
Problems
by Attila Pethő, Debrecen

In this talk I collected some problem, which I proposed and/or tried to
solve during my career.

1. Powers in linear recursive sequences

To find perfect powers and polynomial values in lrs is one of my favorite
topics. A long standing problem was to prove that 0, 1, 8 and 144 are the
only powers in the Fibonacci sequence. This was proved finally by Bugeaud,
Mignotte and Siksek in 2006.

In 1996 at The Seventh International Research Conference on Fibonacci
Numbers and Their Applications I proposed the following [16]

Problem 1.: The sequence of tribonacci numbers is defined by T0 = T1 =
0, T2 = 1 and Tn+3 = n + 2 + Tn+1 + Tn for n ≥ 0. Are the only squares
T0 = T1 = 0, T2 = T3 = 1, T5 = 4, T10 = 81, T16 = 3136 = 562 and T18 =
10609 = 1032 in Tn?

By using the sieving moduli 3, 7, 11, 13, 29, 41, 43, 53, 79, 101, 103, 131, 239,
97, 421, 911, 1021 and 1123 one can show that this is true for n ≤ 2 · 106,
but known methods do not seems to be applicable for the solution of this
problem.

The problem is still unsolved, although in the edited version of the second
part of that talk [17] combining results of Shorey and Stewart [22] with that
of Corvaja and Zannier [11] I proved

Theorem 1. Let Gn be a third order LRS. For the roots αi, i = 1, 2, 3 of
the characteristic polynomial of Gn assume that |α1| > |α2| ≥ |α3| and non
of them is a root of unity. Then there are only finitely many perfect powers
in Gn.

As the characteristic polynomial of the tribonacci sequence x3−x2−x−1
is irreducible with one dominating real root ≈ 1.839286755 it follows that
there exist finitely many perfect powers in it. Unfortunately the proof of
the theorem is only partially effective, we have an effective bound for the
exponent of the possible perfect powers, but no effective bound for the size
of a fixed power, e.g. for squares.

I think that Theorem 1 can be generalized at least in the following form:

Problem 2.: Let Gn be an LRS such that its characteristic polynomial
is irreducible and has a dominating root, then there is only finitely many
perfect powers in it.

By a result of Shorey and Stewart [22] the exponent of perfect powers can
be bounded effectively, the problem is to handle the powers with bounded
exponent. Combining this with the result of Corvaja and Zannier [11] and
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with the combinatorics of the roots, like in Pethő [17], one can probably
setle this conjecture.

Like the Fibonacci sequence, we can continue the tribonacci sequence in
”negative direction”, and get T−n = −T−n+1 − T−n+2 + T−n+3 with initial
terms T0 = 0, T−1 = 1, T−2 = −1. We call this sequence n-tribonacci. One
can again ask, which are the perfect powers in this sequence. After a simple
search we find: T0 = T−3 = T−16 = 0, T−1 = T−6 = −T−2 = 1, T−7 =
22, T−8 = (−2)3, T−13 = 32, T−29 = 34, T−32 = 562, T−33 = 1032 and T−62 =
68152. It is interesting to observe that T10 = T−29, T16 = T−32 and T18 =
T−33.

Problem 3.: Are all perfect powers of the n-tribonacci sequence listed
above? Are there only finitely many perfect powers in the n-tribonacci se-
quence?

The answer seems to be very difficult, because the characteristic polyno-
mial of the n-tribonacci sequence has two conjugate complex roots of the
same absolute value and its real root is less than one.

Let a, b ∈ Z and δ ∈ {1,−1} such that a2 − 4(b − 2δ) 6= 0, bδ 6= 2 and
if δ = 1 then b 6= 2a − 2. Let further the sequence Gn = Gn(a, b, δ), n ≥ 0
defined by the initial terms G0 = 0, G1 = 1, G2 = a, G3 = a2 − b − δ and
by the recursion

(1) Gn+4 = aGn+3 − bGn+2 + δaGn+1 −Gn, n ≥ 0.

I proved in [18] that these are divisibility sequences, i.e., Gn|Gm, whenever
n|m. More precisely, the roots of the characteristic polynomial of Gn can be
numbered so that they are η, δ

η , ϑ, δ
ϑ and

Gn =
ηn − ϑn

η − ϑ

1−
(

δ
ηϑ

)n

1− δ
ηϑ

Here we ask again to prove that for fixed a, b there are only finitely many
perfect powers in Gn. We can again bound the exponent, but can not treat
the equation Gn = xq for fixed q > 1. Especially complicated seems the case

q = 2, because the gcd of the divisors ηn−ϑn

η−ϑ and
1−

�
δ

ηϑ

�n

1− δ
ηϑ

can be arbitrary

large.

2. Thue equations

After the work of E. Thomas [23] several paper appeared about the solu-
tions of parametrized families of Thue equations. With Halter-Koch, Lettl
and Tichy we proved [13] the following:
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Theorem 2. Let n ≥ 3, a1 = 0, a2, . . . , an−1 be distinct integers and an = a
an integral parameter. Let α = α(a) be a zero of P (x) =

∏n
i=1(x − ai) − d

with d = ±1 and suppose that the index I of 〈α − a1, . . . , α − an−1〉 in UO,
the group of units of O, is bounded by a constant J = J(a1, . . . , an−1, n) for
every a from some subset Ω ⊂ Z. Assume further that the Lang-Waldschmidt
conjecture is true. Then for all but finitely many values a ∈ Ω the diophan-
tine equation

(2)
n∏

i=1

(x− aiy)− dyn = ±1

only has trivial solutions, except when n = 3 and |a2| = 1, or when n = 4
and (a2, a3) ∈ {(1,−1), (±1,±2)}, in which cases (2) has exactly one more
general solution.

The assumption on the index I is technical, the essential assumption is
the Land-Waldschmidt conjecture. In the cited paper we formulated:

Problem 4.: The last theorem is true for all large enough parameter value
without further assumptions.

A weaker version of this conjecture was formulated by E. Thomas [24]. He
assumed that ai = pi(a), i = 2, . . . , n − 1 and 0 < deg p2 < · · · < deg pn−1,
where pi denotes monic polynomial with integer coefficients. This weaker
conjecture was proved by C. Heuberger [14] under some technical conditions
on the degree of the polynomials.

3. Progressions in the set of solutions of norm form equations

Let K be an algebraic number field of degree k, and let α1, . . . , αn be
linearly independent elements of ZK over Q. Let m be a non-zero integer
and consider the norm form equation

(3) NK/Q(x1α1 + . . . + xnαn) = m

in integers x1, . . . , xn. Let H denote the solution set of (3) and |H| the
size of H. Note that if the Z-module generated by α1, . . . , αn contains a
submodule, which is a full module in a subfield of Q(α1, . . . , αn) different
from the imaginary quadratic fields and Q, then this equation can have
infinitely many solutions (see e.g. Schmidt [21]).

Arranging the elements of H in an |H| × n array H, one may ask at
least two natural questions about arithmetical progressions appearing in H.
The ”horizontal” one: do there exist infinitely many rows of H, which form
arithmetic progressions; and the ”vertical” one: do there exist arbitrary long
arithmetic progressions in some column of H? Note that the first question
is meaningful only if n > 2.

We are now presenting an example. Let K := Q(α) with α5 = 3. Then
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NK/Q(x1 + x2α + · · ·+ x5α
4) = 9x5

3 + 81x5
5 + x5

1 + 27x5
4 + 3x5

2 − 135x3
5x4x1 +

45x5x
2
4x

2
1 + 135x2x

2
4x

2
5 − 45x2x

3
4x1 + 45x2

5x3x
2
1 − 45x2x

3
3x4 +

135x2
3x

2
5x4 + 45x1x

2
5x

2
2 − 45x4x

3
2x5 + 45x2

4x
2
2x3 + 45x2

4x1x
2
3 −

15x4x
3
1x3 + 15x4x

2
1x

2
2 + 15x2x

2
3x

2
1 + 45x5x

2
2x

2
3 − 15x5x

3
1x2 −

135x5x3x
3
4 − 135x2x

3
5x3 − 45x5x

3
3x1 − 15x3

2x3x1 − 45x2x5x3x4x1.

The next table contains some solution of the equation
NK/Q(x1 + x2α + · · ·+ x5α

4) = 1:

x1 x2 x3 x4 x5

4 -5 4 -2 0
1 2 -1 -1 0
4 2 0 0 1
1 1 0 1 0
1 5 1 2 2

-17 1 -6 3 8
7 6 5 4 3
-2 -1 1 1 0
-11 -5 5 6 0
-2 0 1 -1 1
-8 -8 1 6 2
28 16 4 3 8
10 12 12 4 9
. . . . . . . . . . . . . . .

The bold numbers form a five term horizontal AP and a seven terms
vertical AP. The ”horizontal” problem was treated by Bérczes and Pethő [8]
by proving that if αi = αi−1 (i = 1, . . . , n) then in general H contains only
finitely many effectively computable ”horizontal” AP’s and they were able
to localize the possible exceptional cases. The following question remains
unanswered:

Problem 5.: Does there exist infinitely many quartic integers α such that
4α4

α4−1
− α

α−1 is a quadratic algebraic number.

We were able to found only one example with defining polynomial x4 +
2x3 + 5x2 + 4x + 2 such that the corresponding element is a real quadratic
number. It is a root of x2 − 4x + 2. Allowing however α not to be integral
we can obtain a lot of examples.

It seems to be a simple problem to extend the result of Bérczes and Pethő
to geometric progressions. This is equivalent to investigate the equation

NK/Q

(
αnqn − 1
αq − 1

)
= m,
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where K = Q(α) and α denotes an algebraic integer of degree n. I expect
that if n > 1 then this equation has only finitely many solutions in q ∈ Z.

The investigation of the ”vertical” AP’s is much more difficult. In this
direction Bérczes, Hajdu and Pethő [9]proved

Theorem 3. Let (x(j)
1 , . . . , x

(j)
n ) (j = 1, . . . , t) be a sequence of distinct

elements in H such that x
(j)
i is a non-zero arithmetic progression for some

i ∈ {1, . . . , n}. Then we have t ≤ c1, where c1 = c1(k, m) is an explicitly
computable constant.

It is interesting to note that c1 is independent from the field. One can
probably strength this result such that the upper bound for the length of
the AP’s depend not on m, but only on the number of its prime divisors. It
is even possible that the bound depends only on k.

Earlier Pethő and Ziegler [20] as well as Dujella, Pethő and Tadić [10]
investigated the AP’s on Pell equations. They proved that for all but one
non-constant AP of integers of length four y1, y2, y3, y4 there exist infinitely
many integers d,m for which x2

i − dy2
i = m, i = 1, 2, 3, 4 with some integers

xi = xi(d,m, y1, . . . , y4), i = 1, 2, 3, 4. In contrast, five term AP’s are lying
on only finitely many Pell equations.

Problem 6.: Prove analogous result for norm form equations over cu-
bic number fields. More specifically: let y(i), i = 1, . . . , 5 an AP of integers.
Then there exist infinitely many m ∈ Z and Q-independent algebraic inte-
gers α1, α2, α3 such that K = Q(α2, α3) has degree three and (3) holds for
(x(i)

1 , x
(i)
2 , y(i)), i = 1, . . . , 5 with some x

(i)
1 , x

(i)
2 Z. Can 5 replace with a larger

number?
In the above mentioned papers we worked out a systematic method

to find Pell equations having long AP’s. For example the AP
−7,−5,−3,−1, 1, 3, 5, 7 is lying on the equation x2 − 570570y2 = 4406791
and −461,−295,−129, 37, 203, 369, 535 on x2 + 1245y2 = 375701326.

Problem 7.: Find a systematic method to construct cubic norm form
equations with long AP. Do the same for higher degree norm form equations.

Problem 8.: Prove analogous results for geometric progressions.

4. Polynomials

Problem 9.: Let K be a algebraically closed field of characteristic zero.
Characterize all P (X) ∈ K[X], Q(Y ) ∈ K[Y ], R(X, Y ) ∈ K[X, Y ] such that
the set of zeroes of P (X) and Q(Y ) coincide, provided R(X, Y ) = 0.

The case R(X, Y ) = Y − A(X) was solved completely by Fuchs, Pethő
and Tichy [12]. They proved
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Theorem 4. Assume that P (X) has k different zeroes. Then there exist
a, b, c ∈ K, a, c 6= 0 such that:
if k = 1 then

P (X) = a(x− b)deg P and A(X) = c(x− b)deg A + b;

if k ≥ 2 then either A(X) = X or A(X) = ax + b, a 6= 1 and in this case

P (X) = c

(
X +

b

a− 1

)s r∏
i=1

`−1∏
j=0

(
X − ajxi − b

aj − 1
a− 1

)
,

where x1, . . . , xr are all different and ` is the multiplicative order of a.

5. Shift radix systems

For (r1, . . . , rd) = r ∈ Rd and a = (a1, . . . , ad) ∈ Zd let τr(a) =
(a2, . . . , ad,−brac)T , where ra denotes the scalar product. This nearly linear
mapping was introduced by Akiyama, Borbély, Brunotte, Thuswaldner and
myself [1]. We proved that it can be considered as a common generalization
of canonical number systems (CNS) and β-expansions.

We also defined the sets

Dd = {r : {τk
r (a)}∞k=0 is bounded for all a ∈ Zd},

D0
d = {r : {τk

r (a)}∞k=0 is ultimately zero for all a ∈ Zd}
and Ed, which is the set of real monic polynomials, whose roots are lying
in the closed unit disc. We proved in the same paper that if r ∈ Dd then
R(X) = Xd + rdX

d−1 + · · · + r2X + r1 ∈ Ed and if R(X) is lying in the
interior of Ed then r ∈ Dd.

We called τr a shift radix system (SRS), if r ∈ D0
d and gave an algorithm,

which decides whether r ∈ Qd is a SRS. However this algorithm is expo-
nential, moreover we are not able to give a polynomial time verification for
r /∈ D0

d∩Qd. We found points r ∈ Q2 such that r} /∈ D0
2 and the cycles prov-

ing this can be arbitrary long. Computational experiments, see e.g. [1, 15]
support the following :

Problem 10.: Prove that the SRS problem can not be solved by a poly-
nomial time algorithm. Stronger statement is that it does not belong to the
NP complexity class.

The structure of D0
d, especially approaching its boundary is very compli-

cated, see [2] for d = 2. On the other hand we know [1], that the closure
of Dd is Ed. However the investigation of the boundary points of Ed leads
to interesting and hard problems. The case d = 2 was studied by Akiyama
et al in [2]. They proved that D2 is equal to the closed triangle with ver-
tices (−1, 0), (1,−2), (1, 2), but without the points (1,−2), (1, 2), the line
segment {(x,−x − 1) : 0 < x < 1} and, possibly, some points of the line
segment {(1, λ) : −2 < λ < 2}. Write in the last case λ = 2 cos α and
ω = cos α + i sinα. It is easy to see, that if λ = 0,±1 (i.e. α = 0,±π/2)
then (1, λ) belongs to D2 and we conjectured in [2] that this is true for all
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points of the line segment. In [5] the conjecture was proved for the golden
mean, i.e. for λ = 1+

√
5

2 and in [6] for those ω, which are quadratic algebraic
numbers. The conjecture has the following nice arithmetical form:

Problem 11.: Let |λ| < 2 be a real number. If the sequence of integers
{an} satisfies the relation

0 ≤ an−1 + λan + an+1 < 1

then it is periodic.

If ω, defined above is a root of unity then the problem may be easier as
in the general case. On the other hand from the point of view of arithmetic
the cases, when λ is a rational number, e.g., λ = 1

2 seems simpler.
If the point r is lying on the boundary of Ed then either r ∈ Dd or r /∈ Dd.

With other words this means that the sequence {τr(a)} is ultimately periodic
for all a ∈ Zd and there exists a ∈ Zd for which it is divergent. Presently we
do not know any general method to distinguish between these cases. Recently
I gave an algorithm [19] in the special case, when ±1,±i is a simple root of
Xd + rdX

d−1 + · · ·+ r2X + r1.

Problem 12.: Is it algorithmically decidable for r ∈ Ed whether r ∈ Dd?

I am not sure that the answer is affirmative. The problem is open even
for d = 2. In this case, by the results of [2], the status only points of the line
segment {(1, y) : −2 < y < 2} is questionable. If the answer to Problem
9 is affirmative, which I strongly believe, then d = 2 would be completely
solved. A related, probably easier problem is:

Problem 13.: Prove that there are lying no elements of D0
d on the bound-

ary of Ed.

This is true for d = 2 [2], but open for d ≥ 3.

For each d ∈ N, d ≥ 1 define the set

Bd = {(b1, . . . , bd) ∈ Zd : Xd−b1X
d−1−· · ·−bd is a Pisot or Salem polynomial}.

Further for M ∈ N>0 set

(4) Bd(M) =
{

(b2, . . . , bd) ∈ Zd−1 : (M, b2, . . . , bd) ∈ Bd

}
.

It is clear that Bd(M) is a finite set. In [3] we proved

Theorem 5. Let d ≥ 2. We have

(5)
∣∣∣∣ |Bd(M)|

Md−1
− λd−1(Dd−1)

∣∣∣∣ = O(M−1/(d−1)),

where λd−1 denotes the (d− 1)-dimensional Lebesgue measure.

Let

B̂d(M) =
{

(b1, b2, . . . , bd) ∈ Zd ∩ Bd : max{|b1|, |b2|, . . . , |bd|} ≤ M
}

.
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Problem 14.: Does there exist a constant c, such that

lim
M→∞

|B̂d(M)|
Md

= c?
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