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Abstract. For r ∈ Rd define τr : Zd → Zd by setting

τr(a) = (a2, . . . , ad,−brac) (a = (a1, . . . , ad)).

We call τr a shift radix system if for each a ∈ Zd there exists an integer k > 0 with τk
r (a) = 0.

Shift radix systems have been defined in the first part of this series of papers. It turns out that
they are intimately related to certain well known notions of number systems like β-expansions
and canonical number systems.

It seems to be a hard problem to characterize all r ∈ Rd giving rise to a shift radix system. In
the present paper we give partial characterization results. After proving some general theorems
we are mainly concerned with the characterization of two dimensional shift radix systems.

1. Introduction

In the first part [4] of this series of papers we introduced the notion of shift radix system
and described its basic properties as well as its relations to β-expansions and canonical number
systems1. Specifically, let d ≥ 1 be an integer and r = (r1, . . . , rd) ∈ Rd. To r we associate the
mapping τr : Zd → Zd in the following way: For a = (a1, . . . , ad) ∈ Zd let2

τr(a) = (a2, . . . , ad,−brac),
where ra = r1a1 + · · ·+ rdad, i.e. the inner product of the vectors r and a. We call τr a shift radix
system (SRS for short) if for all a ∈ Zd we can find some k > 0 with τk

r (a) = 0 3. In [4] we have
started the investigation of the following sets which are closely connected with the orbits of τr:

D0
d :=

{
r ∈ Rd | ∀a ∈ Zd ∃k > 0 : τk

r (a) = 0
}

and

Dd :=
{
r ∈ Rd | ∀a ∈ Zd the sequence (τk

r (a))k≥0 is ultimately periodic
}

.

It has turned out that the description of these sets is almost trivial for d = 1, whereas considerable
difficulties occur already in dimension 2.

Despite of its simple shape, the SRS system gives a unified understanding of number systems
and its related dynamics. For example, if the β-expansion by a Pisot number base corresponds
to an SRS system, one can construct a tiling of the Euclidean space which provides a concrete
Markov partition of the dynamical system, that is often almost conjugate to a toral automorphism
(cf. [2, 8, 21, 25]). This is essentially due to the fact that a tile contains the origin as an inner
point. The same fact is valid for tilings associated with canonical number systems. Therefore
characterizing SRS systems is to make an atlas of good number systems from a dynamical point
of view.

Date: June 11, 2008.
2000 Mathematics Subject Classification. 11A63.
Key words and phrases. beta expansion, canonical number system, periodic point, contracting polynomial, Pisot

number.
The first author was supported by the Japan Society for the Promotion of Science, Grants-in Aid for fundamental

research 14540015, 2002–2005.
The third author was supported partially by the Hungarian National Foundation for Scientific Research Grant

Nos. T42985 and T38225.
The fourth author was supported by project FWF P17557-N12 of the Austrian Science Foundation.
1For a definition of β-expansion and canonical number system we refer the reader to [4] (see also [13, 19, 20, 22]).
2b. . . c denotes the floor function.
3For simplicity, we write 0 = (0, . . . , 0).

1



2 S. AKIYAMA, H. BRUNOTTE, A. PETHŐ, AND J. M. THUSWALDNER

In the present paper we are mainly concerned with the characterization of quadratic SRS. This
is tantamount to the characterization of the set D0

2. The results on the characterization of D0
2

are summarized in Figure 1. Note that by the correspondence between SRS and β-expansions as
well as canonical number systems4 our characterization results of D0

2 imply the characterization
of property (F) 5 for β-expansions with respect to cubic Pisot units (cf. [1]) as well as the
characterization of quadratic canonical number systems (cf. [10, 12, 15, 16]). Moreover, our
results imply new characterization results for property (F) for β-expansions of large classes of
cubic Pisot numbers.

Figure 1 has to be interpreted as follows. D0
2 is a subset of the large trapezium. All the white

regions are proved to be contained in D0
2 in the present paper. The label “T. n.m” means that

the corresponding region is proved to belong to D0
2 in Theorem n.m (“L. n.m” means “Lemma

n.m”). The dark grey regions are known to be outside D0
2. The light grey regions of Figure 1 are

regions where D0
2 has a very complicated structure. It has been proved in [4, Section 6-7] that

in these regions there exist infinitely many different small polygons which do not belong to D0
2.

Some of them are visualized in [4, Figure 1] (this figure gives an impression of the difficulty of the
structure of D0

2 in these regions).
The characterization problem becomes harder and harder the nearer we get to the line x = 1

or to the line y = x + 1. For this reason, the proofs of Theorems 4.6, 4.8 and 4.27 are the most
involved ones in this paper.

The paper is organized as follows. In Section 2 we give some results on D2. Most of D2 is easy
to characterize, however, it turns out to be a hard problem to decide which part of ∂D2 belongs
to D2. For some parts of ∂D2 we give a solution of this problem. In Section 3 we describe some
important subsets of D0

d by generalizing results of Hollander [14], Kovács and Pethő [17] as
well as Pethő [20] to our new setting. In particular we present applications of these results for
the characterization of D0

2. In the next two sections we are aiming at further concrete statements
for two dimensional SRS. In Section 4 we concentrate on the investigation of points of D2 which
lie near its boundary. We apply two different methods for the characterization of elements of D0

2:
In Section 4.1 we investigate the purely periodic elements of τr in order to get an SRS region near
to the upper boundary of Figure 1 (Theorem 4.8). In Section 4.2 we exploit a certain “structural
stability” of the mapping τr; we illustrate this remarkable property of τr by some numerical
examples (see Figures 5 and 6 below). This leads to a characterization result for SRS regions
with parameters close to the point (1,−1) located on the right lower vertex of the trapezium in
Figure 1. This proof also gives as a byproduct that the point (1,−1) is not a critical point in the
sense of [4, Definition 7.1] (Theorem 4.21). Section 5 is devoted to the characterization of D0

2 in
regions which are far from the boundary of D2. For these regions a powerful algorithm (presented
in [4, Theorem 5.2]) allows to derive many results with help of extensive computer calculations.
The combination of these results with the results of the previous sections yields Theorems 5.6 and
5.8. Both of them characterize all SRS in quite large regions.

We conclude this paper with some conjectures (Section 6).

2. On the set D2

We will frequently need the set

Ed = Ed(1) :=
{
(r1, . . . , rd) ∈ Rd |Xd + rdX

d−1 + · · ·+ r1 has only roots y ∈ C with |y| < 1
}

.

In [4, Lemmas 4.1 and 4.2] it is shown that up to the boundary the set Dd is equal to the set
Ed. In particular, for d = 2 the set D2 is (again apart from the boundary) equal to the isosceles
rectangular triangle

E2 = {(x, y) ∈ R2 | x < 1,−x− 1 < y < x + 1}.
Deciding whether a point of ∂E2 belongs to D2 or not seems to be a very difficult problem. In this
section we give a partial solution. In particular, we will show the following result.

4This correspondence is established in [4, Theorems 2.1 and 3.1].
5cf. [4] for a definition.
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Figure 1. Overview over the results of the present paper

Theorem 2.1. Let

D := {(x, y) ∈ R2 | x ≤ 1,−x− 1 ≤ y ≤ x + 1, (x, y) 6= (1,−2), (1, 2)}
\ {(x,−x− 1) ∈ R2 | 0 < x < 1}

and
L = D \ {(1, y) ∈ R2 | 0 < |y| < 1 or 1 < |y| < 2}.

Then
L ⊆ D2 ⊆ D,

the Lebesgue measure of D2 equals 4, and D2 is neither open nor closed.

Lemma 2.2. If −1 ≤ x ≤ 0 then (x,−x− 1), (x, x + 1) ∈ D2 \ D0
2.

Proof. For x ∈ {−1, 0} the assertions are easy to check. Let now −1 < x < 0.
Firstly, we consider τ = τ(x,−x−1), thus τ(a, b) = (b, b − b(a− b)xc) for a, b ∈ Z. Observe

that for n ∈ N we have τ(n, n) = (n, n), hence (x,−x − 1) /∈ D0
2. Now, it suffices to show that
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for all z ∈ Z2 we have ‖ τ(z) ‖∞≤‖ z ‖∞. Let therefore n,m ∈ N with (n,m) 6= (0, 0). If
n < m then τ(n,m) = (m, p) with n + 1 ≤ p ≤ m, and if n ≥ m then τ(n, m) = (m, p) with
m ≤ p ≤ n. Further, τ(n,−m) = (−m, p) with −m + 1 ≤ p ≤ n. Similarly, τ(−n,m) = (m,−p)
with −m ≤ p ≤ n− 1. Finally, τ(−n,−m) = (−m,−p) with 0 ≤ p ≤ max{n,m}.

Secondly, let τ = τ(x,x+1), thus τ(a, b) = (b,−b− b(a + b)xc) for a, b ∈ Z. We note τ2(−n, n) =
(−n, n) for n ∈ N, hence (x, x+1) /∈ D0

2. Again, we confine ourselves to showing ‖ τ(z) ‖∞≤‖ z ‖∞
for all z ∈ Z2. Let therefore n,m ∈ N. Then τ(n, m) = (m, p) with −m + 1 ≤ p ≤ n. Further,
τ(n,−m) = (−m, p) and τ(−n,m) = (m,−p) with 0 ≤ p ≤ max{n,m}. Finally, τ(−n,−m) =
(−m, p) with −n + 1 ≤ p ≤ m. ¤

For r ∈ Rd we denote by S(r) the set of elements z ∈ Zd such that the sequence (τk
r (z))k∈N is

ultimately periodic.

Lemma 2.3. If 0 < x < 1 then (x, x + 1) ∈ D2 \ D0
2.

Proof. (i) Let τ = τ(x,x+1), thus τ(a, b) = (b,−b − b(a + b)xc) for a, b ∈ Z. Observe that for
n ∈ N we have τ2(−n, n) = (−n, n), hence (x, x + 1) /∈ D0

2.
(ii) First we show that M = {(−n,m) ∈ Z2 | m ≥ n ≥ 0} is contained in S(x, x + 1) by

using induction on δ(−n,m) = m − n. By (i) this assertion is clear if δ(−n,m) = 0. Let
a = (−n,m) ∈ M with δ(a) > 0 then τ(a) = (m,−p) with m ≤ p ≤ 2m − n − 1 and
τ2(a) = (−p, p + k) ∈ M with 0 ≤ k ≤ p − m. As δ(τ2(a)) < δ(a) we conclude that
a ∈ S(x, x + 1).

(iii) From (ii) we immediately derive (−N)2 ⊂ S(x, x+1) because τ(−n,−m) = (−m,m+ l) ∈
M with some l ∈ N.

(iv) We now show that L = {(a, b) ∈ Z2 | ab ≤ 0} ∪ N2 is contained in S(x, x + 1) by using
induction on ‖ · ‖1. The induction start is trivial because (0, 0) ∈ S(x, x + 1). Take
z ∈ L \ {0}.

Case I z = (n,−m) with n,m ∈ N. Then τ(z) = (−m, s) with s = m− b(n−m)xc.
Case I.1 s ≤ 0. Then τ(z) ∈ (−N)2 and we are done by (iii).
Case I.2 s > 0.
Case I.2.1 s ≥ m. Then τ(z) ∈ M and we are done by (ii).
Case I.2.2 s < m. Then n > m, τ(z) ∈ L and ‖ τ(z) ‖1= m + s <‖ z ‖1, hence we are

done by induction hypothesis.
Case II z = (−n, m) with n,m ∈ N.
Case II.1 m ≥ n. Then z ∈ M and we are done by (ii).
Case II.2 m < n.
Case II.2.1 m = 0. Then z ∈ (−N)2 and we are done by (iii).
Case II.2.2 m > 0. Then τ(z) = (m, s) with s = l − m, l = −b−(n−m)xc and

1 ≤ l ≤ n−m. Clearly, τ(z) ∈ L and −m + 1 ≤ s ≤ n− 2m.
Case II.2.2.1 s ≥ 0. Then ‖ τ(z) ‖1= m + s <‖ z ‖1 and we are done by induction

hypothesis.
Case II.2.2.2 s < 0. Then ‖ τ(z) ‖1= m− s <‖ z ‖1 and we are done.
Case III z = (n,m) with n,m ∈ N. Then τ(z) = (m,−p) with p ≥ m and τ2(z) =

(−p, q) with q ≥ p. Thus τ2(z) ∈ M and our assertion follows from (ii).
(v) By (iii) and (iv) we finally see Z2 ⊆ S(x, x+1) thereby completing the proof of the lemma.

¤
Lemma 2.4. If 0 < x < 1 then (x,−x− 1) /∈ D2.

Proof. If m > n > 0 then τ(x,−x−1)(n,m) = (m, p) with p > m. Thus the sequence

(τk
(x,−x−1)(1, 2))k∈N

is strictly monotonously increasing with respect to the norm ‖ · ‖1. ¤
Proof of Theorem 2.1. (i) By the Schur-Cohn criterion 6 and ([4, Lemmas 4.1 and 4.2]) we

know that E2 ⊆ D2 ⊆ E2.

6See e. g. [18].
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(ii) Let (x, y) ∈ L. We are going to show that (x, y) belongs to D2.
Case I x < 1.
Case I.1 |y| < 1 + x. Then we are done by (i).
Case I.2 |y| = 1 + x.
Case I.2.1 y < 0. Then −y = 1 + x, x ≤ 0 and we are done by Lemma 2.2.
Case I.2.2 y ≥ 0. Thus y = 1 + x.
Case I.2.2.1 x ≤ 0. We are done by Lemma 2.2.
Case I.2.2.2 x > 0. Our assertion drops out of Lemma 2.3.
Case II x = 1. Then y ∈ {−1, 0, 1} and the assertion can easily be checked.

(iii) Finally, let (x, y) ∈ D2. By (i) we know |x| ≤ 1 and |y| ≤ 1 + x. We have to show that
(x, y) ∈ D.

Case I x < 1.
Case I.1 |y| < 1 + x. Then clearly (x, y) ∈ D.
Case I.2 |y| = 1 + x.
Case I.2.1 y ≥ 0. Then y = 1 + x and (x, y) ∈ D.
Case I.2.2 y < 0. Then −y = 1+x and by Lemma 2.4 we have x ≤ 0, hence (x, y) ∈ D.
Case II x = 1. Then (1, 2) /∈ D2 because it is easily seen by induction that for all k ∈ N

there exists some n ∈ N, n > k such that τk
(1,2)(−1, 2) ∈ {(n,−(n + 1)), (−n, n + 1)}.

Similarly (1,−2) /∈ D2 because for a, b ∈ Z we find τ(1,−2)(a, b) = (b, 2b− a) yielding

‖ τ(1,−2)(a, b) ‖∞>‖ (a, b) ‖∞
for b > a > 0.

The result now follows easily. ¤

Corollary 2.5. We have
D0

2 ⊂ E2.

Proof. Since D0
2 ⊂ D2 ⊂ E2 we have to show that D0

2 ∩ ∂E2 = ∅. In view of Lemmas 2.2, 2.3 and
2.4 it remains to show

{(1, y) ∈ R2| − 2 ≤ y ≤ 2} ∩ D0
2 = ∅.

In fact, assume (1, y) ∈ D0
2 for some y ∈ R. Pick z ∈ Z2 \ {0} and choose the minimal m ∈ N with

τm
(1,y)(z) = 0. Then τm−1

(1,y) (z) = (a, 0) with some a ∈ Z \ {0}. However, the relation τ(1,y)(a, 0) = 0
is impossible. ¤

Remark 2.6. Let r = (1, y) ∈ R2 with 0 < y < 1. The first few elements of the sequence (τk
r (z))k∈N

may grow considerably for certain z ∈ Z2 \ {0}. Thus it seems to be difficult to show that, as we
conjecture, for each fixed z ∈ Z2 \ {0} all elements of this sequence remain in a bounded region.
Only some minor examples can be given here. Set N := max

{
n ∈ N | n < (1− y)−1

}
. Then

(i) {(a, b) ∈ Z2 | ‖ (a, b) ‖∞≤ 2, |a + bbyc| ≤ 2} ⊂ S(r).
(ii) If 0 ≤ n ≤ N then (0, n) ∈ S(r) with period length 6n + 1.
(iii) {(−2, 3), (N + 1, 1)} ∪ {(N + 1,−k), (k,−(N + 1)) ∈ Z2 | 0 ≤ k ≤ N}

∪
N⋃

n=0

({(k,−n), (n,−k) ∈ Z2 | 0 ≤ k ≤ n} ∪ {(0, n), (n + 1,−n), (n + 1,−(n− 1)}) ⊂ S(r).

You find partial results concerning this question in [5].

3. Several subsets of D0
d

In this section we give unified versions of results of Hollander [14], Kovács and Pethő [17],
Pethő [20] (see also [3, Theorem 2.3]) as well as Frougny and Solomyak [11]. These results
will be stated in the language of SRS and can be transformed to characterization results on β-
expansions and canonical number systems, respectively, by applying the correspondence results in
[4, Theorem 2.1 and Theorem 3.1].
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In the following, we employ Hollander’s framework and additionally make use of the idea of the
“set of witnesses” invented independently by Brunotte [10] and Scheicher and Thuswald-
ner [24]. This makes the proofs substantially simpler and we shall have a way to describe what
happens on the boundary of the region that Hollander gave (see Corollary 3.6).

Before stating the results, we review the algorithms contained in [4, Theorem 5.1 and Theo-
rem 5.2] in a convenient form. For i ∈ {1, . . . , d} let ei be the i-th canonical basis vector of Rd and
set rd+1 = 1. For a given r = (r1, . . . , rd), we say that a set V ⊂ Zd is a set of witnesses if ±ei ∈ V
(1 ≤ i ≤ d) and if for each (z1, . . . , zd) ∈ V, the element (z2, . . . zd+1) belongs to V provided that

(3.1) −1 < r1z1 + · · ·+ rd+1zd+1 < 1.

Let G(V) be a graph with vertices V and edges defined by (z1, . . . , zd) → (z2, . . . , zd+1) if and only
if

(3.2) 0 ≤ r1z1 + · · ·+ rd+1zd+1 < 1.

We say that (a1, a2, . . . , ad); ad+1, . . . , aL is a period of length L in the graph G(V) if there are
edges

(ai, . . . , ai+d−1) → (ai+1, . . . , ai+d)
for each i ∈ Z. Here ai (i ∈ Z) is naturally defined by periodicity ai = ai+L.

By definition, for each vertex there exists exactly one outgoing edge. The result in [4, Theorem
5.1] states the following.

Lemma 3.1. If every infinite walk in the graph G(V) ends up in the trivial cycle 0 → 0 then
r ∈ D0

d.

Suppose that π = (a1, a2, . . . , ad); ad+1, . . . , aL is a period of length L. Obviously, π is a period
of τr if and only if r ∈ Dd satisfies

0 ≤ r1ai + · · ·+ rd+1ad+i < 1 (i ∈ N).

Since by periodicity this is a finite set of inequalities it determines a (possibly degenerate) poly-
hedron P (π) ⊂ Rd. We call this polyhedron the cutout polyhedron corresponding to π. Note that
if (a1, . . . , ad) 6= 0 then P (π) ∩ D0

d = ∅ since each r ∈ P (π) has period π and is therefore not an
SRS. So each nontrivial period π “cuts out” a polyhedron from Dd.

In [4, Theorem 5.2] it is shown that a similar algorithm even works for the convex hull H of
finitely many points r1, . . . , rk ∈ Dd. In particular, the following result was proved.

Lemma 3.2. Let H be as above. If the diameter of H is sufficiently small then there is an
algorithm for the construction of a graph (V, E) having the following properties.

(1) ±e1, . . . ,±ed ∈ V
(2) If = (z1, . . . , zd) ∈ V, then (z2, . . . zd+1) ∈ V if and only if

zd+1 ∈
[

min
1≤i≤k

{b−rizc}, max
1≤i≤k

{−brizc}
]
∩ Z.

Furthermore, we put an edge (z1, . . . , zd) → (z2, . . . zd+1) ∈ E if we even have

zd+1 ∈
[

min
1≤i≤k

{−brizc}, max
1≤i≤k

{−brizc}
]
∩ Z.

(3) H ∩ D0
d = H \ ⋃

π P (π), where the union is taken over all nonzero primitive cycles π of
(V, E).

(V, E) can be constructed by the following algorithm. Start with V0 := {±e1, . . . ,±ed}. Given
Vi (i ≥ 0) we construct Vi+1 by (2). This is done until Vi = Vi+1 =: V. The edges E between the
vertices V are defined by (2).

This lemma is a slight improvement of [4, Theorem 5.2] since the number of edges in the graph is
diminished. However, the proof remains the same. We only have to note that the edges occurring
in the present lemma are enough to guarantee that each graph given by a point r ∈ H according
to Lemma 3.1 is a subgraph of (V, E).
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If the algorithm given in Lemma 3.2 does not converge, we have to subdivide H into several
parts and perform the algorithm for each of these parts. For further details on this algorithm we
refer to [4, Theorem 5.2] and the discussion after its proof.

The next theorem together with its proof is a slight modification of [7, Corollary 1].

Theorem 3.3. If
∑d

i=1 |ri| ≤ 1 then Ud = {(z1, . . . , zd) | zi ∈ {0,±1}} is a set of witnesses for
r. Further if ri ≥ 0 for i = 1, . . . , d and

∑d
i=1 ri < 1 then r ∈ D0

d.

Proof. By
∑d

i=1 |ri| ≤ 1, we have |∑d
i=1 rizi| ≤

∑d
i=1 |ri| ≤ 1. Thus zd+1 ∈ {0,±1} by (3.1) which

shows that Ud is a set of witnesses. Further if
∑d

i=1 |ri| < 1 then r ∈ Ed, i.e τr is contracting.
Thus it suffices to show that the only period in G(Ud) is the 0-cycle if ri ≥ 0 for i = 1, . . . , d

and
∑d

i=1 ri < 1. Suppose that (a1, . . . , ad); ad+1, . . . , aL is a period in G(Ud). Assume that there
exists an index i such that ai = −1. Then shifting indices, we have

0 ≤ r1a1 + · · ·+ rd+1ad+1 < 1.

with ad+1 = −1. This implies that 1 ≤ ∑d
i=1 riai ≤

∑d
i=1 ri < 1 which is a contradiction.

Thus ai ≥ 0 for each i. Assume that there exists i that ai = 1. Shifting indices again, we
have 0 ≤ r1a1 + · · · + rd+1ad+1 < 1 with ad+1 = 1. But this implies another contradiction
0 ≤ ∑d

i=1 riai < 0. The result now follows from Lemma 3.1. ¤

We can also generalize [6, Theorem 3.5].

Theorem 3.4. If
∑d

i=1 |ri| < 1 and there exists exactly one index k in {1, 2, . . . , d} such that
rd+1−k < 0. Then r ∈ D0

d if and only if
∑

1≤j≤d/k rd+1−kj ≥ 0.

Proof. By Theorem 3.3, Ud is a set of witnesses. First if
∑

0≤j≤d/k rd+1−kj < 0 then the period
0, 0, . . . , 0, 1 of length k is in G(Ud). Thus r 6∈ D0

d which shows the necessity of the condition. Let
us show the sufficiency. Assume that there exists a non-zero period

(a1, . . . , ad); ad+1, . . . , aL

in G(Ud). By the same discussion as in the proof of Theorem 3.3, ai ≥ 0 for all i. Shifting indices,
we have 0 ≤ r1a1 + · · ·+ rd+1ad+1 < 1 with ad+1 = 1. This shows that ad+1−k = 1 since d + 1− k
is the only index such that rd+1−k < 0. Repeating this, we have ad+1−kj = 1 for all j = 0, 1, 2, . . . .
However this shows that

d+1∑

i=1

riai ≥ 1 +
∑

1≤k≤d/k

rd+1−kj ≥ 1

which contradicts (3.2). The result now follows from Lemma 3.1. ¤

We say that (z1, . . . , zd) ∈ Ud is sign alternating, if zizj ≤ 0 holds for any pair of positive
integers i < j having the property that zk = 0 for each i < k < j. In other words, ignoring 0 the
numbers 1 and −1 occur alternatively7. Define a set

Wd = { (z1, . . . , zd) ∈ Ud | (z1, . . . , zd) is sign alternating} .

For example,

W1 = {−1, 0, 1},
W2 = {(−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0)},
W3 = {(−1, 0, 0), (−1, 0, 1), (−1, 1,−1), (−1, 1, 0), (0,−1, 0), (0,−1, 1), (0, 0,−1), (0, 0, 0),

(0, 0, 1), (0, 1,−1), (0, 1, 0), (1,−1, 0), (1,−1, 1), (1, 0,−1), (1, 0, 0)}.
An easy induction argument shows that the cardinality of Wd is 2d+1 − 1. We say that a period
(a1, a2, . . . ad); ad+1, . . . , aL is sign alternating if each (ai, . . . , ai+d−1) is sign alternating for all
i ∈ N.

7This sign alternating set first appeared in Scheicher [23].
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Theorem 3.5. If 0 ≤ r1 ≤ r2 ≤ · · · ≤ rd ≤ 1 then Wd is a set of witnesses for r. Further if
0 ≤ r1 ≤ r2 ≤ · · · ≤ rd < 1 then r ∈ D0

d.

Proof. Note that ±ei ∈ Wd (1 ≤ i ≤ d). Assume that (z1, . . . , zd) 6= 0. Let j be the maximum
index in {1, 2, . . . , d} for which zj 6= 0. Then by the sign alternating property, the sum

∑d
i=1 rizi

takes a value between 0 and sign(zj)rj . Thus (3.2) implies zjzd+1 ≤ 0. This shows that Wd is a
set of witnesses. Further if 0 ≤ r1 ≤ r2 ≤ · · · ≤ rd < 1 then r ∈ Ed, i.e. τr is contracting (cf. [9]).
Thus by Lemma 3.1 it suffices to show that the only period in G(Wd) is the trivial 0-cycle. Note
that each period in G(Wd) is sign alternating by definition. Suppose that (a1, . . . , ad); ad+1, . . . , aL

is a nonzero period in G(Wd). By shifting indices and (3.2), we have

0 ≤ r1a1 + · · ·+ rd+1ad+1 < 1

with ad+1 = −1. By the left inequality, there must be an index j ∈ {1, . . . , d} such that aj = 1.
Take the maximal j with aj > 0. Then ak = 0 for j < k < d + 1 and 0 ≤ ∑d

i=1 riai ≤ rj < 1 by
the sign alternating property. This gives a contradiction. Thus ai ≥ 0 for all i. Assume that there
exists an index i that ai = 1. Shifting indices again we have 0 ≤ r1a1 + · · ·+ rd+1ad+1 < 1. with
ad+1 = 1. By the right inequality, there must exist an index j ∈ {1, . . . , d} with aj = −1 which is
a contradiction. ¤

Theorems 3.3, 3.4 and 3.5 give a pretty large SRS region in D0
d. Moreover one can discuss the

boundary of these regions. In fact, Theorems 3.3 and 3.5 give a set of witnesses when 0 ≤ r1 ≤ · · · ≤
rd ≤ 1 or

∑d
i=1 |ri| ≤ 1. Thus we can describe the sets

{
r ∈ D0

d ∩ Ed

∣∣ 0 ≤ r1 ≤ · · · ≤ rd ≤ 1
}

and
{

r ∈ D0
d ∩ Ed

∣∣ ∑d
i=1 |ri| ≤ 1

}
including their boundary explicitly by using the algorithm in

Lemma 3.1.
The remaining part of the paper is devoted to the characterization of D0

2. It is clear that D0
2 is

a subset of D2. However, by [4, Example 4.7] and Corollary 2.5 we even see that

D0
2 ⊂ D′2

where D′2 is the trapezium

D′2 = {(x, y) | 0 ≤ x < 1, −x < y < x + 1}.
depicted in Figure 1. Theorems 3.3, 3.4 and 3.5 imply that

{(x, y) ∈ R2 | 0 ≤ x ≤ y < 1},
{(x, y) ∈ R2 | x ≥ 0, 0 ≤ x + y < 1, y > x− 1}

are contained in D0
2 (cf. Figure 1). We now give the characterization result for the boundary of

these regions. In the following we frequently denote by ∆(a, b, c) the plane closed triangle with
vertices a, b, c ∈ R2.

Corollary 3.6. Let

F1 = {(x, y) ∈ R2 | 0 ≤ x ≤ y ≤ 1},
F2 = {(x, y) ∈ R2 | x ≥ 0, 0 ≤ x + y ≤ 1, y ≥ x− 1} and
F = (F1 ∪ F2) \ {(0, 1), (1, 0), (1, 1)}.

Then F ⊂ D0
2, and (0, 1), (1, 0), (1, 1) ∈ D2 \ D0

2.

Proof. Note that (F1 ∪ F2) \ E2 = {(0, 1), (1, 0), (1, 1)}. For these exceptional points we have
(0, 1), (1, 0), (1, 1) ∈ D2 \ D0

2 by Theorem 2.1. Define three triangles ∆1 = ∆((0, 0), (0, 1), (1, 1)),
∆2 = ∆((0, 0), (0, 1), (1, 0)) and ∆3 = ∆((0, 0), (1, 0), (1,−1)). Lemma 3.1 can be applied to each
point of these triangles. It is easy to check that at each point this algorithm yields exactly the set
V given by Theorems 3.5, 3.4 and 3.3, respectively, as set of witnesses. We just draw all possible
edges according to Lemma 3.1 and depict their graphs. For ∆1, we get the graph given in Figure 2.
The trivial cycle 0 → 0 and the incoming edges of it (indicated by wavy arrows) are removed. After
this removal, there are 6 primitive cycles and we can directly show ∆1 \ {(0, 1), (1, 1)} ⊂ D0

2 from
these by calculating the related cutout polygons. In fact, it can be done even simpler. The two
broken arrows appear only for the points (0, 1) or (1, 0) which have been excluded by Theorem 2.1.
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Figure 2. The graph (V, E) for ∆1
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Figure 3. The graph (V, E) for ∆2 without the trivial cycle 0 → 0
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Figure 4. The graph (V, E) for ∆3 without the trivial cycle 0 → 0

Removing the broken arrows only the primitive cycle (0, 1);−1 remains. This gives the cutout
polygon P ((0, 1);−1) = {(1, 1)}. Thus we proved that ∆1 \ {(0, 1), (1, 1)} ⊂ D0

2.
Hereafter we omit drawing the trivial cycle and its incoming edges. For ∆2, the resulting

graph is depicted in Figure 3. The broken arrows appear only for the points (1, 0) or (0, 1).
Thus in ∆2 \ {(1, 0), (0, 1)}, the only non-trivial cycle is given by (−1, 1); 1. The cutout polygon
P ((−1, 1); 1) is easily seen to be empty.

Finally for ∆3, we have the graph depicted in Figure 4. The broken arrows appear only for the
point (1, 0). Therefore in ∆3\{(1, 0)} there are only two relevant cycles (1, 1); and (−1,−1); which
are the self loops 1 → 1 and −1 → −1. Both of the associated cutout polygons are irrelevant.

¤

In general it is easier to examine if a certain region does not belong to D0
2 than the opposite.

The next result contains some regions of D2 \ D0
2.
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Proposition 3.7. Set

E1 =
{

(x, y)
∣∣∣∣ x < 1, y < 2x,

2x

3
+ 1 ≤ y

}
,

E2 =
{

(x, y)
∣∣∣∣ x < 1,

x

2
+ 1 < y < 2x, y <

2x

3
+ 1

}
,

E3 =
{

(x, y)
∣∣∣∣ x < 1, −x +

1
2
≤ y < 2x− 2, y < −x

3

}
,

E4 =
{

(x, y)
∣∣∣∣ x < 1,−2x + 1 ≤ y < −1

2
x

}
.

Then
E1 ∪ E2 ∪ E3 ∪ E4 ⊆ D2 \ D0

2.

In fact these regions are the four dark cutout polygons depicted in Figure 1.

Proof. It follows from Theorem 2.1 that Ei is a subset of D2 for i ∈ {1, 2, 3, 4}. Thus it remains
to show that they have empty intersection with D0

2.
Each of the sets Ei (1 ≤ i ≤ 4) corresponds to a cutout polygon related to a certain period.

Consider the period π4 = (2, 1);−1,−1, 1. From the definition of a cutout polygon we see that
P ((2, 1);−1,−1, 1) is given by the set of all points (x, y) satisfying

0 ≤ 2x + y − 1 < 1,

0 ≤ x− y − 1 < 1,

0 ≤ −x− y + 1 < 1,

0 ≤ −x + y + 2 < 1,

0 ≤ x + 2y + 1 < 1.

Simplifying this system of inequalities we get

(3.3) P ((2, 1);−1,−1, 1) =
{

(x, y)
∣∣∣ x− 2 < y < −x

2
, y ≥ −2x + 1

}
.

From this we see that E4 = P ((2, 1);−1,−1, 1)∩Dd and the proposition is proved for E4. E1, E2

and E3 correspond to longer cycles. With the same type of arguments we can show that

E1 = P ((1,−2); 3,−3, 3,−2, 1) ∩ Dd,

E2 = P ((1,−2); 3,−2, 1) ∩ Dd,

E3 = P ((2,−1);−2, 1, 3, 1,−2,−1, 2) ∩ Dd.

This proves the result8. ¤

Remark 3.8. It is possible to show an analogue of Corollary 3.6 for D3 also. In fact, let

F1 = {(x, y, z) ∈ R3 | 0 ≤ x ≤ y ≤ z ≤ 1},
F2 = {(x, y, z) ∈ R3 | x ≥ 0, y ≥ 0, 0 ≤ x + y + z ≤ 1, z ≥ x + y − 1} and
F = (F1 ∪ F2) \ {(0, 1, 0), (0, 1, 1)} ∪ {(x, x, 1) ∈ R3 | x ≥ 0} ∪ {(x, 0, 1− x) ∈ R3 | x ≥ 0}.

Then F ⊂ D0
3.

The proof of this result is much more involved than the proof of Corollary 3.6 and will appear
elsewhere.

4. Subsets of D0
2 near to the boundary of D2

The characterization of D0
2 becomes more and more difficult the nearer we approach to ∂D2.

In this section we show two characterization results of D0
2 near the boundary of D2.

8Explicit representations of these cutout polygons are given in Section 5.
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4.1. An SRS region near the upper boundary of D2.
In this subsection we describe another idea to exhibit a region belonging to D0

2. Let R be the
subset of D2 given by

R =
{

(x, y) ∈ R2

∣∣∣∣ 0 < x < 1, y > 0, y < x + 1, x <
y2

4

}
.

For (x, y) ∈ R consider the characteristic polynomial of the matrix9

(
0 1
−x −y

)

given by χ(t) = t2 + yt + x. Denote by α and β the two roots of χ(t). As (x, y) ∈ R, α and
β are real and have modulus less than 1. Clearly, we have y = −(α + β) > 0 and x = αβ. As
χ(0) = x > 0, χ(−1) = 1− y + x > 0 and χ(−y

2 ) < 0, we may assume −1 < α < β < 0.
We denote by

Π(x, y) = {a ∈ Z2 | τ `
(x,y)(a) = a for some ` > 0}

the purely periodic elements associated to τ(x,y). For an element a ∈ Π(x, y) of period length L,
i. e.

(a1, a2); a3, . . . , aL

we let for convenience Ξa = . . . a−2a−1a0a1a2 . . . aL . . . be the bi-infinite periodic word generated
by a. If ai is a letter in the word Ξa then we will write ai ∈ Ξa.

Proposition 4.1. Let (x, y) ∈ R and a ∈ Π(x, y). Then

β

1− β2
≤ ai+1 − αai ≤ 1

1− β2
and(4.1)

α

1− α2
≤ ai+1 − βai ≤ 1

1− α2
(4.2)

hold for all consecutive letters ai, ai+1 ∈ Ξa.

Proof. We only show (4.1); (4.2) is proved in a similar way. By the definition of τ(x,y) we have for
i ∈ Z

0 ≤ xai+1 + yai+2 + ai+3 < 1.

Rewrite this into

(4.3) 0 ≤ (ai+3 − αai+2)− β(ai+2 − αai+1) < 1.

Multiplying (4.3) by β < 0 and shifting indices of (4.3), respectively, we get

β < β(ai+3 − αai+2)− β2(ai+2 − αai+1) ≤ 0
0 ≤ (ai+4 − αai+3)− β(ai+3 − αai+2) < 1.

Adding these two chains of inequalities, we see that

β < (ai+4 − αai+3)− β2(ai+2 − αai+1) < 1.

Repeating this and shifting indices, we have

· · ·+ β5 + β3 + β < (ai+2 − αai+1)− βn+1(ai−n+1 − αai−n) < 1 + β2 + β4 + · · ·
for all n ∈ N. As Ξa is a periodic word its letters are uniformly bounded. Thus, taking n → ∞
we get the result. ¤

Remark 4.2. As α 6= β, Proposition 4.1 gives lattice points in a parallelogram. However, if α is
near to −1 the above inequalities neither give a uniform bound nor a “uniform” algorithm10 to
determine whether (x, y) belongs to D0

2 or not.

9See [4, Section 4].
10Like the one in Lemma 3.2.
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For κ ∈ R let
Rκ =

{
(x, y) ∈ R |x < κy − κ2

}
.

In the following we assume 0 < κ ≤ γq where q > 0 is an integer and γq is the positive root of the
polynomial qt3 + qt2 − qt− q + 1; in particular we have γ1 = 1

ω with ω = 1+
√

5
2 . Observe that for

(x, y) ∈ Rκ, the following inequalities hold:

α < −κ < β,
1

(1− α)(1− β2)
< q.

Lemma 4.3. Let (x, y) ∈ Rκ and (a, b) ∈ Π(x, y) with min{|a|, |b|} ≥ q. Then ab ≤ 0.

Proof. Let us assume ab > 0. If a, b > 0 then by Proposition 4.1 we find (1 − α)min{a, b} ≤
b− αa ≤ 1

1−β2 yielding

q ≤ min{a, b} ≤ 1
(1− α)(1− β2)

< q

which is impossible. Analogously, if a, b < 0 we have β
1−β2 ≤ b− αa ≤ (1− α)max{a, b} yielding

the contradiction
−q ≥ max{a, b} ≥ β

(1− α)(1− β2)
> βq > −q.

¤
In the sequel, the (finite) set

Aκ,q =
{

(a, b) ∈ Z2

∣∣∣∣ |a| < q, − κ

1− κ2
− q + 1 < b <

1
1− κ2

+ q − 1
}

will help us to decide whether a given element of Rκ belongs to D0
2.

Lemma 4.4. Let (x, y) ∈ Rκ and (a, b) ∈ Π(x, y) with |a| < q. Then (a, b) ∈ Aκ,q.

Proof. By Proposition 4.1 we find β
1−β2 − (q− 1) ≤ b ≤ 1

1−β2 + q− 1 from which we easily deduce
our assertion. ¤
Lemma 4.5. Let (x, y) ∈ Rκ and suppose that for all (a, b) ∈ Aκ,q there exists a k ∈ N such that
τk
(x,y)(a, b) = 0. Then (x, y) ∈ D0

2.

Proof. Assume that (x, y) /∈ D0
2. Let a ∈ Π(x, y) be a non-zero periodic point associated to τ(x,y).

(i) We first observe that |ai| ≥ q for all ai ∈ Ξa. Indeed, if |ai| < q for some i ∈ Z then
(ai, ai+1) ∈ Aκ,q by Lemma 4.4, hence the orbit of a tends to zero contrary to our hypothesis.

(ii) By the periodicity of Ξa there exists some index i with |ai+2| ≤ |ai+1|. Using (i) we see
that the element (ai+1, ai+2) belongs to the set

E = {(c, d) ∈ Π(x, y) | q ≤ |d| ≤ |c|}.
(iii) We claim that the set E is invariant under τ(x,y): Indeed, for (c, d) ∈ E we clearly have

τ(x,y)(c, d) ∈ Π(x, y) \ {0}. We distinguish two cases:
Case 1. Assume that d < 0. Then Lemma 4.3 implies c > 0. Since |d| ≤ |c|, we see

bcx + dyc > cx + dy − 1 ≥ (y − x)d− 1.

Therefore | bcx + dyc | < |d|+ 1 which shows | bcx + dyc | ≤ |d|. Thus we get τ(x,y)(c, d) ∈ E.
Case 2. Assume that d > 0. Similarly we have c < 0. Since |d| ≤ |c|,

bcx + dyc ≤ cx + dy ≤ dy − dx < |d|.
Thus we have | bcx + dyc | < |d| and again τ(x,y)(c, d) ∈ E.

(iv) We have shown that |ai+1| ≤ |ai| for each i. Because of the periodicity this is possible only
if |ai+1| = |ai|. Since ai 6= 0, Lemma 4.3 implies that a2i−1 = g and a2i = −g for some g 6= 0.
Going back to the definition of τ(x,y), we have

0 ≤ xg − yg + g < 1
0 ≤ −xg + yg − g < 1.

As 1− y + x > 0, this is possible only for g = 0. This yields a contradiction. ¤
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We are now in a position to state the first theorem of this subsection.

Theorem 4.6. The set {
(x, y) ∈ R

∣∣∣∣ x <
1
ω2

or y > ωx +
1
ω

}

is contained in D0
2.

Proof. As x = κy − κ2 is the tangent line of x = y2/4 at (κ2, 2κ), we have
⋃

0<κ≤1/ω

Rκ =
{

(x, y) ∈ R

∣∣∣∣ x <
1
ω2

or y > ωx +
1
ω

}
.

Therefore it suffices to show that if κ ≤ 1
ω , then Rκ ⊂ D0

2. Taking q = 1 we get

Aκ,1 =
{

(0, b) ∈ Z2

∣∣∣∣ −
κ

1− κ2
< b <

1
1− κ2

}

by the definition of Aκ,q and

−1 ≤ − κ

1− κ2
< b <

1
1− κ2

≤ ω < 1.7.

Thus b ∈ {0, 1}. As R ⊂ {(x, y) | 0 < x < 1, x < y < x + 1}, we easily see by direct computation
that τ4

(x,y)(0, 1) = 0 for (x, y) ∈ R. Thus Lemma 4.5 concludes the proof. ¤

It is of course possible to apply Lemma 4.5 to q ≥ 2, but the corresponding graphs become very
large and beyond hand computation. We need the following lemma.

Lemma 4.7. Let H ⊂ Dd be the convex hull of r1, . . . , rk ∈ Dd and let A ⊂ Zd be a finite set.
Let GA(H) = (V, E) be the smallest graph with the following properties.

(1) A ⊂ V .
(2) If z = (z1, . . . , zd) ∈ V then (z2, . . . , zd, j) ∈ V and (z1, . . . , zd) → (z2, . . . , zd, j) ∈ E if

and only if

j ∈
[

min
1≤i≤k

{−brizc}, max
1≤i≤k

{−brizc}
]

.

If each infinite walk in GA(H) ends up in the zero cycle 0 → 0 then

∀r ∈ H ∀a ∈ A ∃k ∈ N : τk
r (a) = 0.

Proof. This follows immediately from the definition of τr and the fact that min1≤i≤k{−brizc} ≤
−brzc ≤ max1≤i≤k{−brizc} holds for all r ∈ H (cf. [4, Theorem 4.6]). ¤

The graph GA(H) can be constructed in an analogous way as the graph described in Lemma 3.2.

Theorem 4.8. Rκ ⊂ D0
2 for κ = γ2, γ3, γ4, γ5 and γ6 ' 0.956458072.

Proof. Suppose that the theorem is already proved for q − 1. Start with an initial set of vertices
V = Aγq,q with q ≥ 2 and construct GV (H) with

H = ∆((γq−1, 1 + γq−1), (γq, 1 + γq), (γq−1 + γq, γq−1 + γq)) =
∆((0, 1), (0, γq), (γq, 1 + γq)) \ (Int∆((0, 1), (0, γq−1), (γq−1, 1 + γq−1))),

according to Lemma 4.7 (note that we may assume that the interior of ∆((0, 1), (0, γq−1), (γq−1, 1+
γq−1)) is a subset of D0

2).
Delete edges (−a, a) → (a,−a) for a = 1, 2, . . . which obviously only correspond to the boundary

of Rγq . Delete also the trivial cycle (0, 0) → (0, 0). We call the resulting graph Gq. The number
of vertices and edges of Gq are listed in Table 1. If Gq is acyclic, then Rγq ⊂ D0

2 by Lemma 4.5. In
fact, one can confirm that Gq is acyclic for q = 2, 3, 4, 5, 6. ¤
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q vertices edges
2 294 538
3 1398 2292
4 3991 6554
5 8732 14408
6 16258 26951

Table 1. Size of Gq

4.2. An SRS region near the point (1,−1).
Our first aim is to show that the set

S :=
{

(1− T,−1 + cT )
∣∣∣∣ 0 < T ≤ 1

30
, 1 ≤ c < 2

}

is contained in D0
2. In particular, this shows that (1,−1) is not a critical point11. Despite this is

a very small region its characterization is the crucial part in proving Theorem 5.6, which charac-
terizes a very big SRS region.

4.2.1. Basic definitions.
For some results it is convenient to deal with the following region:

R :=
{

(1− T,−1 + cT )
∣∣∣∣ 0 < T ≤ 1

30
, 1 ≤ c ≤ 2

}
.

Let r ∈ D2 and (u, v) ∈ Z2. We will need the following abbreviations

α := bcTv − Tuc ,

β := b−cTα + (c− 1)Tv − cTuc ,

γ := b−cTβ − (c− 1)Tα− Tv − (c− 1)Tuc .

Furthermore, in what follows, we will set

(u2, v2) := τ3
r (u, v).

From the definition of τr this implies that

(4.4)
u2 = −α− β − u,
v2 = −β − γ − v.

The proof of the above-mentioned characterization result relies on a certain “structural stabil-
ity” of τr in r. In fact, if we look at the orbit of a point (x, y) of τr with r ∈ R essentially only
one shape can occur. If T−1 is small compared to the modulus of the coordinates of (x, y) then
the orbit of (x, y) is of a shape similar to the orbit in Figure 5. However, if T−1 is large compared
to the coordinates (x, y) the orbit looks similar to the one depicted in Figure 6. (Note that near
the origin of Figure 5 the orbit is of a similar shape as the orbit in Figure 6.) Looking at several
examples of orbits of τr (r ∈ R) we are lead to conjecture that the following facts are always true:
Each of the orbits consists of six “branches” (see Figures 5 and 6). If we number consecutively
these branches from 1 to 6 then the following holds: If (x, y) is part of the branch 6 then τk

r (x, y)
is part of the branch k mod 6. Moreover, for points (x, y) ∈ Z2 and r ∈ R we always observe
that τ3

r (x, y) is “near” to the point (−x,−y). Because of this fact the third iterate of τr plays a
big role in our proofs. (Since τ6

r (x, y) is “near” to (x, y) in the orbits under consideration it may
look more natural to deal with τ6

r rather than τ3
r . However, this would cause much more involved

proofs.) Let r ∈ R and (x, y) ∈ Z2. Consider an arbitrary branch of the orbit of (x, y). If this
branch enters the second or fourth quadrant, it is farther away from the origin than it is when it
exits this quadrant. Making precise these observations we will construct a sequence of points of
each orbit with decreasing distance from the origin in the following way.

11For the definition see [4, Definition 7.1].
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Figure 5. An example of an orbit

–80

–60

–40

–20

0

20

40

60

80

–80 –60 –40 –20 20 40 60 80

Figure 6. Another example of an orbit

Find an element (x0, y0) of the orbit of (x, y) contained in the second or fourth quadrant and
follow (by iteration of τ3

r ) the branches of (x0, y0) and τ3
r (x0, y0) as long as they stay in the second

and fourth quadrant, respectively. Denote the last element of this iteration process which stays in
the second or fourth quadrant by (x1, y1). It turns out that (x2, y2) = τ2

r (x1, y1) is again contained
in the second or fourth quadrant (but on another branch).

Now perform the following algorithm starting with i = 1 and (x(1)
0 , y

(1)
0 ) := (x2, y2).

• Follow (by iteration of τ3
r ) the branches of (x(i)

0 , y
(i)
0 ) and τ3

r (x(i)
0 , y

(i)
0 ) as long as they stay

in the second and fourth quadrant, respectively. Denote the last element of this iteration
process which stays in the second or fourth quadrant by (x(i)

1 , y
(i)
1 ).

• Set (x(i)
2 , y

(i)
2 ) = τ2

r (x(i)
1 , y

(i)
1 ). This point is again contained in the second or fourth

quadrant (but on another branch).
• If max{|x(i)

2 |, |y(i)
2 |} > 25 then start again with (x(i+1)

0 , y
(i+1)
0 ) := (x(i)

2 , y
(i)
2 ).
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We will show that either max{|x(i+1)
0 |, |y(i+1)

0 |} < max{|x(i)
0 |, |y(i)

0 |} or max{|x(i)
0 |, |y(i)

0 |} ≤ 25
holds. Thus the algorithm terminates after finitely many steps showing that each orbit contains
a point (x′, y′) with max{|x′|, |y′|} ≤ 25. Now in order to prove our result it remains to show that
for each r ∈ S each (x′, y′) with max{|x′|, |y′|} ≤ 25 has an orbit ending at (0, 0). This is done
with computer aid.

4.2.2. A series of lemmas.

Before we can give our result, we need a series of technical lemmas. Some of these lemmas are
valid even in larger domains than R. u2 and v2 are always defined as in (4.4).

Lemma 4.9. Let u ≥ 0 and v ≤ 0. Furthermore, suppose that u ≥ 2 or v ≤ −1 holds. If c ∈ [1, 2]
and 0 < T ≤ 1

5 then
u + u2 ≥ v + v2

holds.

Proof. By (4.4) the claim is equivalent to γ ≥ α. First observe that, since (c − 1)Tv − cTu ≤ 0,
we have

−cTβ − (c− 1)Tα = −cT b−cTα + (c− 1)Tv − cTuc − (c− 1)Tα

≥ −cT b−cTαc − (c− 1)Tα

≥ T (1− c + c2T )α.

Inserting this in the definition of γ yields

γ ≥ ⌊
T (1− c + c2T )α− Tv − (c− 1)Tu

⌋
.

Suppose first that 1− c + c2T ≤ 0. Since u ≥ 0 and v ≤ 0 we have α ≤ 0 and thus

γ ≥ b−Tv − (c− 1)Tuc ≥ bcTv − Tuc = α.

Now suppose on the contrary that 1 − c + c2T > 0. Since T ≤ 1
5 this can happen only for

c < 5
2 −

√
5

2 < 7
5 . Now

γ ≥ ⌊
T (1− c + c2T )α− Tv − (c− 1)Tu

⌋

≥ ⌊
T (1− c + c2T )(cTv − Tu)− T (1− c + c2T )− Tv − (c− 1)Tu

⌋

=
⌊
c(1− c)T 2v + (c− 1)T 2u + c3T 3v − c2T 3u− T (1− c + c2T )− Tv − (c− 1)Tu

⌋
.

Since 1− c + c2T < 1, c(1− c)T 2v ≥ 0 and (c− 1)T 2u ≥ 0 this implies that

(4.5) γ ≥ ⌊
c3T 3v − c2T 3u− T − Tv − (c− 1)Tu

⌋
.

Now we have u ≥ 2 or v ≤ −1. Suppose first that u ≥ 2 holds. Then we have −T ≥ − 1
2Tu and

thus

γ ≥
⌊(

c3T 2 − 1
)
Tv −

(
c2T 2 + c− 1

2

)
Tu

⌋
≥ α.

The latter inequality follows because c ≤ 7
5 and T ≤ 1

5 imply that c3T 2−1 ≤ c and c2T 2+c− 1
2 ≤ 1.

If, on the other hand, v ≤ −1 we have −T ≥ Tv and thus

γ ≥ ⌊
c3T 3v − (

c2T 2 + c− 1
)
Tu

⌋ ≥ α.

The latter inequality follows because c ≤ 7
5 and T ≤ 1

5 imply that c3T 2 ≤ c and c2T 2 + c− 1 ≤ 1.
Thus the lemma is proved. ¤

Lemma 4.10. Let u ≤ 0, v ≥ 0, c ∈ [1, 2] and 0 < T ≤ 1
5 . Furthermore, suppose that u ≤ −4 or

v ≥ 2 holds. Then
u + u2 ≤ v + v2.
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Proof. It is easy to see that we have to prove γ ≤ α. We first treat the case v = 0. Since u ≤ 0
we have α ≥ 0. Furthermore, β = b−cT (u + α)c. Since

u + α = u + b−Tuc ≤ u− Tu = (1− T )u ≤ 0

we also have β ≥ 0. Thus
γ ≤ b−(c− 1)Tuc ≤ b−Tuc = α.

In what follows we may assume that v ≥ 1. Observe that, because (c− 1)Tv − cTu ≥ 0, we have

−cTβ − (c− 1)Tα = −cT b−cTα + (c− 1)Tv − cTuc − (c− 1)Tα

≤ −cT b−cTαc − (c− 1)Tα

≤ T (1− c + c2T )α + cT.

This implies that
γ ≤ ⌊

T (1− c + c2T )α + cT − Tv − (c− 1)Tu
⌋
.

Suppose first that 1− c + c2T ≤ 0. Then, since α ≥ 0 and v ≥ 1 we have

γ ≤ bcT − Tv − (c− 1)Tuc ≤ b(c− 1)Tv − (c− 1)Tuc ≤ bcTv − Tuc = α.

Now suppose on the contrary that 1 − c + c2T > 0. Since T ≤ 1
5 this can happen only for

c ≤ 5
2 −

√
5

2 < 7
5 . Since 1− c + c2T < 1 we get

γ ≤ ⌊
T (1− c + c2T )(cTv − Tu) + cT − Tv − (c− 1)Tu

⌋

≤ ⌊
cT 2v − T 2u + cT − Tv − (c− 1)Tu

⌋
.(4.6)

Now we have either u ≤ −4 or v ≥ 2. Suppose first that u ≤ −4 holds. Since c < 7
5 we have

Tc ≤ − 2
5Tu and this yields

γ ≤
⌊
(cT − 1) Tv −

(
T + c− 1 +

2
5

)
Tu

⌋
.

Since c ≤ 7
5 and T ≤ 1

5 this implies that γ ≤ α. If, on the other hand, v ≥ 2 holds, we have
cT ≤ Tv,

γ ≤ ⌊
cT 2v − (T + c− 1)Tu

⌋

and the result follows as well. ¤
Lemma 4.11. Let u ≥ 0 and v ≤ −2 and assume that

(4.7) −v ≥ 3
2
u.

If 0 < T ≤ 1
10 and c ∈ [1, 2] then we have

u + u2 ≥ 2(v + v2).

Proof. In view of (4.4) we have to show 2γ + β ≥ α. As in Lemma 4.9 we derive

γ ≥ ⌊
T (1− c + c2T )α− Tv − (c− 1)Tu

⌋
.

Furthermore, since α ≤ 0 we have

β = b−cTα + (c− 1)Tv − cTuc ≥ b(c− 1)Tv − cTuc .

We distinguish two cases. First suppose that 1− c + c2T ≤ 0. Combining the above estimates for
α, β and γ and using (4.7) we derive

2γ + β ≥ 2
⌊
T (1− c + c2T )α− Tv − (c− 1)Tu

⌋
+ b(c− 1)Tv − cTuc

≥ 2
⌊(

1− c +
3
2

)
Tu

⌋
+ b(c− 1)Tv − cTuc

Since c ≤ 2 and u ≥ 0, the first term in the second line is non-negative. Thus using (4.7) again
we get

2γ + β ≥ b(c− 1)Tv − cTuc ≥
⌊
cTv −

(
c− 3

2

)
Tu

⌋
≥ bcTv − Tuc = α

and we are done in this case.
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Now suppose that 1 − c + c2T > 0. As above this implies that c < 7
5 . As in Lemma 4.9,

inequality (4.5), we derive

γ ≥ ⌊
c3T 3v − c2T 3u− T − Tv − (c− 1)Tu

⌋
.

Since v ≤ −2 we have −T ≥ 1
2Tv and this implies

γ ≥
⌊(

c3T 2 − 1
2

)
Tv − (

c2T 2 + c− 1
)
Tu

⌋
.

Together with (4.7) this yields

γ ≥
⌊
−

(
c− 7

4
+ T 2

(
c2 +

3
2
c3

))
Tu

⌋
.

Since c− 7
4 + T 2

(
c2 + 3

2c3
) ≤ 0 this implies that γ ≥ 0. Thus

2γ + β ≥ β ≥ b(c− 1)Tv − cTuc .

Using (4.7) again this yields

2γ + β ≥ b(c− 1)Tv − cTuc ≥
⌊
cTv −

(
c− 3

2

)
Tu

⌋
≥ bcTv − Tuc = α.

¤

Lemma 4.12. Let u ≤ 0 and v ≥ 6 and assume that

(4.8) v ≥ −3
2
u

holds. If 0 < T ≤ 1
10 and c ∈ [1, 2] then

u + u2 ≤ 2(v + v2).

Proof. We have to show that 2γ + β ≤ α. As in Lemma 4.10 we derive

γ ≤ ⌊
T (1− c + c2T )α + cT − Tv − (c− 1)Tu

⌋
.

Since α ≥ 0 we have
β ≤ b(c− 1)Tv − cTuc .

Again we distinguish two cases. First assume that 1− c + c2T ≤ 0. Since v ≥ 6 we get, using
(4.8) in the form −v ≤ 3

2u,

γ ≤ bcT − Tv − (c− 1)Tuc ≤
⌊( c

6
− 1

)
Tv − (c− 1)Tu

⌋

≤
⌊
−3

2

( c

6
− 1

)
Tu− (c− 1)Tu

⌋
=

⌊(
1− c +

3
2
− c

4

)
Tu

⌋
≤ 0.

Note that the last inequality holds because c ≤ 2. Now the desired estimate follows easily via

2γ + β ≤ β ≤ b(c− 1)Tv − cTuc ≤
⌊
cTv −

(
c− 3

2

)
Tu

⌋
≤ bcTv − Tuc = α.

Now suppose that 1−c+c2T > 0. Again this implies that c ≤ 7
5 . As in Lemma 4.10, inequality

(4.6) we derive
γ ≤ ⌊

cT 2v − T 2u + cT − Tv − (c− 1)Tu
⌋
.

Since v ≥ 6 we have cT < 1
3Tv. This implies that

γ ≤
⌊(

cT − 2
3

)
Tv − (c− 1 + T )Tu

⌋
.

Using (4.8) this implies

γ ≤
⌊(
−3

2
Tc− T − c + 2

)
Tu

⌋
≤ 0.
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The last inequality is a consequence of T ≤ 1
10 and c ≤ 7

5 . Summing up we get (arguing as in the
first part of the proof)

2γ + β ≤ β ≤ b(c− 1)Tv − cTuc ≤ bcTv − Tuc = α.

¤
Lemma 4.13. If u ≥ 0, v ≤ 0, (u, v) 6= (0, 0), c ∈ [1, 2] and 0 < T ≤ 1

4 then u + u2 ≥ 1.

Proof. We have to show that β + α ≤ −1. Is is clear that α ≤ −1. If α = −1 then β ≤ 0 because
cT < 1 and the result follows. If α ≤ −2 then

α + β ≤ (1− cT )α + (c− 1)Tv − cTu ≤ −1.

The latter inequality is true because 1− cT ≥ 1
2 . ¤

Lemma 4.14. Let u ≤ 0, v ≥ 0, c ∈ [1, 2] and 0 < T ≤ 1
2 . Then u + u2 ≤ 0.

Proof. We have to show that α + β ≥ 0. Note that α ≥ 0. If α = 0 then obviously β ≥ 0 and we
are done. If α ≥ 1 then

α + β = b(1− cT )α + (c− 1)Tv − cTuc ≥ b(1− cT ) + (c− 1)Tv − cTuc ≥ 0

since 1− cT ≥ 0. ¤
Lemma 4.15. Let u ≥ 0, v ≤ 0, c ∈ [1, 2], 0 < T ≤ 1

2 and u−v ≤ `. Then u+u2 ≤ −b−3T`c+1.

Proof. Since u + u2 = −α− β we will establish the desired bound for −α− β.

−α− β = −b(1− cT )α + (c− 1)Tv − cTuc
≤ −b(1− cT )(cTv − Tu) + (c− 1)Tv − cTuc+ 1
≤ −bcTv − Tu + (c− 1)Tv − cTuc+ 1
= −b(2c− 1)Tv − (1 + c)Tuc+ 1.

Since 2c− 1 ≤ 1 + c and u− v ≤ ` this implies that

−α− β ≤ −b−(1 + c)T`c+ 1 ≤ −b−3T`c+ 1.

¤
Lemma 4.16. Let u ≤ 0, v ≥ 0, c ∈ [1, 2], 0 < T ≤ 1

2 and −u+v ≤ `. Then u+u2 ≥ b−3T`c−1.

Proof. It suffices to establish the desired lower bound for −α− β.

−α− β = −b(1− cT )α + (c− 1)Tv − cTuc
≥ −b(1− cT )(cTv − Tu) + (c− 1)Tv − cTuc
≥ −bcTv − Tu + (c− 1)Tv − cTuc
= −b(2c− 1)Tv − (1 + c)Tuc .

Since 2c− 1 ≤ 1 + c and −u + v ≤ ` this implies

−α− β ≥ −b(1 + c)T`c ≥ −b3T`c ≥ b−3T`c − 1.

¤
Lemma 4.17. Let u ≥ 0, v ≤ 0, c ∈ [1, 2], 0 < T ≤ 1

10 . If u ≥ 2 or v ≤ −1 holds, then v2 ≥ 0.

Proof. Note that the assertion is equivalent to γ + β ≤ −v. We have

γ + β ≤ (1− cT )β − (c− 1)Tα− Tv − (c− 1)Tu

≤ (1− cT )(−cTα + (c− 1)Tv − cTu)− (c− 1)Tα− Tv − (c− 1)Tu

= (1− 2c + c2T )Tα + (c− 2 + cT − c2T )Tv − (2c− 1− c2T )Tu

≤ (1− 2c + c2T )T (cTv − Tu) + (c− 2 + cT − c2T )Tv − (2c− 1− c2T )Tu

+(2c− 1− c2T )T
= (c− 2 + 2cT − 3c2T + c3T 2)Tv + (1− 2c− T + 2cT + c2T − c2T 2)Tu

+(2c− 1− c2T )T.
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Note that u ≥ 2 or v ≤ −1. Suppose first that u ≥ 2. Then (2c− 1− c2T )T ≤ 1
2 (2c− 1− c2T )Tu.

Thus

γ + β ≤ (c− 2 + 2cT − 3c2T + c3T 2)Tv

+
(

1− 2c− T + 2cT + c2T − c2T 2 +
1
2
(2c− 1− c2T )

)
Tu

≤ (c− 2 + 2cT − 3c2T + c3T 2)Tv ≤ −v.

These inequalities follow since T ≤ 1
10 . If, on the other hand, v ≤ −1 holds, then

γ + β ≤ (
c− 2 + 2cT − 3c2T + c3T 2 − (2c− 1− c2T )

)
Tv ≤ −v.

¤

Lemma 4.18. Let u ≤ 0, v ≥ 0, c ∈ [1, 2], 0 < T ≤ 1
10 . If max{−u, v} ≥ 3 then v2 ≤ 0.

Proof. We have to show that γ + β ≥ −v.

γ + β = b(1− cT )β − (c− 1)Tα− Tv − (c− 1)Tuc
= b(1− cT ) b−cTα + (c− 1)Tv − cTuc − (c− 1)Tα− Tv − (c− 1)Tuc
≥ b(1− cT ) b−cT (cTv − Tu) + (c− 1)Tv − cTuc − (c− 1)Tα− Tv − (c− 1)Tuc .

Suppose first that −u = max{−u, v}, i.e. −v ≥ u. Then

−cT (cTv − Tu) + (c− 1)Tv − cTu ≥ −c2T 2v − c(1− T )Tu ≥ −(c− cT − c2T )Tu ≥ 0.

Thus

γ + β ≥ b−(c− 1)Tα− Tv − (c− 1)Tuc
≥ b−(c− 1)T (cTv − Tu)− Tv − (c− 1)Tuc(4.9)
= b(−1− (c− 1)cT )Tv − (c− 1)(1− T )Tuc .

Since c ≤ 2 and T ≤ 1
10 this yields

γ + β ≥ b(−1− (c− 1)cT )Tv − (c− 1)(1− T )Tuc ≥ b(−1− (c− 1)cT )Tvc ≥ −v.

Now suppose that v = max{−u, v}. Then

−cT (cTv − Tu) + (c− 1)Tv − cTu ≥ −c2T 2v

and thus as in (4.9) we see that

γ + β ≥ ⌊−c2T 2v
⌋

+ b(−1− (c− 1)cT )Tv − (c− 1)(1− T )Tuc .

Since v ≥ 3, c ≤ 2 and T ≤ 1
10 ,

γ + β ≥ ⌊−c2T 2v
⌋

+ b(−1− (c− 1)cT )Tvc ≥ (−1− (2c− 1)cT )Tv − 2 ≥ − 3
10

v − 2 ≥ −v.

¤

In what follows set (u1, v1) := τ2
r (u, v), this implies that

u1 = −α + v − u and v1 = −β − α− u.

Lemma 4.19. Let u > 0, v ≤ 0, u2 ≥ 0, v2 ≥ 0, c ∈ [1, 2] and T ≤ 1
10 . If max{u,−v} ≥ 4 then

we have u1 < 0, v1 ≥ 0 and u1 + v1 ≤ 0.

Proof. Since v1 = u2 we trivially have v1 ≥ 0. In order to prove that u1 < 0 note that

u1 = −α + v − u ≤ −α + min{v,−u}.
If −v = max{u,−v} then

u1 ≤ −bcTv − Tuc+ v ≤ −(cTv − Tu) + v + 1 ≤ −(c + 1)Tv + v + 1 < 0.
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If u = max{u,−v} then

u1 ≤ −bcTv − Tuc − u ≤ −(cTv − Tu)− u + 1 ≤ (c + 1)Tu− u + 1 < 0

and we are done. To prove u1+v1 ≤ 0 observe that u1+v1 = −2α−β+v−2u. If −v = max{u,−v}
we get (note u ≥ 1 and b(c + 1)Tvc ≤ α ≤ 0)

u1 + v1 = −2α− b−cTα + (c− 1)Tv − cTuc+ v − 2u

< −2α + cTα− (c− 1)Tv + cTu + 1 + v − 2u

≤ −2α− (c− 1)Tv + cTu + v − 2u + 1
≤ −2 b(c + 1)Tvc − (c− 1)Tv − cTv + v − 2 + 1
< 2(−(c + 1))Tv + 2− (2c− 1)Tv + v − 1
= −(2(c + 1) + 2c− 1)Tv + v + 1
= (1− (4c + 1)T )v + 1 ≤ 1.

The last inequality follows from the restriction on T . Since u1 +v1 is an integer u1 +v1 < 1 implies
that u1 + v1 ≤ 0. If u = max{u,−v} we derive

u1 + v1 ≤ −2α + cTα− (c− 1)Tv + cTu + v − 2u

≤ −(2− cT )α + (c− 1)Tu + cTu− 2u

≤ −(2− cT ) b−(c + 1)Tuc+ (2c− 1)Tu− 2u

< (2− cT )((c + 1)Tu + 1) + (2c− 1)Tu− 2u

= (4c + 1− cT (c + 1))Tu + 2(1− u)− cT

≤ ((4c + 1)T − 2)u + 2− cT < 0.

The last inequality follows from the restriction on T . ¤

Lemma 4.20. Let u < 0, v ≥ 0, u2 ≤ 0, v2 ≤ 0, c ∈ [1, 2] and T ≤ 1
7 . If max{u,−v} ≥ 2 then

we have u1 > 0, v1 ≤ 0 and u1 + v1 ≥ 0.

Proof. Again v1 ≤ 0 follows because v1 = u2. Furthermore, we have

u1 ≥ −cTv + Tu + v − u = (1− cT )v − (1− T )u ≥ (1− T )(−u) ≥ 1− T > 0.

Thus it remains to prove that u1 + v1 ≥ 0. Since u1 + v1 = −2α−β + v−2u we have (note α ≥ 0)

u1 + v1 = −2α− b−cTα + (c− 1)Tv − cTuc+ v − 2u

≥ −2α + cTα− (c− 1)Tv + cTu + v − 2u

≥ −2α− (c− 1)Tv + cTu + v − 2u

≥ −2(cTv − Tu)− (c− 1)Tv + cTu + v − 2u

= (T − 3cT )v + (c + 2)Tu + v − 2u

= (1 + T (1− 3c))v + ((c + 2)T − 2)u
> (1− 5T )v − 2u ≥ −2u ≥ 2.

¤

4.2.3. The characterization result and its proof.

First we shall prove the following result.

Theorem 4.21. In order to characterize the SRS in the region R we need at most 512 cutout
polygons. Thus the point (1,−1) is not a critical point12.

12See [3, Definition 7.1] for the definition of “critical point”.
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For ` ∈ N we need the the following sets.

M
(1)
` :=

{
(u, v)

∣∣∣∣u > 0, v ≤ 0, u− v ≤ `, u− 2v ≤ 8`

5
− b−3T`c+ 1

}
,

M
(2)
` :=

{
(u, v)

∣∣∣∣u < 0, v ≥ 0, v − u ≤ `, 2v − u ≤ 8`

5
− b−3T`c+ 1

}
,

M` := M
(1)
` ∪M

(2)
` .

Now we use the lemmas of the previous subsection to establish the following results. From now
we always assume that r ∈ R.

We want to show that the orbit of each element (x, y) ∈ Z2 contains an element of M25. In a
first step we show that we can confine ourselves to studying elements which are contained in M`

for a certain ` ∈ N.

Lemma 4.22. Let r ∈ R and (x, y) ∈ Z2 with max{|x|, |y|} ≥ 20. Then there exist `, n ∈ N such
that τn

r (x, y) ∈ M`.

Proof. Using the definition of τr it is easy to see that either n = 0, n = 1 or n = 2 does the job
for ` sufficiently large. ¤

Lemma 4.23. Let r ∈ R. If (u, v) ∈ M
(1)
` with max{u,−v} ≥ 20 then (u2, v2) ∈ M

(2)
` or

u2, v2 ≥ 0.
If (u, v) ∈ M

(2)
` with max{−u, v} ≥ 20 then (u2, v2) ∈ M

(1)
` or u2, v2 ≤ 0.

Proof. Since (u, v) ∈ M
(1)
` we have u− v ≤ `. Thus Lemma 4.9 implies that

(4.10) −u2 + v2 ≤ `.

Next we want to show that

(4.11) 2v2 − u2 ≤ 8`

5
− b−3T`c+ 1.

To this matter we distinguish two cases. Assume first that v ≥ − 3`
5 . Then Lemma 4.9 yields

2v2 = 2(v + v2)− 2v ≤ 2(u + u2)− 2v,

u2 = (u + u2)− u.

Since u− v ≤ ` and −v ≤ 3`
5 , Lemma 4.15 implies that

2v2 − u2 ≤ (u + u2)− 2v + u ≤ 8`

5
− b−3T`c+ 1.

If, on the contrary, −v > 3`
5 then u ≤ 2`

5 and thus −v ≥ 3
2u holds. In this case Lemma 4.11 yields

2v2 − u2 ≤ −2v + u ≤ 8`

5
− b−3T`c+ 1

and (4.11) is proved. Finally, note that Lemma 4.17 implies that

(4.12) v2 ≥ 0.

Combining (4.10), (4.11) and (4.12) we get the first claim. The second claim is proved in an
analogous way. Just use Lemmas 4.10, 4.12, 4.16 and 4.18 instead of Lemmas 4.9, 4.11, 4.15 and
4.17. ¤

Lemma 4.24. Let r ∈ R. Let (x, y) ∈ M
(1)
` , (x′, y′) := τ3

r (x, y) ∈ M
(2)
` and set (x′′, y′′) :=

τ6
r (x, y). Then x′′ < x or one of the pairs (x, y), (x′, y′) has coordinate maximum less than 20 in

modulus.
Let (x, y) ∈ M

(2)
` , (x′, y′) := τ3

r (x, y) ∈ M
(1)
` and set (x′′, y′′) := τ6

r (x, y). Then x′′ > x or one
of the pairs (x, y), (x′, y′) has coordinate maximum less than 20 in modulus.
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Proof. We only prove the first assertion, the second one is proved in the same way.
Applying Lemma 4.13 with u = x, v = y, u2 = x′, v2 = y′ we get

x + x′ ≥ 1.

Now we use Lemma 4.14 with u = x′, v = y′, u2 = x′′, v2 = y′′ in order to get

x′ + x′′ ≤ 0.

Combining both inequalities yields the desired result. ¤

Lemma 4.25. Let r ∈ R. Let (x, y) ∈ M`. Then there exists a least n ∈ N such that for

(u, v) := τ3n
r (x, y),

(u2, v2) := τ3n+3
r (x, y)

one of the following statements holds.

• (u, v) ∈ M
(1)
` and u2, v2 ≥ 0.

• (u, v) ∈ M
(2)
` and u2, v2 ≤ 0.

• max{|u|, |v|} ≤ 20.

Proof. This is an easy consequence of Lemmas 4.23 and 4.24. Note that Lemma 4.24 ensures that
after finitely many iterations of τ3

r we must have (u, v) 6∈ M`. ¤

Proposition 4.26. Let r ∈ R, l ∈ N, l ≥ 25, and (u, v) ∈ Ml with max{|u|, |v|} > 20. Then there
exists n ∈ N such that z := τn

r (u, v) satisfies one of the following alternatives:
(i) |z|∞ ≤ 20
(ii) |z|∞ > 20 and z ∈ Ml2 for some l2 ∈ N with l2 < l.

Proof. In view of Lemma 4.25 we can assume w.l.o.g. that (u, v) satisfies one of the three state-
ments of that lemma.

Suppose that the first statement of Lemma 4.25 holds. Then Lemma 4.19 implies that for
(u1, v1) = τ2

r (u, v) we have u1 < 0, v1 ≥ 0 and u1 + v1 ≤ 0. Recall that

u1 = −α + v − u,

v1 = −β − α− u.

We claim that (u1, v1) ∈ M`2 for
`2 := −v − β.

First we note that v1−u1 = −v−β = `2. Thus it remains to show that 2v1−u1 ≤ 8`2
5 −b−3T`2c+1.

Since u1 + v1 ≤ 0 this follows by

2v1 − u1 ≤ 3
2
(v1 − u1) ≤ 3

2
(−v − β) ≤ 3

2
`2 ≤ 8`2

5
− b−3T`2c+ 1.

Summing up we proved the claim. Now we need to show that `2 < `. Since (u, v) ∈ M
(1)
` we have

−v ≤ 4
5
` +

1
2

(−b−3T`c+ 1) .

and u− v ≤ `. Thus, since α < 0

`2 ≤ 4
5
` +

1
2

(−b−3T`c+ 1)− β

≤ 4
5
` +

1
2

(−b−3T`c+ 1) + cTα− (c− 1)Tv + cTu + 1

≤ 4
5
` +

1
2

(−b−3T`c) + cT` +
3
2
≤

(
4
5

+
(

3
2

+ c

)
T

)
` + 2 ≤ 11

12
` + 2 < `.

If the second statement of Lemma 4.25 holds, a similar reasoning leads to the conclusion. If
the third statement of Lemma 4.25 holds, there is nothing to prove. ¤
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Theorem 4.21 now follows easily. Just start with Lemma 4.22 in order to get a point in the
orbit which is contained in some M`. Then iterate Proposition 4.26 until you arrive at (u, v) ∈ M`

for some ` ≤ 25. It is easily seen that (u, v) ∈ M` with ` ≤ 25 implies that max{|u|, |v|}) ≤ 25.
Thus each orbit contains a point (u, v) with max{|u|, |v|} ≤ 25.

We now prove our main result.

Theorem 4.27. Let r ∈ S. Then τr is an SRS.

Proof. For z ∈ R set

R1(z) :=
{

(1− T,−1 + cT )
∣∣∣∣ z ≤ T ≤ 1

30
, 1 ≤ c ≤ 1.99

}
,

R2(z) :=
{

(1− T,−1 + cT )
∣∣∣∣ z ≤ T ≤ 1

30
, 1.99 ≤ c ≤ 2

}

and Q0 := {(x, y) | max{|x|, |y|} ≤ 25}. Furthermore we adopt the following notation. For a set
M ⊂ Z2 we write

τrM := {τr(x, y) | (x, y) ∈ M}.
First we want to prove that R1(10−3) is a subset of D0

2. Define the sequence of sets

Qn+1 := {τrQn | r ∈ R1(10−3)}.
Note that just before we proved that for r ∈ R each orbit of τr contains a point in Q0. Thus what
we have to show is that there exists an n ∈ N such that Qn = {(0, 0)}. For z ∈ R define the points

p1 :=
(

1− 1
30

,−1 +
1
30

)
, p2 :=

(
1− 1

30
,−1 +

1.99
30

)
,

p3 := (1− z,−1 + z) , p4 := (1− z,−1 + 1.99z) .

Note that R1(10−3) is the convex hull of these points with z = 10−3. By the definition of τr we
see that

Qn+1 ⊂ {(y, j) |min
i
{− bpi · (x, y)c} ≤ j ≤ max

i
{− bpi · (x, y)c} for some x ∈ R with (x, y) ∈ Qn}

(the dot “·” denotes scalar multiplication). Thus we set P0 := Q0 and

Pn+1 := {(y, j) |min
i
{− bpi · (x, y)c} ≤ j ≤ max

i
{− bpi · (x, y)c} for some x ∈ R with (x, y) ∈ Pn}.

Since Qn ⊂ Pn what remains to prove is that for some n we have Pn = {(0, 0)}. With help of an
easy computer program we find that this is true for n = 500.

Performing the same procedure for R2(10−3) we get that for n = 500

Qn ⊂ {(−1,−1), (−1, 1), (0, 0), (1,−1), (1, 0), (1, 2), (2, 1)}.
If c < 2, i.e. r ∈ R2(10−3) ∩ S, we can easily see by direct calculation that each of these points
(x, y) admits an n ∈ N such that τr(x, y) = (0, 0) for all R2(10−3) ∩ S. Summing up we have
shown that {

(1− T,−1 + cT )
∣∣∣∣ 10−3 ≤ T ≤ 1

30
, 1 ≤ c < 2

}

is a subset of D0
2. Now we have to make the bound 10−3 smaller. First consider R1(z) for

0 < z ≤ 10−3. The sequence Pn only depends on the minimal and maximal values of −bpi · (x, y)c
for i ∈ {1, 2, 3, 4}. Since p1 and p2 do not depend on z we need to examine what happens with
the functions

fi(x, y; z) := −bpi · (x, y))c i = 3, 4
for 0 ≤ z ≤ 10−3. First we note that all elements (x, y) occurring in the sets Pn have max{|x|, |y|} ≤
100 (this can easily be checked by the above mentioned computer program) and that

f3(x, y; z) = −b(−x + y)zc − x + y.

Thus, since max{|x|, |y|} ≤ 100 and 0 < z ≤ 10−3 the value of the function f3(x, y; z) only depends
on x and y and not on z. The same follows for f4(x, y; z) by similar reasoning. Thus the sequence
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(2, 1) // (1,−1) // (−1,−1) // (−1, 1) // (1, 2)ii

Figure 7. The essential subgraph for Lemma 5.2

of the Pn is not altered if we replace R1(10−3) by R1(z) for some 0 < z ≤ 10−3. Summing up we
have shown that {

(1− T,−1 + cT )
∣∣∣∣ 0 < T ≤ 1

30
, 1 ≤ c ≤ 1.99

}

is contained in D0
2. Performing the same considerations for R2(z) mutatis mutandis the result

follows. ¤

5. Computational results

By using the algorithm in Lemma 3.2 for a given small closed convex polygon H ⊂ E2 we can
describe H ∩D0

2 explicitly. In this subsection, we give several examples to illustrate the efficiency
of this algorithm.

5.1. Complete characterization of D0
2 for x ≤ 2

3 .

Lemma 5.1. The triangle ∆(( 1
2 , 1

2 ), ( 2
3 , 1

3 ), ( 2
3 , 2

3 )) is contained in D0
2.

Proof. We apply the algorithm of Lemma 3.2. Start with V0 = {(±1, 0), (0,±1)} and add succes-
sively all possible vertices and edges according to (2) of Lemma 3.2. In the present case this leads
to the graph (V, E) of 21 vertices and 30 edges as follows.

(1,0), (0,1), (-1,0), (0,-1), (-1,1), (0,0), (1,-1), (-1,-1), (1,1), (-1,2), (1,-2), (-2,0), (-2,1), (2,-1),
(2,0), (0,-2), (0,2), (-2,2), (2,-2), (-2,-1), (2,1).

(-2, -1)→(-1, 2), (-2, 0)→(0, 1), (-2, 0)→(0, 2), (-2, 1)→(1, 1), (-2, 2)→(2, 0), (-2, 2)→(2, 1),
(-1, -1)→(-1, 1), (-1, -1)→(-1, 2), (-1, 0)→(0, 1), (-1, 1)→(1, 0), (-1, 1)→(1, 1), (-1, 2)→(2, 0),
(0, -2)→(-2, 1), (0, -2)→(-2, 2), (0, -1)→(-1, 1), (0, 0)→(0, 0), (0, 1)→(1, 0), (0, 2)→(2, -1),
(0, 2)→(2, 0), (1, -2)→(-2, 0), (1, -2)→(-2, 1), (1, -1)→(-1, 0), (1, 0)→(0, 0), (1, 1)→(1, -1), (2,
-2)→(-2, 0), (2, -1)→(-1, -1), (2, -1)→(-1, 0), (2, 0)→(0, -1), (2, 1)→(1, -2), (2, 1)→(1, -1).

As this graph has only one cycle (0, 0) → (0, 0), the lemma follows from Lemma 3.2. ¤
Lemma 5.2. The triangle ∆(( 1

2 ,− 1
2 ), ( 2

3 ,− 1
3 ), ( 2

3 ,− 2
3 )) is contained in D0

2.

Proof. We proceed in a similar manner as in Lemma 5.1. The graph (V, E) is given by 21 vertices
and 30 edges:

(1,0), (0,1), (-1,0), (0,-1), (-1,-1), (0,0), (1,1), (-1,1), (1,-1), (-1,-2), (1,2), (-2,-1), (-2,0), (2,0),
(2,1), (0,-2), (0,2), (-2,-2), (2,2), (-2,1), (2,-1).

(-2,-2)→(-2,0), (-2,-2)→(-2,1), (-2,-1)→(-1,1), (-2,0)→(0,1), (-2,0)→(0,2), (-2,1)→(1,2), (-1,-
2)→(-2,0), (-1,-1)→(-1,0), (-1,-1)→(-1,1), (-1,0)→(0,1), (-1,1)→(1,1), (-1,1)→(1,2), (0,-2)→(-2,-1),
(0,-2)→(-2,0), (0,-1)→(-1,0), (0,0)→(0,0), (0,1)→(1,1), (0,2)→(2,1), (0,2)→(2,2), (1,-1)→(-1,-1),
(1,0)→(0,0), (1,1)→(1,0), (1,2)→(2,0), (1,2)→(2,1), (2,-1)→(-1,-2), (2,-1)→(-1,-1), (2,0)→(0,-1),
(2,1)→(1,-1), (2,1)→(1,0), (2,2)→(2,0).

In view of Lemma 3.2 we are only interested in the non-trivial cycles of this graph. Remove the
trivial edge (0, 0) → (0, 0) and take the essential subgraph 13 by successive removal of stranded
vertices. Then we get the graph drawn in Figure 7, which is just the cycle (2, 1);−1,−1, 1 of
length 5. The associated cutout polygon P ((2, 1);−1,−1, 1) is given by (3.3). It is easy to see that
P ((2, 1);−1,−1, 1) ∩ ∆(( 1

2 ,− 1
2 ), ( 2

3 ,− 1
3 ), (2

3 ,− 2
3 )) = ∅. An application of Lemma 3.2 proves the

13The maximum subgraph with the property that each vertex has at least one incoming edge and at least one
outgoing edge.
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i vertices edges
1 123 267
2 27 45
3 27 39
4 39 53
5 135 267
6 407 1040

Table 2. Size of the graphs (V, E)

(−3, 3) // (3,−2) // (−2, 1) // (1, 1) // (1,−2) // (−2, 3) //
uu

(3,−3)kk

Figure 8. The essential subgraph of ∆4 in Lemma 5.3

lemma. Note that ( 2
3 ,− 1

3 ) is on the boundary of P ((2, 1);−1,−1, 1) but not in P ((2, 1);−1,−1, 1).
¤

In the following we again use the constants γq defined in Section 4.1.

Lemma 5.3. The convex hull H given by the four points (γ3
1 , 1), (γ1γ2, γ1+γ2), ( 2

3 , 1), ( 2
3 , 2

3γ2
+γ2)

is contained in D0
2.

Proof. The whole set H is too large; an application of Lemma 3.2 is not possible for the whole set,
because the construction of the set V does not seem to converge. Thus we are forced to subdivide
H into 6 triangles:

∆1 = ∆((γ3
1 , 1), (γ1γ2, γ1 + γ2), (γ1γ2, 5/4)),

∆2 = ∆((γ3
1 , 1), (γ1γ2, 5/4), (2/3, 1)),

∆3 = ∆((γ1γ2, 5/4), (2/3, 1), (2/3, 5/4)),
∆4 = ∆((γ1γ2, 5/4), (2/3, γ1 + γ2), (2/3, 5/4)),
∆5 = ∆((γ1γ2, 5/4), (2/3, γ1 + γ2), (γ1γ2, γ1 + γ2)),
∆6 = ∆((2/3, 2/(3γ2) + γ2), (2/3, γ1 + γ2), (γ1γ2, γ1 + γ2)).

Now we can apply Lemma 3.2 to each of these triangles. Table 2 gives the number of vertices and
edges of the graphs (V, E) related to ∆i (i = 1, 2, . . . , 6) after removing the trivial cycle 0 → 0.
Apart from ∆4, the graphs are acyclic. As in the proof of Lemma 5.1 this shows that ∆i ⊂ D0

2

for i ∈ {1, 2, 3, 5, 6}. The essential subgraph of ∆4 is given in Figure 8. It contains two primitive
cycles: (1,−2); 3,−3, 3,−2, 1 and (1,−2); 3,−2, 1. The corresponding cutouts are

P ((1,−2); 3,−3, 3,−2, 1) =
{

(x, y)
∣∣∣∣ y < 2x,

2x

3
+ 1 ≤ y, x +

2
3

< y < −x + 3
}

and

P ((1,−2); 3,−2, 1) =
{

(x, y)
∣∣∣∣

x

2
+ 1 < y < 2x,

3
2
x < y <

2x

3
+ 1

}
.

It is easy to see that P ((1,−2); 3,−3, 3,−2, 1) ∪ P ((1,−2); 3,−2, 1) has no intersection with ∆4.
Note that the point ( 2

3 , 4
3 ) is on the boundary of P ((1,−2); 3,−2, 1) but it is not contained in

P ((1,−2); 3,−2, 1). ¤

Summing up we have shown the following characterization result for D0
2.

Theorem 5.4.
{
(x, y)

∣∣ 0 ≤ x ≤ 2
3 , y < x + 1, y ≥ −x

}
is contained in D0

2.
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Proof. The assertion is the combination of Corollary3.6, Theorems 4.6 and 4.8 with q = 2, and
Lemmas 5.1, 5.2 and 5.3. ¤

Note that the range for x can not go beyond 2
3 since ( 2

3 ,− 1
3 ) and ( 2

3 , 4
3 ) are on the boundary of

a cutout polygon.

5.2. Computational results near to the boundary of D2.
The nearer we approach ∂D2 the more extensive calculations are necessary in order to perform

the algorithm given in Lemma 3.2. Here are two examples.

Lemma 5.5. The convex hull H of the four points ( 2
3 ,− 1

3 ), (2
3 ,− 2

3 ), ( 29
30 ,− 14

15 ), ( 29
30 ,− 29

30 ) is con-
tained in D0

2 apart from the line connecting ( 2
3 ,− 1

3 ) and ( 29
30 ,− 14

15 ).

Proof. Define two triangles ∆n,m := ∆((1−1/n, 2/n−1), (1−1/n, 1/n−1), (1−1/m, 2/m−1)) and
∆′

n,m := ∆((1−1/n, 1/n−1), (1−1/m, 2/m−1), (1−1/m, 1/m−1)). Subdivide the convex hull into
12 triangles: ∆3,5,∆′

3,5,∆5,10,∆′
5,10,∆10,15,∆′

10,15,∆15,20,∆′
15,20, ∆20,25, ∆′

20,25, ∆25,30, ∆′
25,30 for

example14. Then for each invariant graph, apart from the trivial cycle there exists only the cycle
(2, 1);−1,−1, 1. This cycle already appeared in the proof of Lemma 5.2 and P ((2, 1);−1,−1, 1)
intersects the convex hull H only along the line connecting (2

3 ,− 1
3 ) and ( 29

30 ,− 14
15 ). ¤

Putting together Theorem 4.27, Lemma 5.5 Lemma 5.2, Theorem 3.3 and Theorem 3.4 we
arrive at the following result.

Theorem 5.6. We have

{(x, y) | x > 0,−x ≤ y < 1− 2x} ⊂ D0
2.

Lemma 5.7. The convex hull H of the four points ( 2
3 , 1), ( 2

3 , 4
3 ), ( 29

30 , 1), ( 29
30 , 31

30 ) is contained in
D0

2.

Proof. In this case we subdivide H in the following way. Let ∆n := ((1− 1
n , 1), (1− 1

n , 1+ 1
n ), (1−

1
n+1 , 1 + 1

n+1 )) and ∆′
n := ((1− 1

n , 1), (1− 1
n+1 , 1 + 1

n+1 ), (1− 1
n+1 , 1)). Then we subdivide H into

the 54 triangles ∆3, . . . , ∆29, ∆′
3, . . . , ∆

′
29. The corresponding invariant graphs are acyclic in most

cases after removing the trivial cycle. However, the two non trivial cycles (2, 0);−1, 2,−2, 1, 1,−2
and (2, 0);−1, 2,−2 appear when we consider the triangle ∆3. Both cycles give the same cutout
point (1, 3

2 ). ¤

5.3. Complete characterization of D0
2 for 2

3 ≤ x ≤ 5
6 .

In this subsection Lemma 3.2 is applied in order to characterize the set D0
d completely in the

strip 2
3 ≤ x ≤ 5

6 . We do not give all the details. Our aim is just to give the subdivision of this strip
that is needed to apply Lemma 3.2 in all its subregions which have not yet been characterized in
former results. Together with Theorem 5.4 this will lead to the following result.

Theorem 5.8. Let E1, E2 and E4 be given as in Proposition 3.7 and define

L =
{

(x, y)
∣∣∣∣0 ≤ x ≤ 5

6
, y < x + 1, y ≥ −x

}
.

Then
D0

2 ∩ L = L \ (E1 ∪ E2 ∪ E4).
This is a complete characterization of D0

2 for x < 5
6 .

The characterization of L ∩ {
(x, y) | 0 < x < 2

3

}
is already contained in Theorem 5.4. Thus we

may confine ourselves to the characterization of

L′ := L ∩
{

(x, y)
∣∣∣∣
2
3
≤ x ≤ 5

6

}
.

In what follows γ2 > 5
6 is defined as in Section 4.1. We already characterized certain subsets of L′

in previous theorems. These results are given in Table 3. Thus in order to prove Theorem 5.8 it
remains to characterize the regions which are treated in the following four lemmas.

14Finer subdivision would give smaller graphs.
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Region characterized in contained in D0
2

L′ ∩ {(x, y) | x
γ2

+ γ2 < y < x + 1} Theorem 4.8 for κ = γ2 yes
L′ ∩ {(x, y) | 1 + x

2 < y < 2x} Proposition 3.7 (E1 and E2) no
L′ ∩ {(x, y) |x ≤ y ≤ 2− x} Lemma 5.7 and Corollary 3.6 yes

L′ ∩ {(x, y) | − 1 + x ≤ y ≤ 1− x} Corollary 3.6 yes
L′ ∩ {(x, y) | 1− 2x ≤ y < −x

2} Proposition 3.7 (E4) no
L′ ∩ {(x, y) | − x ≤ y < 1− 2x} Theorem 5.6 yes

Table 3. Results on the SRS in L′ that have been proved already

Lemma 5.9. Let

A1 :=
{

(x, y)
∣∣∣∣
2
3
≤ x ≤ 5

6
, 2x ≤ y ≤ x

γ2
+ γ2

}
.

Then A1 ⊂ D0
2.

Proof. This lemma is proved with help of the algorithm in Lemma 3.2. To this matter we need to
cover A1 with small regions. These are the convex hulls of the following sets of points

{(3/4, 2/(3γ2) + γ2), (2/3, 2/(3γ2) + γ2), (3/4, 8/5)};
{(3/4, 2/(3γ2) + γ2), (2/3, 2/(3γ2) + γ2), (3/4, 3/(4γ2) + γ2)};

{(4/5, 2/(3γ2) + γ2), (3/4, 2/(3γ2) + γ2), (4/5, 8/5)};
{(4/5, 2/(3γ2) + γ2), (3/4, 2/(3γ2) + γ2), (4/5, 3/(4γ2) + γ2)};
{(3/4, 3/(4γ2) + γ2), (3/4, 2/(3γ2) + γ2), (4/5, 3/(4γ2) + γ2)};
{(3/4, 3/(4γ2) + γ2), (4/5, 4/(5γ2) + γ2), (4/5, 3/(4γ2) + γ2)};

{(4/5, 8/5), (5/6, 5/3), (4/5, 5/3)};
{(4/5, 31/18), (5/6, 4/(5γ2) + γ2), (5/6, 31/18)};

{(4/5, 31/18), (4/5, 4/(5γ2) + γ2), (5/6, 4/(5γ2) + γ2)};
{(9/11, 4/(5γ2) + γ2), (4/5, 4/(5γ2) + γ2), (9/11, 9/(11γ2) + γ2)};
{(9/11, 4/(5γ2) + γ2), (5/6, 4/(5γ2) + γ2), (5/6, 9/(11γ2) + γ2)};
{(9/11, 4/(5γ2) + γ2), (5/6, 9/(11γ2) + γ2), (9/11, 9/(11γ2) + γ2)};
{(5/6, 5/(6γ2) + γ2), (5/6, 19/(23γ2) + γ2), (19/23, 19/(23γ2) + γ2)};

{(19/23, 19/(23γ2) + γ2), (5/6, 19/(23γ2) + γ2), (19/23, 9/(11γ2) + γ2)};
{(5/6, 19/(23γ2) + γ2), (5/6, 9/(11γ2) + γ2), (19/23, 9/(11γ2) + γ2)};

{(19/23, 19/(23γ2) + γ2), (9/11, 9/(11γ2) + γ2), (19/23, 9/(11γ2) + γ2)};
{(2/3, 3/2), (2/3, 4/3), (3/4, 3/2)};

{(2/3, 3/2), (2/3, 2/(3γ2) + γ2), (3/4, 3/2)};
{(3/4, 3/2), (2/3, 2/(3γ2) + γ2), (3/4, 8/5)};
{(3/4, 3/2), (3/4, 2/(3γ2) + γ2), (4/5, 8/5)};

{(4/5, 5/3), (4/5, 31/18), (5/6, 31/18), (5/6, 5/3)}.
For each of these convex hulls the graph constructed with help of Lemma 3.2 is either acyclic or
contains cycles corresponding to empty cutout polygons. This proves the lemma. ¤
Lemma 5.10. Let

A2 :=
{

(x, y)
∣∣∣∣
2
3
≤ x ≤ 5

6
, 2− x ≤ y ≤ 1 +

x

2

}
.

Then A2 ⊂ D0
2.

Proof. This lemma is proved with help of the algorithm in Lemma 3.2. To this matter we need to
cover A2 with small regions. These are the convex hulls of the following sets of points

{(4/5, 7/5), (4/5, 6/5), (2/3, 4/3)};
{(4/5, 5/4), (4/5, 6/5), (5/6, 7/6), (5/6, 5/4)};
{(4/5, 7/5), (4/5, 5/4), (5/6, 5/4), (5/6, 17/12)}.

For each of these convex hulls the graph constructed with help of Lemma 3.2 is either acyclic or
contains cycles corresponding to empty cutout polygons. This proves the lemma. ¤
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Lemma 5.11. Let

A3 :=
{

(x, y)
∣∣∣∣
2
3
≤ x ≤ 5

6
, 1− x ≤ y ≤ x

}
.

Then A3 ⊂ D0
2.

Proof. This lemma is proved with help of the algorithm in Lemma 3.2. To this matter we need to
cover A3 with small regions. These are the convex hulls of the following sets of points

{(2/3, 2/3), (2/3, 1/3), (4/5, 1/2)};
{(2/3, 2/3), (4/5, 1/2), (4/5, 4/5)};
{(4/5, 4/5), (5/6, 4/5), (5/6, 5/6)};

{(4/5, 4/5), (4/5, 3/5), (5/6, 3/5), (5/6, 4/5)};
{(4/5, 1/2), (4/5, 3/5), (5/6, 3/5), (5/6, 1/2)};
{(4/5, 1/5), (4/5, 1/3), (5/6, 1/3), (5/6, 1/5)};

{(4/5, 1/5), (5/6, 1/6), (5/6, 1/5)};
{(4/5, 1/5), (2/3, 1/3), (4/5, 1/2)};

{(4/5, 1/2), (4/5, 1/3), (5/6, 1/3), (5/6, 1/2)}.
For each of these convex hulls the graph constructed with help of Lemma 3.2 is either acyclic or
contains cycles corresponding to empty cutout polygons. This proves the lemma. ¤

Lemma 5.12. Let

A4 :=
{

(x, y)
∣∣∣∣
2
3
≤ x ≤ 5

6
, −x

2
≤ y ≤ −1 + x

}
.

Then A4 ⊂ D0
2.

Proof. This lemma is proved with help of the algorithm in Lemma 3.2. To this matter we need to
cover A4 with small regions. These are the convex hulls of the following sets of points

{(2/3,−1/3), (4/5,−2/5), (4/5,−1/5)};
{(4/5,−1/5), (4/5,−1/3), (5/6,−1/3), (5/6,−1/6)};
{(4/5,−1/3), (4/5,−2/5), (5/6,−5/12), (5/6,−1/3)}.

For the first two convex hulls the graph constructed with help of Lemma 3.2 is either acyclic
or contains cycles corresponding to empty cutout polygons. The last convex hull gives rise to a
graph having a cycle which leads to the cutout polygon P ((2,−1);−2, 1, 3, 1,−2,−1, 2). This is
the polygon causing the cutout E3 of Proposition 3.7. Since E3∩A4 = ∅ this cutout is not relevant
for the characterization of the SRS in A4. This proves the lemma. ¤

Summing up we finish the proof of Theorem 5.8.

6. Some Conjectures

We finish this paper with the statement of some conjectures.

Conjecture 6.1. D2 coincides with the set D defined in Theorem 2.1. In particular, what remains
to be proved in view of that theorem is

{(1, y) | |y| < 2} ⊂ D2.

In other words, let |λ| < 2 and let (an)∞n=1 be a sequence which satisfies

0 ≤ an + λan+1 + an+2 < 1 (n ∈ N).

Then (an)∞n=1 is periodic.
You find partial results concerning this conjecture in [5]. Especially we prove that it is true for

λ = 1+
√

5
2 .
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Conjecture 6.2. The interior of the region defined by the convex hull of the points{
(1, 1),

(
29
30

, 1
)

,

(
29
30

,
31
30

)}

is contained in D0
2. This is the region on the right hand side of the quadrangle characterized by

Lemma 5.7 in Figure 1.
The interior of the triangle defined by the convex hull of{

(1, 2),
(

5
6
,
11
6

)
,

(
5
6
,
10
6

)}

is contained in D0
2. This is the light grey region beyond E1 in Figure 1.

Conjecture 6.3. The number of critical points15 of Dd is finite. D2 has only two critical points.
These are the points (1, 0) and (1, 1).

In the first part of this series of papers we showed that the set of weak critical points is compact.

In an earlier version of this paper we conjectured too: Let M be a positive integer and set

N(d,M) = |{(p1, . . . , pd−1) ∈ Zd−1 | (M,p1, . . . , pd−1) ∈ Cd}|,
N0(d,M) = |{(p1, . . . , pd−1) ∈ Zd−1 | (M,p1, . . . , pd−1) ∈ C0

d}|.
Then

lim
M→∞

N(d + 1,M)
Md

= λd (Dd) and lim
M→∞

N0(d + 1,M)
Md

= λd

(D0
d

)
,

where λd denotes the d-dimensional Lebesgue measure (the Lebesgue measurability of Dd and D0
d

is proved in [4, Theorem 4.10]). In the meantime we proved both assertions and the result will
appear in part III of this series of papers.
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[15] I. Kátai and B. Kovács, Kanonische Zahlensysteme in der Theorie der quadratischen algebraischen Zahlen,

Acta Sci. Math. (Szeged), 42 (1980), 99–107.
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