj ← µj/µs1 , j = 1, . . . , s1−1 and α̂s1 ← −α̂s+1/α̂s1 , µs1 ←
µs+1/µs1 we see that ℘hk divides µs1 , further the obtained equation has the shape
(2.2), but with s1 < s+ 1 summands. Moreover it has infinitely many solutions in
(µ1, . . . , µs1) ∈ Γ∗(B)s1−1 × Γ1.

After repeated application of this argument we arrive at s1 = 1, i.e., an equation
α̂1µ1 + α̂2µ2 = 0, which has infinitely many solutions in µ1 ∈ Γ∗(B) and µ2 ∈ Γ1

such that ℘hk divides µ2, i.e. the exponent of ℘ in µ2 is not bounded. Dividing by
α̂1µ1 we obtain an equation of shape αµ = 1, which has infinitely many solutions
in µ ∈ Γ1 such that the exponent of ℘ in µ is still at least hk, which is not bounded.
Fixing one of the solutions, say µ0, we have that µ/µ0 = 1 holds for infinitely many
µ ∈ Γ1, which is impossible because the elements of {γ}∪B, which generate Γ1 are
multiplicatively independent. �

3. Periodic rational integers

The elements of (A,B, s) are sums of powerproduct, thus, by a theorem of van
der Poorten and Schlickewei [19] are growing exponentially. In this section we prove
that under certain assumptions the set of values of polynomials at rational integers
behave similarly, i.e., cannot have arbitrary long periodic expansions, provided the
preperiod and the period are given. More precisely we prove
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Theorem 3.1. Let K be an algebraic number field of degree k ≥ 2, (γ,D) be a
number system with finiteness property in ZK, and w,w1 ∈ D∗. Let t(X) ∈ ZK[X]
be of degree v ≥ 0. Assume that γ has two conjugates whose quotient is not a root
of unity. Then there exist only finitely many effectively computable rational integers
n such that (t(n))γ = w1w

u.

Remark 3.2. You may find a characterization of algebraic integers whose con-
jugates lie on a circle in Robinson [17]. Assume that γ` = m for some integers
` ≥ 1, and m. As (γ,D) is a number system with finiteness property in ZK we have
K = Q(γ), i.e., the degree of γ is exactly k. Thus γ can be a zero of an integer
polynomial only if its degree is at least k. Hence ` ≥ k. Let 0 6= d ∈ D. Then

the rational integers
∑j
i=0 dγ

`i admit the periodic representation wj , j ≥ 1 with
the word w = d0`. On the other hand, if γ` = m then the quotients of different
conjugates of γ are roots of unity. Thus our assumption is necessary.

Proof. We showed K = Q(γ) in the remark above. Denote α(j), j = 1, . . . , k
the conjugates of α ∈ K.

Using the same notation as in the proof of Theorem 2.2 and following the same
line we obtain the equation

(3.1) t(n) = αγhu + β,

with

α =
qγg

γh − 1
6= 0, β = q0 − α.

Taking conjugates we obtain the system of equations

t(1)(n) = α(1)(γ(1)h)u + β(1),

t(2)(n) = α(2)(γ(2)h)u + β(2)

in the unknown integers n, u. This is a system of polynomial equations for any
fixed u, hence it has a common solution if and only if its resultant with respect to

n is zero. Let t(X) = tvX
v + . . .+ t0. Putting Yi = t

(i)
0 −α(i)(γ(i)h)u−β(i), i = 1, 2

our resultant is the determinant of the 2v × 2v matrix



t
(1)
v t

(1)
v−1 · · · t

(1)
1 Y1 0 · · · 0

0 t
(1)
v t

(1)
v−1 · · · t

(1)
1 Y1 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 t

(1)
v t

(1)
v−1 · · · t

(1)
1 Y1

t
(2)
v t

(2)
v−1 · · · t

(2)
1 Y2 0 · · · 0

0 t
(2)
v t

(2)
v−1 · · · t

(2)
1 Y2 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 t

(2)
v t

(2)
v−1 · · · t

(2)
1 Y2


.
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Subtracting the t
(1)
v /t

(2)
v -times the v + j-th row from the j-t one, j = 1, . . . , v our

matrix is equivalent to

0 tv−1,1 · · · t1,1 Y1,1 0 · · · 0
0 0 tv−1,1 · · · t1,1 Y1,1 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 tv−1,1 · · · t1,1 Y1,1

t
(2)
v t

(2)
v−1 · · · t

(2)
1 Y2 0 · · · 0

0 t
(2)
v t

(2)
v−1 · · · t

(2)
1 Y2 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 t

(2)
v t

(2)
v−1 · · · t

(2)
1 Y2


where tj,1 = t

(1)
j −t

(2)
j ·t

(1)
v /t

(2)
v , j = 1, . . . , v−1;Y1,1 = Y1−Y2 ·t(1)v /t

(2)
v . Subtracting

the tv−1,1/t
(2)
v -times the v+ j + 1-th row from the j-t one, j = 2, . . . , v and so one,

finally we get the matrix

0 0 · · · 0 Y1,v+1 Y1,v+2 · · · Y1,2v
0 0 0 · · · t2,v+1 Y2,v+2 Y2,v+3 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 tv,v+1 · · · tv,2v−1 Yv,2v

t
(2)
v t

(2)
v−1 · · · t

(2)
1 Y2 0 · · · 0

0 t
(2)
v t

(2)
v−1 · · · t

(2)
1 Y2 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 t

(2)
v t

(2)
v−1 · · · t

(2)
1 Y2


,

where

Yi,v+i = Y1,1 + βi,i, i = 1, . . . , v, Yi,v+j = αi,jY2 + βi,j , i = 1, . . . , v, j > i

and αi,j , βi,j , ti,j ∈ K. The determinant of this matrix is

t(2)vv

(
v∏
i=1

(Y1,1 + βi,i) + F1(Y1, Y2)

)
= t(2)vv

(
Y v1,1 + F2(Y1, Y2)

)
,

with F1, F2 ∈ K[Y1, Y2] and such that the total degree of its terms are less than v.

As t
(2)
v 6= 0 our resultant is zero if and only if

Y v1,1 + F2(Y1, Y2) = 0.

Using the definition of Y1, Y2 we have

Y1,1 = −α(1)(γ(1)h)u + t
(1)
0 − β(1) − t(1)v

(
−α(2)(γ(2)h)u + t

(2)
0 − β(2)

)
/t(2)v .

This expression simplifies to

Y1,1 = α1(γ(1)h)u + α2(γ(2)h)u + β

by setting α1 = −α(1), α2 = α(2)t
(1)
v /t

(2)
v and β = t

(1)
0 −β(1)−t(1)v

(
t
(2)
0 − β(2)

)
/t

(2)
v .

Notice that α1, α2 6= 0, and β ∈ K.
Substituting the expressions for Y1, Y2 in F2 our equation becomes

(3.2)
(
α1(γ(1)h)u + α2(γ(2)h)u

)v
+ F3

(
(γ(1)h)u, (γ(2)h)u

)
= 0,
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where F3(X,Y ) denotes a polynomial with coefficients from K and such that the
total degree of its monomials is at most v − 1. Thus, if |γ(1)| ≥ |γ(2)| then

(3.3)
∣∣∣F3

(
(γ(1)h)u, (γ(2)h)u

)∣∣∣ ≤ c1|γ(1)|hu(v−1)
with an effective constant depending only on k, v, h, the digits of w and on the
coefficients of t and the defining polynomial of γ.

Up to now γ(1) and γ(2) denoted two different conjugates of γ. In the sequel
we distinguish two cases.

Case I. |γ(1)| = |γ(2)|, but γ(1)/γ(2) is not a root of unity.
As γ(1)/γ(2) is not a root of unity there exist by Corollary 3.7. of Shorey and

Tijdeman [18] effectively computable constants c2, c3, c4 such that∣∣∣α1(γ(1)h)u + α2(γ(2)h)u
∣∣∣ ≥ c2|γ(1)|hu exp(−c3 log u),

whenever |u| ≥ c4. Hence∣∣∣α1(γ(1)h)u + α2(γ(2)h)u
∣∣∣v ≥ cv2|γ(1)|huv exp(−c3v log u).

This lower bound together with the upper bound given in (3.3) implies that (3.2)
has only finitely many effectively computable solutions.

Case II. |γ(1)| > |γ(2)|.
This case is much simpler as the first one. Indeed |γ(1)| > |γ(2)| implies∣∣∣α1(γ(1)h)u + α2(γ(2)h)u

∣∣∣v ≥ c5|γ(1)|huv,
immediately, whenever |u| ≥ c6. The rest is the same as in the first case.

�

4. Rational integers with fixed representation word

In the last section we studied how many rational integers have periodic repre-
sentation in a number system of a given field. In this section we changes the roles of
the actors. We fix a finite word of integers w and search for number systems (γ,D)
and rational integers n such that (n)(γ,D) = w. The underlying idea is simple. If
w = w1 . . . w` and (α)γ = w then

α = w1 + w2γ + · · ·+ w`γ
`−1.

Denote k the degree of γ. If k ≥ `−1 then 1, γ, . . . , γ`−1 are Q-linearly independent
numbers, thus α ∈ Z is only possible if w2, . . . , w` = 0 and α = w1. The problem

is more interesting if k < ` − 1. Then γj =
∑k−1
i=0 gijγ

i holds for all j ≥ 0 with
suitable integers gji. Thus

α =

`−1∑
j=0

wj+1γ
j

=

`−1∑
j=0

wj+1

k−1∑
i=0

gijγ
i

=

k−1∑
i=0

`−1∑
j=0

wj+1gijγ
i.
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Now as 1, γ, . . . , γk−1 are Q-linearly independent numbers α ∈ Z holds if and only

if
∑`−1
j=0 wj+1gij = 0 for i = 1, . . . , k − 1.
We show that these condition can be interpreted as diophantine equations in

the coefficients of the minimal polynomial of γ. It is well known that the sequences
(gij)i≥0 are linearly recursive. More precisely we have

Lemma 4.1. Let Xk + gk−1X
k−1 + . . .+ g0 ∈ Z[X] be the minimal polynomial

of γ. The sequences (gij)j≥0 have the initial values gij = δij , 0 ≤ j, i ≤ k − 1 and
satisfy the recursion

(4.1) gij = −gk−1gi,j−1 − . . .− g0gi,j−k

for j ≥ k. As usual δij denotes Kronecker’s δ, which is 1 for j = i and zero
otherwise.

For convenience of the reader we present here the easy proof.

Proof. The statement about the initial values is obviously true. Further, as

γk =
∑k−1
i=0 −giγi, the recursion holds for j = k. Assume that γj =

∑k−1
i=0 gijγ

i

holds for all 0 ≤ j ≤ h for some h ≥ k. Then

γh+1 = γγh = γ

k−1∑
i=0

gihγ
i

=

k−2∑
i=0

gihγ
i+1 + gk−1,hγ

k

= −g0gk−1,h +

k−2∑
i=0

(gih − gi+1gk−1,h)γi+1,

where we used the expression for γk. As 1, γ, . . . , γk−1 are Q-linearly independent,
and setting g−1,h = 0 we obtain

(4.2) gi,h+1 = gi−1,h − gigk−1,h, i = 0, . . . , k − 1.

Summing these equalities for the pairs (i, h) = (k − 1, h+ 1), (k − 2, h), . . . , (0, h−
k + 2) we obtain the stated relation for i = k − 1. Next we consider i = 0, whence
we have g0,h+1 = −g0gk−1,h, i.e., (g0j)j≥1 = −g0(gk−1,j−1)j≥0, which proves the
statement in this case.

Assume finally that (4.1) holds for some 0 ≤ i < k − 2. The relation (4.2)
with i+ 1 on the place of i means that the sequence (gi+1,h)h≥0 is the sum of the
sequences (gi,h)h≥0 and (gk−1,h)h≥0, which both satisfy the recursion (4.1), thus it
must do the same. �

Lemma 4.1 means that the coefficient of γi, 0 ≤ i ≤ k−1 in γh is a polynomial
with integral coefficients in g0, . . . , gk−1, whose degree increase with h. For example
for k = 2 we have

h 0 1 2 3 4 5

g0h 1 0 −g0 g0g1 −g0g21 + g20 g0g
3
1 − 2g20g1

g1h 0 1 −g1 g21 − g0 −g31 + 2g0g1 g41 − 3g0g
2
1 + g20
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The same data for k = 3.

h 0 1 2 3 4 5 6

g0h 1 0 0 −g0 g0g2 −g0g22 + g0g1 g0g
3
2 − g0g21 − g0g1g2 + g20

g1h 0 1 0 −g1 g1g2 − g0 −g1g22 + g0g2 + g21 g1g
3
2 − g0g22 − 2g21g2 + 2g0g1

g2h 0 0 1 −g2 g22 − g1 −g32 + 2g1g2 − g0 g42 − 3g1g
2
2 + 2g0g2 + g21

Let w = w1 . . . w` ∈ Z∗, i.e., w be a finite word, whose letters are integers. We
shall consider w the word of digits of the representation of an element in a number
system1. Extending w with a string of zeroes the represented element does not
change, thus it is natural to assume that either w = 0 or w` 6= 0.

Denote by Dw the set of letters of w. Choosing g ∈ Z larger than the size of
Dw and such that d1 6≡ d2 (mod g) for all d1, d2 ∈ Dw, d1 6= d2 one can extend
Dw on infinitely many ways to a complete residue system modulo g. Now setting

n =
∑`
i=1 wig

i−1 we see that (n)(g,D) = w for all Dw ⊆ D ⊂ Z such that D is a
complete residue system modulo g. Thus in Z any finite word of integers appears as
the word of digits of some integer in an appropriate number system. The situation
is completely different if we consider the representations of rational integers in
number systems in algebraic number fields. This is what we analyse in the sequel.

Our argument above shows that if for a given w there exist g,D ⊃ Dw and
n ∈ Z such that (n)(g,D) = w then replacing z ∈ D \ Dw by any z′, with z′ ≡ z
(mod g) we obtain a different number system (g,D′) in which the representation of
n does not change. Thus such number systems are equivalent from the actual point
of view. More generally the number systems (γ,D1), (γ,D2) are called w-equivalent
if there exists n ∈ Z such that (n)(γ,D1) = (n)(γ,D2) = w.

After these preparations we can present a method, which establish for a given
w ∈ Z∗ all algebraic integers γ for which there exist D ⊃ Dw and n ∈ Z such that
(n)(γ,D) = w. Although we are not able to prove, but the construction indicates
that there exist for any w ∈ Z∗ only finitely many w-equivalent number systems
(γ,D), provided the degree of γ is less than `− 1.

Algorithm
Input: w = w1 . . . w` ∈ Z∗ such that ` ≥ 2 and w` 6= 0.
Output: The set S of triplets (γ,D, n) such that [Q(γ) : Q] = k ≥ 2, n ∈ Z

and (n)(γ,D) = w.

1. S ← ∅;
2. for k ← 2 to ` do {
3. for i← 1 to k − 1 do Li ←

∑`−1
j=0 wj+1gij ;

(* The Li are polynomials in g0, . . . , gk−1.*)
5. S1 ← set of solutions of the system of equations Li = 0, i = 1, . . . , k − 1 in

(g0, . . . , gk−1) ∈ Zk;
6. for g = (g0, . . . , gk−1) ∈ S1 do {
7. S1 ← S1 \ {g};
8. if 0 ∈ Dw and g0 - vi − vh, 1 ≤ i < h ≤ |Dw|, vi, vh ∈ Dw and

P (X) = Xk + gk−1X
k−1 + . . .+ g0 is irreducible in Q[X] then

9. S ← {(γ,D, n)}, where γ is a zero of P (X), D ⊇ Dw is a complete residue

1In the everyday life the string of digits identifies the number whose decimal representation
is the given string. For example 2020 means the number 2 · 103 + 2 · 100.
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system modulo g0 and n =
∑`−1
j=0 wj+1g0j }

} (* end of the k cycle*)

Remark 4.2. We assume ` ≥ 2 because otherwise w = w1 is the representation
of the rational integer w1 in any number systems (γ,D), provided 0, w1 ∈ D.

Algorithm is not an algorithm in strict sense, because in Step 5 the system of
equations

(4.3) Li(g0, . . . , gk−1) =

`−1∑
j=0

wj+1gij = 0, i = 1, . . . , k − 1

may have for some k infinitely many solutions. This is not an option, but for
k = ` − 1, ` − 2 typical. The reason is that the unknown gk−2, . . . , g0 appear in a
linear term in Lk−1, . . . , L1 respectively thus it is possible to express gk−2, . . . , g0 as
polynomials in gk−1, see the details in the proof of Proposition 4.4.

If, however, k < ` − 2 then there is no linear terms in Li, thus the system of
equations (4.3) can be solved by computing the Gröbner basis of the polynomial ideal
generated by L1, . . . , Lk−1 or by successive elimination of the unknowns gk−2, . . . , g0
by computing the resultant of Lk−2, . . . , L1 with the previously computed resultant
(see Pethő [14], especially Sections 6.11 and 8.4.3). On this way we get a polynomial
equation in two unknowns, which solutions parameterize the solutions of the original
problem. By our experience these curves have high genus, thus only finitely many
integer points may lie on them. This justifies our expectation that S1 is finite for
k < `− 2, i.e., for k < `− 2 there is no infinite loops in the Algorithm.

Theorem 4.3. The Algorithm is correct. If w = w1 . . . w` ∈ Z∗ with ` ≥
2, w` 6= 0 then the set S includes all γ, n and a Dw ⊆ D ⊂ Z such that [Q(γ) : Q] =
k ≥ 2, n ∈ Z and (n)(γ,D) = w.

Proof. Let w = w1 . . . w` ∈ Z∗ with w` 6= 0. Assume that there exists an
algebraic integer γ with minimal polynomial P (X) = Xk + gk−1X

k−1 + . . .+ g0 ∈
Z[X] such that |g0| ≥ |Dw|. Assume further that there is a rational integer n such
that

n =

`−1∑
j=0

wj+1γ
j .

At this stage g0, . . . , gk−1 are unknown integers.
Using the notations of Lemma 4.1 we obtain

n =

k−1∑
i=0

`−1∑
j=0

wj+1gij

 γi.

By our assumption γ is of degree k ≥ 2, thus 1, γ, . . . , γk−1 are Q-linear indepen-
dent, hence the last equation holds if and only if the coefficients of γi, i = 1, . . . , k−1
are zero, which is the system of equations (4.3). This justifies Steps 4. and 5. More-
over, if ` ≤ k− 1 then Li = wi+1 for i = 1, . . . , `, i.e., wi = 0 for i = 2, . . . , `, hence
w = w10`−1, which is not an allowed input. Thus non-trivial solutions can appear
only if ` > k− 1, i.e., k ≤ ` which justifies the choice of the upper limit of the loop
in Step 2.
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Note that from Step 6. g0, . . . , gk−1 denote concrete integers. In Step 8 we
check the extendability of Dw to a complete residue system modulo g0. This is
possible only if the elements of Dw belong to different residue classes modulo g0.
(This excludes |g0| < |Dw| too.) In the same step we test the irreducibility of P (X),
which is equivalent to that the degree of γ is k. After P (X) and Dw pass all tests

then the rational integer n =
∑`−1
j=0 wj+1g0j satisfies (n)(γ,D) = w. �

Now we investigate the cases ` = k + 1 and k + 2.

Proposition 4.4. Let w2 . . . w` ∈ Z∗ with ` ≥ 3, w` 6= 0. If w`|wi, i = 2, . . . , `
then for all w1 ∈ Z and for k = `, ` − 1 there exist g1, . . . , gk−1 ∈ Z, infinitely
many g0 ∈ Z, and {w1, . . . , w`} ⊆ D ⊂ Z such that if γ is a zero if the polynomial

P (X) = Xk + gk−1X
k−1 + . . .+ g0 then n =

∑`−1
i=0 wi+1γ

i ∈ Z. In particular, if P
is irreducible then (n)(γ,D) = w1 . . . w`. Moreover
• if ` = k + 2 then not only w1, but also gk−1 ∈ Z can be arbitrary,
• if ` = k + 1, and there is an 2 ≤ i ≤ ` such that w` - wi then there is no w1 ∈ Z
with the above property.

Proof. Let the defining polynomial of γ be P (X). From the proof of Theorem
4.3 we know that γ satisfies the requirements of the proposition if and only if the
coefficients of P solve the system of equations

Li =

`−1∑
j=0

wj+1gij = 0, i = 1, . . . , k − 1.

In the sequel we treat the cases ` = k + 1 and ` = k + 2 separately.

Case ` = k + 1. By Lemma 4.1 we know that gij = δij , 0 ≤ i, j ≤ k − 1,
further gik = −gi, i = 0, . . . , k − 1, hence

Li = wi+1 − wk+1gi, i = 0, . . . , k − 1.

We have gi ∈ Z if and only if wk+1|wi+1 for all i = 1, . . . , k−1. If these relations hold
then gi = wi+1

wk+1
, i = 1, . . . , k − 1. Now let w1 ∈ Z be arbitrary, and 0, w1 6= g0 ∈ Z

such that wi 6≡ wj (mod g0), 1 ≤ i < j ≤ k + 1, and, finally, D ⊂ Z a complete
residue system modulo g0 including Dw then taking n = w1 −wk+1g0 ∈ Z we have
(n)(γ,D) = w. The choice g0 = w1 is excluded because then n = 0.

Case ` = k + 2. We have by Lemma 4.1

gi,k+1 = −gk−1gik − gi−1 = gk−1gi − gi−1, i = 1, . . . , k − 1

and g0,k+1 = −gk−1g0k = gk−1g0. Hence

Li =

{
wi+1 − wk+1gi + wk+2(gk−1gi − gi−1), if i = 1, . . . , k − 1

w1 − wk+1g0 + wk+2gk−1g0, if i = 0.

As gk−2, . . . , g0 are integers, the equations Li = 0, i = k − 1, . . . , 1 give conditions
for gk−1. For example Lk−1 = 0 implies

gk−2 =
wk − wk+1gk−1

wk+2
+ g2k−1,

hence gk−2 ∈ Z if and only if wk − wk+1gk−1 ≡ 0 (mod wk+1). With increasing
k the conditions become more and more ugly, therefor we do not search for the
general condition.
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If wk+2|wi, i = 1, . . . , k+1, then the situation is simpler, because gi = Gi(gk−1), i =
1, . . . , k + 2, with a polynomial Gi ∈ Z[X] of degree k + 3 − i. With the choice
Gk+2 = X the claim is true for i = k + 2. Assume that 2 ≤ i0 ≤ k + 2 is such
that the claim is true for i0. The condition Li0 = 0 and the induction hypothesis
implies

gi0−1 = gk−1gi0 −
wk+1

wk+2
gi0 +

wi0+1

wk+2

= gk−1Gi0(gk−1)− wk+1

wk+2
Gi0(gk−1) +

wi0+1

wk+2
.

Setting Gi0−1(X) = XGi0(X) − wk+1

wk+2
Gi0(X) +

wi0+1

wk+2
we see that it has rational

integer coefficients, its degree is k + 3 − i0 + 1 = k + 3 − (i0 − 1) and gi0−1 =
Gi0−1(gk−1) thus our claim is proved. This means that gi = Gi(gk−1), i = 1, . . . , k+
2 are integers for any gk−1 ∈ Z. Choosing w1 ∈ Z arbitrary and finally g0 and D
as in the case ` = k + 1 finishes the proof of this proposition. �

5. Repunits in number systems

Integers with simple decimal expansion fascinate people. Question concerning
such numbers lead to interesting and hard diophantine problems. There are num-
bers whose decimal expansion contains only one repeating digit, in the simplest case
this digit is the 1. A rational integer n is called repunit if (n)g = 1` holds with some
integers g ≥ 2, ` ≥ 1. There are for any fixed g obviously infinitely many repunits.
The challenging, and still open, problem is to find all rational integers, which are
repunits in two different bases. You can find on this subject recent results and a
good overview in the paper of Bugeaud and Shorey [1].

Repunit is a meaningful concept for number systems in algebraic number fields
too, provided 1 belongs to the digit set. To be precise; let K be a number field and
(γ,D) be a number system in ZK. The element α ∈ ZK is called repunit in (γ,D) if
(α)γ = 1` for some ` ≥ 0. All repunits in (γ,D) belong to ZK, i.e. infinitely many
elements of ZK are repunits in (γ,D).

If (γ,D) is fixed then under mild and natural conditions there exit by Theorem
3.1 only finitely many rational integers, which are repunits in (γ,D). Similarly, by
Proposition 4.4, if ` is fixed then the Algorithm finds up to equivalence all number
systems for which there exists a rational integer, which is a repunit of length `. We
present here that rational integer repunits allow more precise description. To state
our first result of this section we have to introduce a polynomial. For i ≥ 0 let

Gi(X) =

i∑
h=0

(X − 1)h =
(X − 1)i+1 − 1

X − 2
.

Corollary 5.1. Let k ≥ 2 and K be a number field of degree k. The only
rational integer, which is a repunit of length ` ≤ k in a number system in ZK is 1.

• If γ is a zero of Qm(X) =
∑k
i=1X

i + m, 0,±1 6= m ∈ Z then n = 1 −m is a
repunit in (γ,D) of length k+ 1 provided D is a complete residue system modulo m
including 0, 1.

• For 0, 1 6= m ∈ Z let Pm(X) =
∑k
i=0Gi(m)Xk−i, γ be a zero of Pm(X) and

D be a complete residue system modulo Gk(m) including 0, 1. Then Gk+1(m) is a
repunit in (γ,D) of length k + 2.
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Proof. The first assertion is true by the proof of Theorem 4.3.
Specifying the notations of Proposition 4.4 we have wi = 1, i = 1, . . . , k + 1.

This, together with Li = 1 − gi = 0 implies gi = 1, i = 1, . . . , k. Finally choosing
g0 = m, and taking into consideration |g0| ≥ 2 we obtain the second assertion.

To prove the third assertion we could proceed similarly, but we have chosen
a different approach. The polynomials Gi(X) satisfy the recursion Gi+1(X) =
(X − 1)Gi(X) + 1, i ≥ 0. Using this we get

(m− 1)Pm(X) =

k∑
i=0

(m− 1)Gi(m)Xk−i

=

k∑
i=0

(Gi+1(m)− 1)Xk−i

= Gk+1(m) +XPm(X)−
k+1∑
i=0

Xi,

hence

Gk+1(m) ≡
k+1∑
i=0

Xi (mod Pm(X)),

which means

Gk+1(m) =

k+1∑
i=0

γi.

The cases m = 0, 1 are excluded because Gk(1) = 1 for k ≥ 0, and Gk(0) = 0 if k
is odd, and Gk(0) = 1 if k is even, thus the roots of P0(X) and P1(X) cannot be
bases of number systems. �

Remark 5.2. By using the Algorithm, an elementary computation shows that
there is no rational integer, which is a repunit of length five in a quadratic num-
ber field. As this approach became more and more complicated we returned to the
approach of the proof of Theorem 3.1.

For k = 2 we have Qm(X) = X2+X+m and Pm(X) = X2+mX+m2−m+1.
Then 1−m as well as m3− 2m2 + 2m is a repunit of length 3 and 4 respectively in
some number system generated by the roots of Pm(X), Qm(X). Their discriminants
are 1 − 4m and −3m2 + 4m − 4 respectively. Notice that the first is positive for
all m < 0, but the second never. Our next result show that the number systems
generated by Qm(X),m < 0 are exceptional.

Theorem 5.3. Let K be a number field. If ` > 0 is odd and K has at least two,
or ` > 0 is even and K has at least three real conjugates, then there is no rational
integer which is a repunit with respect to any number system in K.

Proof. Plainly 1 is a repunit of length one in any number systems, whose
digit set includes 1. Let γ be an algebraic integer and assume that 1 6= n ∈ Z be a
repunit in a number system (γ,D). Then there is an 2 ≤ ` ∈ Z such that

n =

`−1∑
i=0

γi =
γ` − 1

γ − 1
.
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Let γ′ be a conjugate of γ. As the rational numbers are inert with respect to
algebraic conjugation we get

γ` − 1

γ − 1
=
γ′` − 1

γ′ − 1
.

If ` is odd then the function f(x) = x`−1
x−1 is strictly monotonically increasing for

x < −1 and x > 1. We have |γ|, |γ′| > 1, hence the last equality is impossible.
If ` is even, precisely ` = 2, then the zeroes of Qm(X) = X2 + X + m satisfy

f(γ) = f)γ′). Now f(x) is strictly decreasing over (−∞,−1) and strictly increasing
over (1,∞), hence for fixed y ∈ R the equation f(x) = y, |x| > 1 may have at most
two real solutions. �

Imre Kátai and Júlia Szabó [8] characterized the CNS in the imaginary, and
Kátai and Kovács [7] in the real quadratic number fields. Summarizing their results
is

Theorem 5.4. Let γ be a zero of the irreducible polynomial X2+aX+b ∈ Z[X],
and set K = Q(γ). Then (γ, {0, 1, . . . , |b| − 1}) is a CNS in ZK if and only if
1 ≤ a ≤ b, and b ≥ 2.

The roots of the polynomials Qm(X) = X2 + X + m and Pm(X) = X2 +
mX + m2 −m + 1 generate CNS in which 1 −m as well as m3 − 2m2 + 2m are
repunits of length 3 and 4 respectively. We found these examples with the help of
our Algorithm.

If 1 ≤ a ≤ b, b ≥ 2 be fixed then, by Theorem 3.1, there are only finitely

many rational integer repunits in the CNS
(
−a+

√
a2−4b
2 , {0, 1, . . . , b− 1}

)
. We did

not found any other CNS, in which some rational integer is a repunit. Therefore I
propose the following conjectures.

Conjecture 5.5. The only rational integer repunits in
(
−1+

√
1−4m
2 , {0, 1, . . . ,m− 1}

)
and

(
−m+

√
−3m2+4m−4

2 , {0, 1, . . . ,m2 −m}
)

are 1−m and m3− 2m2 + 2m respec-

tively.

Probably the following much stronger conjecture is still true.

Conjecture 5.6. Apart from the examples of Conjecture 5.5 there are no CNS
in quadratic number fields in which there are rational integer repunits.
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