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Abstract. For r ∈ Rd define the function

τr : Z
d → Z

d, z = (z0, · · · , zd−1) 7→ (z1, . . . , zd−1,−⌊rz⌋),

where rz is the scalar product of the vectors r and z. If each orbit of τr ends up at 0, we call
τr a shift radix system. It is a well-known fact that each orbit of τr ends up periodically if the
polynomial td + rd−1td−1 + · · ·+ r0 associated to r is contractive. On the other hand, whenever
this polynomial has at least one root outside the unit circle, there exist starting vectors that give
rise to unbounded orbits. The present paper deals with the remaining situations of periodicity
properties of the mappings τr for vectors r associated to polynomials whose roots have modulus
less than or equal to one with equality in at least one case. We show that for a large class of
vectors r belonging to the above class the ultimate periodicity of the orbits of τr is equivalent
to the fact that τs is a shift radix system or has another prescribed orbit structure for a certain
parameter s related to r. These results are combined with new algorithmic results in order to
characterize vectors r of the above class that give rise to ultimately periodic orbits of τr for each
starting value. In particular, we work out the description of these vectors r for the case d = 3.
This leads to sets which seem to have a very intricate structure.

1. Introduction

Shift radix systems were introduced in 2005 by Akiyama et al. [1] in the following way. For
r ∈ Rd define the function

τr : Zd → Zd, z = (z0, . . . , zd−1) 7→ (z1, . . . , zd−1,−⌊rz⌋),

where rz is the scalar product of the vectors r and z. Note that τr(z) = (z1, . . . , zd) where zd is
defined uniquely by

0 ≤ r0z0 + . . . + rd−1zd−1 + zd < 1.

This relates the study of τr to almost linear recurrences (see e.g. [2, 3, 12] where this viewpoint
is emphasized).

The mapping τr is called a shift radix system (SRS) if for any z ∈ Zd there exists a k ∈ N
such that1 τk

r
(z) = 0. Shift radix systems turned out to be a generalization of several notions of

well-known number systems. For certain parameters r related to a Pisot number β the mapping
τr is conjugate to the well-known beta-transformation Tβ(γ) = βγ − ⌊βγ⌋. This conjugacy can
be used in order to prove that the beta-expansions related to β have a certain finiteness property
(called property (F) in the literature; cf. e.g. [10]) if and only if the related mapping τr is an
SRS. Moreover, the problem of characterizing all bases of canonical number systems (see [15] for a
definition of these objects) turns out to be a special case of the description of all vectors r giving
rise to SRS. For details of these correspondences we refer the reader to [1]. It is also possible to
view the rational based number systems introduced in [5] as special cases of SRS.
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1The notation τk

r
(z) denotes the kth iterate of τr applied to z.
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SRS are related to orbits of τr ending up eventually at zero. As we are interested in eventually
periodic orbits of τr in general, we define the sets

Dd :=
{

r ∈ Rd
∣

∣ ∀z ∈ Zd ∃k, l ∈ N : τk
r
(z) = τk+l

r
(z)
}

and

D
(0)
d :=

{

r ∈ Rd | τr is an SRS
}

which will be of importance throughout the present paper. In view of the above-mentioned facts

the set D
(0)
d is related to finiteness properties of several kinds of number systems. The set Dd is

strongly related to contractive polynomials. Indeed, for r = (r0, . . . , rd−1) ∈ Rd define

(1.1) R(r) :=

















0 1 0 · · · 0
... 0

. . .
. . .

...
...

...
. . . 1 0

0 0 · · · 0 1
−r0 −r1 · · · −rd−2 −rd−1

















∈ Rd×d

and let
Ed := {r ∈ Rd | ̺(R(r)) < 1}

where ̺(A) denotes the spectral radius of the square matrix A. It is easy to see that Ed is the
so-called Schur-Cohn-region (see [18]) which contains all vectors r for which r · (x0, x1, . . . , xd−1)
is a contractive polynomial in x. In [1, Section 4] it is shown that Dd satisfies

(1.2) Ed ⊂ Dd ⊂ Ed

and Ed = int (Ed). We mention here that the set Ed was discussed in [9], where it was shown that
it is simply connected and that it is bounded by three hypersurfaces two of which are hyperplanes
for d ≥ 2.

The only problem remaining for the characterization of Dd is to describe Dd \ Ed, which is a
subset of ∂Dd. We just mention that this problem contains a well-known conjecture on Salem
numbers as a special case. Indeed, in 1980 Schmidt [17] conjectured that beta-expansions with
respect to a Salem number β are periodic for each γ ∈ Q(β). It turns out that this is equivalent
to the fact that the mapping τr has only eventually periodic orbits, i.e., r ∈ Dd, for a certain r

related to β. As β is a Salem number this parameter r is contained in ∂Dd. Some studies related
to the original conjecture of Schmidt can be found in [6], however, it has not been settled for a
single Salem number up to now. Although in the present paper we are able to describe large parts
of Dd \ Ed we cannot settle Schmidt’s conjecure.

Our parameter classes also do not contain Salem numbers.
For the more general problem of describing Dd \Ed the situation is a bit different. Indeed, there

exist some subsets of ∂Dd (not related to Salem numbers) which could be characterized so far.
Partial results for d = 2 can be found in [2, 3, 4, 14]. Moreover, in [16] several regions of ∂D3 have
been investigated. The current situation for d = 2 is depicted on the left hand side of Figure 1.
The interior of the triangle represents E2. The solid lines and the points marked with small full
disks form a subset of D2 while the dashed lines together with the points marked with small circles
((1, 2) and (1,−2)) do not. It is up to now unknown whether the grey parts of the right boundary
of the triangle belong to D2 or not. It is conjectured that they do (see [4, Conjecture 6.1]). For the
three dimensional case there exists only a case study (see [12]). More precisely, it was shown that
(

1, 3+
√

5
2 , 3+

√
5

2

)

∈ ∂D3 \ D3. Summing up, it seems to be very difficult to describe the boundary

of Dd and often for a single point it seems to be hard to decide whether it belongs to Dd or not.
The aim of the present paper is to give a new method which allows to decide for large regions

of ∂Dd whether they belong to Dd or not.

Our method works by establishing connections between the sets Dd and D
(0)
e (here e < d) as

well as some related sets. Knowledge on the sets D
(0)
e is used in order to make assertions on the

boundary of Dd. Although the sets D
(0)
d are far from being described completely, large regions of

them can be described algorithmically which is a priori not possible for points in Dd \ Ed. Indeed,
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Figure 1. The set D2 (left) and an approximation of D
(0)
2 (middle). On the right

hand side we give a magnified version of the dashed rectangle indicated in the

approximation of D
(0)
2 . In this magnification some parts of the small grey region

which is not yet characterized is visible.

characterization results on D
(0)
d can be found in [1, 4]. Moreover, a very good approximation of

D
(0)
2 is contained in [19]. This approximation is shown in the middle of Figure 1. The white parts

inside the triangle belong to D
(0)
2 , the black parts do not. The small grey sets near the right

boundary that can be seen in the magnification on the right hand side of Figure 1 have not been
analyzed yet. The only complete result available so far is for d = 1. Here we have D1 = [−1, 1]

and D
(0)
1 = [0, 1) (cf. [1, Proposition 4.4]).

The paper is organized as follows. In Section 2 we collect several properties of Ed which will be
used in the sequel. For this purpose we summarize and adapt the results of Fam and Meditch [9].
Section 3 contains first results on the orbit structure of τr. In Section 4 we define sets determined
by certain cycles of τr that will be relevant in the sequel. Section 5 contains our main results. We
give characterization results for large parts of Dd \ Ed in terms of sets which can be determined

algorithmically. In particular, we relate some parts of Dd \ Ed to D
(0)
d−1, D

(0)
d−2 as well as some

related sets large parts of which can be described algorithmically. The results are based on a fairly
general theorem on the orbit structure of τr. Section 6 is devoted to algorithms for determining
the relevant sets. Using these algorithms we give a description of large parts of D3 \ E3, compare
Figures 3 and 4.

2. Some properties of Ed

The set Ed can be described by using a result of Schur [18].
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Figure 2. The set E3

Proposition 2.1 (cf. Schur [18]). For 0 ≤ k < d define

δk(r0, . . . , rd−1) =
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∈ R2(k+1)×2(k+1).

Then

(2.1) Ed =
{

(r0, . . . , rd−1) ∈ Rd | ∀k ∈ {0, . . . , d − 1} we have det (δk(r0, . . . , rd−1)) > 0
}

.

For small d we have

E1 ={x ∈ R | |x| < 1},

E2 ={(x, y) ∈ R2 | |x| < 1, |y| < x + 1},

E3 ={(x, y, z) ∈ R3 | |x| < 1, |y − xz| < 1 − x2, |x + z| < y + 1}.

(2.2)

We already saw that E2 is a triangle. E3 is depicted in Figure 2. For obtaining a characterization
of Ed in the above mentioned way we have to calculate d determinants, the biggest of them having
dimension 2d × 2d. There exists another way of characterizing Ed which is based on the results
proved by Fam and Meditch in [9]. In this paper it was shown that Ed is simply connected and
that for d ≥ 2 it is bounded by three hypersurfaces two of which are hyperplanes. Just intuitively
this is obvious.

Indeed, for r ∈ Rd denote by λ1, . . . , λd the d (not necessarily distinct) roots of the characteristic
polynomial χR(r) of R(r). It is easy to see that r ∈ Ed if and only if |λi| < 1 for all i ∈ {1, . . . , d} and
r ∈ ∂(Ed) if and only if |λi| ≤ 1 for all i ∈ {1, . . . , d} and equality holds for at least one index. There
are three possibilities for a root to have modulus 1. It can be +1, −1 or a non-real complex number
with absolute value 1. Each of these possibilities corresponds to one hypersurface. For obtaining
a parametrization of these hypersurfaces define for vectors r = (r0, . . . , rp−1), s = (s0, . . . , sq−1)



FINITE AND PERIODIC ORBITS OF SHIFT RADIX SYSTEMS 5

of arbitrary dimension p, q ∈ N the binary function ⊙ by

(2.3) χR(r⊙s) = χR(r)χR(s).

Obviously ⊙ is associative, commutative and continuous in both arguments. Formally denote by ()
the 0-dimensional vector and define r⊙() := r for all vectors r. Note that this makes

(⋃

k∈N
Rk,⊙

)

a commutative monoid which is isomorphic to the monoid of monic real polynomials together with
multiplication. Furthermore, it is convenient to denote by E0 the set that consists only of (). For
D ⊂ Rp and E ⊂ Rq let D ⊙ E := {r ⊙ s| r ∈ D, s ∈ E}. The following results have already
been presented by Fam and Meditch in [9]. Since the authors only give sketched and somewhat
heuristic proofs we prove the results in full detail here.

Lemma 2.2 (cf. [9, Formulas (9) and (10)]). Let p, q ∈ N, p even. Then

(1) Ep ⊙ Eq = Ep+q,

(2) Ep ⊙ Eq = Ep+q,

(3) ∂Ep ⊙ Eq ∪ Ep ⊙ ∂Eq = ∂Ep+q.

Proof. For p = 0 or q = 0 the lemma is trivial. Thus suppose p and q are non-zero. For proving
(1) suppose that r := (r0, . . . , rp−1) ∈ Ep and r′ := (r′0, . . . , r

′
q−1) ∈ Eq. This implies that the

roots of the polynomials P (x) = χR(r)(x) = xp + rp−1x
p−1 + . . . + r0 and Q(x) = χR(r′)(x) =

xq + r′q−1x
q−1 + . . . + r′0 have modulus smaller than 1. Thus, by (2.3), we have χR(r⊙r

′) = PQ
and therefore r ⊙ r′ ∈ Ep+q. On the other hand suppose that s ∈ Ep+q. We have to show that
there exist r ∈ Ep and r′ ∈ Eq with r ⊙ r′ = s. We can write χR(s) as a product of the shape

χR(s)(x) = (x − λ1) · · · (x − λs)(x − λs+1) · · · (x − λs+t)(x − λs+t+1) · · · (x − λs+2t)

with s, t ≥ 0, s + 2t = p + q, λj ∈ R for 1 ≤ j ≤ s, λs+j ∈ C \ R for 1 ≤ j ≤ 2t, λs+j = λs+t+j

for 1 ≤ j ≤ t and |λj | < 1 for 1 ≤ j ≤ p + q. Let J ⊂ {1, . . . , s} and J ′ ⊂ {1, . . . , t} such that
|J | + 2|J ′| = p. This is always possible, since p is even. Let

P (x) = xp + rp−1x
p−1 + . . . + r0 :=

∏

j∈J

(x − λj)
∏

j∈J′

(x − λs+j)(x − λs+t+j),

Q(x) = xq + r′q−1x
q−1 + . . . + r′0 :=

∏

j∈{1,...,s}\J

(x − λj)
∏

j∈{1,...,t}\J′

(x − λs+j)(x − λs+t+j).

Note that P and Q are real polynomials. Then obviously r := (r0, . . . , rp−1) ∈ Ep, r′ :=
(r′0, . . . , r

′
q−1) ∈ Eq and r ⊙ r′ = s completing the proof of Assertion (1). Assertions (2) and

(3) follow immediately by the continuity of ⊙. �

Note that for p ≡ q ≡ 1 mod2 we only have Ep ⊙ Eq ⊂ Ep+q. Lemma 2.2 can be used to obtain
a parametrization of Ep+q from parametrizations of Ep and Eq. We will show this by an example.

Example 2.3. It is easy to see that E1 = {v| − 1 < v < 1} and E2 = {(s, (s + 1)t)| − 1 < s, t < 1}.
We now want to get a parametrization of E3. From Assertion (1) of Lemma 2.2 we know that
E3 = E1 ⊙ E2. By the definition of ⊙ this shows that

(2.4) E3 = {(vs, s + vt(s + 1), (s + 1)t + v) | − 1 < s, t, v < 1}.

This parametrization maps (−1, 1)3 onto E3. However, this mapping is not bijective since, for
example, we have (0) ⊙

(

1
6 , 5

6

)

=
(

1
2

)

⊙
(

0, 1
3

)

. By Assertion (2) of Lemma 2.2 we easily get a

parametrization of E3 by enlarging the domain of s, t, v to the closed interval [−1, 1]. This shows
the advantage of the representation (2.4) since exchanging the strict inequalities to non-strict ones
in the representation of E3 in (2.2) does not yield E3 (cf. [11]).

Now we turn to the boundary of Ed. Assertion (3) of Lemma 2.2 already shows one way to
obtain ∂Ed. Now we will present an alternative representation. Let d ≥ 2 and

E
(1)
d :=(1) ⊙ Ed−1,

E
(−1)
d :=(−1) ⊙ Ed−1,

E
(C)
d := {(1, a) | a ∈ (−2, 2)} ⊙ Ed−2.

(2.5)
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Theorem 2.4 (cf. [9, Section II]). For d ≥ 3 we have

∂Ed = E
(1)
d ∪ E

(−1)
d ∪ E

(C)
d .

Proof. The proof runs along similar lines as the proof of Lemma 2.2. Since (1), (−1) ∈ ∂E1 and

{(1, a) |a ∈ (−2, 2)} ∈ ∂E2 we have E
(1)
d ∪ E

(−1)
d ∪ E

(C)
d ⊂ ∂Ed. On the other hand suppose that

r ∈ ∂Ed. Then χR(r) has a root 1, a root −1 or a pair of complex conjugate roots with absolute
value 1. All other roots have modulus less than or equal to 1. Suppose χR(r)(1) = 0. Then

χR(r)(x) = (x− 1)χR(s)(x) for some s ∈ Rd−1 and thus r = (−1)⊙ s. Since all roots of χR(r) have

modulus less than or equal to 1 we necessarily have s ∈ Ed−1 showing that r ∈ E
(−1)
d . Similarly it

can be shown that r ∈ E
(1)
d when χR(r) has −1 as a root. If χR(r) has a pair of complex conjugate

roots having modulus 1, say α± iβ, |α| < 1, then χR(r)(x) must be divisible by x2−2α+1. Hence

χR(r)(x) = (x2 − 2α + 1)χR(s)(x) for some s ∈ Rd−2 and we even have s ∈ Ed−2 by the same

argument as above. Thus r = (1,−2α) ⊙ s ∈ E
(C)
d . �

Note that in view of (2.5) this shows that E
(1)
d and E

(−1)
d are homeomorphic images of Ed−1. It

is not true that E
(C)
d is a homeomorphic image of Ed−2×(−2, 2) for d ≥ 4, as injectivity is violated.

This can be seen by observing that for a, b ∈ (−2, 2) with a 6= b we have r := (0, . . . , 0, 1, a) ∈
∂Ed−2, s := (0, . . . , 0, 1, b) ∈ ∂Ed−2 and r ⊙ (1, b) = s ⊙ (1, a). However, it is easy to see that the

interior of E
(C)
d (subspace topology) is always a homeomorphic image of Ed−2 × (−2, 2).

Theorem 2.5 (cf. [9, Section II]). E
(1)
d , E

(−1)
d and E

(C)
d are simply connected. Moreover, E

(1)
d

and E
(−1)
d are subsets of hyperplanes.

Proof. The simple connectivity of E
(1)
d , E

(−1)
d and E

(C)
d follows immediately from the simple con-

nectivity of Ed−1 and Ed−2 and by the definition of E
(1)
d , E

(−1)
d and E

(C)
d . Now x = (x0, . . . , xd−1) ∈

E
(1)
d if and only if there exists a (unique) point r = (r0, . . . , rd−2) ∈ Ed−1 such that

x = (1) ⊙ r = (r0, r0 + r1, . . . , rd−3 + rd−2, rd−2 + 1).

Thus (x0, . . . , xd−1) satisfies 1 +
∑d

j=1(−1)jxd−j = 0 showing that E
(1)
d lies on a hyperplane.

Similarly it can be shown that

E
(−1)
d ⊂ {(X0, . . . , Xd−1) ∈ Rd | X0 + · · · + Xd−1 + 1 = 0}.

�

Let us summarize some facts on Ed. Fam and Meditch show that Ed is bounded (cf. [9, Theo-
rem 1]) and simply connected (cf. [9, Lemma 1]). As mentioned in (1.2), it satisfies Ed = int (Ed).
Moreover, Theorem 2.5 yields that Ed is bounded by three hypersurfaces for d ≥ 2. Two of these
hypersurfaces are hyperplanes. If d = 2 the third one is a hyperplane (line), too. This is obviously

not true for d ≥ 3. E
(C)
d is a subset of an algebraic curve of higher degree. Just for completeness

we want to mention another result of Fam [8] in which the volume V (Ed) of Ed is calculated. Using
the Barnes G-function G we have

V (Ed) =







22n2+nΓ(n+1)G(n+1)4

G(2n+2) (d = 2n),

22n2+3n+1G(n+2)4

Γ(n+1)G(2n+3) (d = 2n + 1).

Note that for positive integers the Barnes G-function equals the superfactorials: G(n+2) =
∏n

j=1 j!

for n ∈ N. Moreover, observe that by [8, Formula (2.13)] we have limd→∞ V (Ed) = 0. On the
other hand the diameter of Ed tends to infinity with d. Indeed, the vector of the coefficients of
the k-th cyclotomic polynomial Φk belongs to the boundary of Eϕ(k) and by a result of Emma
Lehmer [13] the maximum of the absolute value of the coefficients of Φk is not bounded.
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3. First relations between the orbits of τr and τr⊙s

In this section we will investigate the relation between the behavior of τr and the behavior of
τr⊙s for r ∈ Rd and s ∈ Zq (see Theorem 3.1). We will see that it is necessary for r to be an element
of Dd in order to have that r⊙ s ∈ Dd+q. Moreover, we need s to have integer coordinates because
otherwise there exist no relations between τr and τr⊙s as the ones described in Theorem 3.1.

This forms the basis for a finer classification of Dd which will be established in the subsequent
sections and which will enable us to give necessary and sufficient conditions for r and s to ensure
that r ⊙ s ∈ Dd+q. These conditions can be checked algorithmically. Thus at the end we will be
able to describe large pieces of Dd+q \ Ed+q.

We start with an analysis on how the maps τr and ⊙ fit together. At first we introduce a new
map acting on (right) infinite sequences. For some q ∈ N\{0} and a vector s = (s0, . . . , sq−1) ∈ Zq

define

Vs : Z∞ → Z∞, (xn)n∈N 7→

(

q−1
∑

k=0

skxn+k + xn+q

)

n∈N

.

It is easy to see that Vs maps each periodic sequence to a periodic sequence and each sequence
that is eventually zero to a sequence that is eventually zero.

Let r ∈ Rd and x ∈ Zd. Successive application of τr to x induces a sequence of integer vectors,
(xn)n∈N = (τn

r
(x))n∈N

, where x0 = x. By the definition of τr after each application only one
entry changes. The other entries only change their position. Denote by τ∗

r
(x) ∈ Z∞ the sequence

(xn)n∈N of the first entries of the sequence (xn)n∈N. It is easy to see that for all k ≥ 0 we have
(xk, . . . , xk+d−1) = xk = τk

r
(x), in particular, x = (x0, . . . , xd−1). We will denote a sequence

(xn)n∈N with period l and preperiod k by x0, . . . , xk−1, (xk, . . . , xl+k−1)
∞. If there is an index k

such that xn = 0 for n ≥ k we will therefore write x0, . . . , xk−1, (0)∞.
The behavior of τr can be described completely by the behavior of τr⊙s if s ∈ Zq. This is made

precise in the following theorem. If s ∈ ∂Eq then also r ⊙ s ∈ ∂Ed+q. Thus this result will enable
us to describe parts of Dd+q \ Ed+q ⊂ ∂Ed+q.

Theorem 3.1. Let p, q ≥ 1 be integers, r ∈ Rp and s ∈ Zq. Then

Vs ◦ τ∗
r⊙s

(Zp+q) = τ∗
r
(Zp).

Proof. Suppose r = (r0, . . . , rp−1) and s = (s0, . . . , sq−1). Set

U =













s0 s1 · · · sq−1 1 0 · · · 0

0 s0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 s0 · · · · · · sq−1 1













∈ Zp×p+q.

Note that U has maximal rank p and UZp+q = Zp. Thus the theorem is proved if we show that
for all x ∈ Zp+q we have

(3.1) Vs ◦ τ∗
r⊙s

(x) = τ∗
r
(Ux).

Suppose (xk)k∈N = τ∗
r⊙s

(x) and (yk)k∈N = τ∗
r
(Ux). We have to show that

(3.2) yn = s0xn + · · · + sq−1xn+q−1 + xn+q

holds for all n ≥ 0. We do this by induction on n. For 0 ≤ n ≤ p− 1 this is true by the definition
of U . Now assume that (3.2) is true for each k ∈ {0, . . . , n} with n ≥ p − 1. By the definition of
(yk)k∈N we have

yn+1 = −









p−1
∑

j=0

rjyn+1−p+j







 .
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By the assumption on the induction this gives

yn+1 = −









p−1
∑

j=0

rj(s0, . . . , sq−1, 1) · (xn+1−p+j , . . . , xn+q−p+j)









= −









p−1
∑

j=0

rj(s0, . . . , sq−1, 1) · (xn+1−p+j , . . . , xn+q−p+j) + (s0, . . . , sq−1) · (xn+1, . . . , xn+q)









+ (s0, . . . , sq−1) · (xn+1, . . . , xn+q),

where we used the fact that s is an integer vector. Now write the argument of the last floor
function as scalar product of two p + d dimensional vectors. It is easy to see that this gives

−

































































r0































s0

...
sq−1

1
0
...
...
0































+ r1





























0
s0

...
sq−1

1
0
...
0





























+ · · · + rp−1





























0
...
0
s0

s1

...
sq−1

1





























+































0
...
...
0
s0

s1

...
sq−1



































































xn+1−p

...
xn+q









































= −










(s ⊙ r)







xn+1−p

...
xn+q
















= xn+q+1

where the last equality follows from the definition of (xk)k∈N. Thus we arrive at

yn+1 = s0xn+1 + · · · + sq−1xn+q + xn+q+1

which shows that (3.2) holds for n + 1. Hence, in view of (3.1) the theorem is proved. �

We give an example for illustrating the statement of the theorem.

Example 3.2. Let r = (11
12 , 9

5 ) and s = (1). Theorem 3.1 says that for each y ∈ Z2 there exists

x ∈ Z3 such that τ∗
r
(y) = Vs ◦ τ∗

r⊙s
(x), i.e., the behavior of τr is completely described by the

behavior of τr⊙s. For instance, suppose y := (5,−3). By (3.1) we have to choose x such that
Ux = y with

U =

(

1 1 0
0 1 1

)

.

Hence, we can choose x := (4, 1,−4). We have r⊙ s = (11
12 , 163

60 , 14
5 ) and

τ∗
r⊙s

(x) = 4, 1,−4, (5,−4, 2, 1,−4, 7,−9, 10,−9, 7,−4, 1, 2,−4)∞.

In our case the map Vs adds two consecutive entries of a sequence. We thus have

Vs ◦ τ∗
r⊙s

(x) = 5,−3, (1, 1,−2, 3,−3, 3,−2)∞ = τ∗
r
(y).

From Theorem 3.1 we can deduce several assertions. Firstly by choosing s = (0) we obtain that

(r0, . . . , rd−1) ∈ Dd ⇐⇒ (0, r0, . . . , rd−1) ∈ Dd+1,

(r0, . . . , rd−1) ∈ D
(0)
d ⇐⇒ (0, r0, . . . , rd−1) ∈ D

(0)
d+1.

which is contained in [1].
More generally we have the following result.

Corollary 3.3. Let r ∈ Rd and s ∈ Eq ∩ Zq.

• If r ⊙ s ∈ Dd+q then r ∈ Dd.

• If r ⊙ s ∈ D
(0)
d+q then r ∈ D

(0)
d .



FINITE AND PERIODIC ORBITS OF SHIFT RADIX SYSTEMS 9

Proof. This can be seen immediately by Theorem 3.1 since Vs preserves the periodicity of a
sequence as well as the fact that a sequence is eventually zero. �

Note that s ∈ Eq ∩ Zq holds if and only if χR(s) is the product of cyclotomic polynomials.

We restricted ourselves to integer vectors s ∈ Eq since for s 6∈ Eq we had r ⊙ s 6∈ Ed+q and thus

r ⊙ s ∈ Dd+q (r ⊙ s ∈ D
(0)
d+q, respectively) cannot hold in view of Lemma 2.2 (3). Observe that

s ∈ Eq ∩ Zq implies s ∈ ∂Eq whenever s 6= 0 and thus r ⊙ s ∈ ∂Ed+q. Thus the above corollary

yields first results concerning the relation between Dd+q \ Ed+q and Dd (D
(0)
d+q \ Ed+q and D

(0)
d ,

respectively). It should be mentioned that the second part of Corollary 3.3 is of interest only if

there exists d ∈ N with D
(0)
d \ Ed 6= ∅. Up to now no such d is known. As mentioned in the

introduction, for d = 2 it is shown in [4, Section 2] that the intersection is empty
Note that the converse of Corollary 3.3 does not hold in general. It is shown in [2] that

(

1, 1+
√

5
2

)

∈ D2. But the already mentioned analysis of Kirschenhofer et al. [12] shows that
(

1, 3+
√

5
2 , 3+

√
5

2

)

= (1) ⊙
(

1, 1+
√

5
2

)

∈ ∂E3 \ D3. In the following we will develop a converse of

Corollary 3.3 that gives necessary and sufficient conditions for s and the behavior of τr to ensure
that r ⊙ s ∈ Dd+p.

4. Some classes of cycles of τr

This section is devoted to solving the problem of finding sufficient conditions for r ∈ Dd such
that the converse of Corollary 3.3 holds. To this matter we will define sets characterized by cycles
of τr with certain properties. First we need some additional definitions and notations. Define the
following equivalence relation for finite sequences.

(x0, . . . , xl−1) ∼= (y0, . . . , ym−1) ⇐⇒ ∃k ∈ N : x0 = yk, x1 = yk+1, . . . , xlcm(l,m)−1 = yk+lcm(l,m)−1

where the indices of x and y are taken modulo l and m, respectively. It is easy to see that ∼= is an
equivalence relation. Let Z∗ the set of all finite integer sequences. We will denote the elements of
Z∗/∼= by representatives of minimal length inside angle brackets. For example, we have

(2, 3, 1, 2, 3, 1) ∼= (3, 1, 2, 3, 1, 2, 3, 1, 2) ∼= (1, 2, 3)

and the corresponding equivalence class is 〈1, 2, 3〉 (= 〈3, 1, 2〉 = 〈2, 3, 1〉). Furthermore, let

π : Z∗ → Z∗/∼=

be the canonical epimorphism and

l : Z∗ → N

the length of the representative. Note that the length is well defined. In the example from above
we have l(〈1, 2, 3〉) = 3.

For r ∈ Dd the sequences τ∗
r
(x) end up periodically for all choices of x ∈ Zd. This motivates

the following definition.

Definition 4.1. For r ∈ Dd we call a point x ∈ Zd purely periodic (with respect to τr) if there
exists an l ∈ N such that τ l

r
(x) = x. Moreover let

C(r) := π{b ∈ Z∗ | ∃x ∈ Zd : τ∗
r
(x) = b∞} ⊂ Z∗/ ∼=

be the set of all equivalence classes of cycles of τr. For p ∈ N \ {0}, define the function

Sp : Z∗/ ∼= → {0, 1}, B =
〈

x0, . . . , xl(B)−1

〉

7→

{

0 for p ∤ l(B) or
∑l(B)−1

j=0 ξj
pxj = 0

1 otherwise,

where ξp denotes a primitive p-th root of unity.

Note that the function Sp is well defined since it is independent of the chosen representative of

B. We can define the set D
(0)
d in terms of C(r) by

D
(0)
d = {r ∈ Dd | C(r) = {〈0〉}}.
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We will now make a finer classification of the elements of Dd. For p ∈ N \ {0} let

(4.1) D
(p)
d := {r ∈ Dd | ∀B ∈ C(r) : Sp(B) = 0}.

We obviously have D
(0)
d ⊆ D

(p)
d for each p ∈ N. According to the following lemma, the set D

(1)
d

coincides with D
(0)
d apart from a set of measure 0.

Lemma 4.2. Let r = (r0, . . . , rd−1) ∈ D
(1)
d \D

(0)
d . Then r ∈ ∂Ed. Moreover, χR(r) has a cyclotomic

polynomial Φk, k > 1, as divisor.

Proof. As r ∈ D
(1)
d \D

(0)
d there exists a cycle B 6= 〈0〉 with S1(B) = 0. Suppose B = 〈x0, . . . , xl−1〉.

By the definition of cycles and the behavior of τr we know that r0, . . . , rd−1 must satisfy the l(B)
inequalities

(4.2) 0 ≤ r0xj + · · · + rd−1xj+d−1 + xj+d < 1 (0 ≤ j ≤ l(B)− 1)

where here (and throughout the remaining part of this proof) the indices of the xi have to be

taken modulo l(B). By the definition of D
(1)
d we have

(4.3)

l(B)−1
∑

j=0

xj = 0.

By adding any l(B) − 1 of the above inequalities we thus obtain another set of l(B) inequalities,
namely

(4.4) 0 ≤ −r0xj − · · · − rd−1xj+d−1 − xj+d < l(π) − 1 (0 ≤ j ≤ l(B)− 1).

Combining (4.2) and (4.4) we get

(4.5) 0 = r0xj + · · · + rd−1xj+d−1 + xj+d

for all j ∈ {0, . . . , l(B) − 1}. By multiplying these equations with integers we see that

{〈kx0, . . . , kxl−1〉 | k ∈ Z} ⊂ C(r).

Since B 6= 〈0〉 we have that C(r) has infinitely many elements. By [1, Lemma 4.2] this implies
that r ∈ ∂Ed.

To prove the second assertion observe that the recurrence relations (4.3) and (4.5) for the
sequence (xj)j∈N imply that the ordinary generating function F (z) :=

∑

j≥0 xjz
j of this sequence

fulfills

F (z) =
P0(z)

1 + z + · · · + zℓ−1
=

Q0(z)

zdχR(r)(1/z)
,

where P0, Q0 ∈ Z[z] with deg P0 < ℓ − 1 and deg Q0 < d. The second assertion now follows. �

5. Main results

We now come to the main results of the present paper. They show that large parts of Dd \ Ed

can be described by the sets D
(p)
e for e < d. In particular, we are able to describe Dd ∩ E

(1)
d and

Dd ∩ E
(−1)
d completely in terms of these sets. In the next section we will see that the sets D

(p)
e

can be characterized algorithmically.
Our main result is the following. As before, Φj denotes the jth cyclotomic polynomial.

Theorem 5.1. Let d, q ≥ 1, r ∈ Rd and s = (s0, . . . , sq−1) ∈ Zq such that s0 6= 0. Then
r ⊙ s ∈ Dd+q if and only if the following conditions are satisfied:

(i) There exist pairwise disjoint non-negative integers α1, . . . , αb with χR(s) = Φα1
Φα2

· · ·Φαb
,

(ii) r ∈
⋂b

j=1 D
(αj)
d .
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Before we give the proof we list some propositions which contain special cases of Theorem 5.1.
These propositions give characterizations of the behaviour of τr on some parts of ∂Ed. As already

mentioned in Theorem 2.4 the boundary ∂Ed is the union of the three hypersurfaces E
(−1)
d , E

(1)
d

and E
(C)
d . The intersection of Dd with the hyperplanes E

(−1)
d and E

(1)
d is completely determined

by the structure of D
(1)
d−1 and D

(2)
d−1, respectively.

Proposition 5.2. For d ≥ 2 we have Dd ∩ E
(−1)
d = (−1) ⊙D

(1)
d−1.

Note that by Proposition 5.2 and Lemma 4.2 we also have

Dd ∩ int (E
(−1)
d ) = (−1) ⊙ (Ed−1 ∩ D

(0)
d−1)

(the interior on the left hand side is taken with respect to the subspace topology). At the end
of the present section we give a short proof of Proposition 5.2. Indeed, we show how it follows
from Theorem 5.1. In the same way as Proposition 5.2 one can show that the following results are
special cases of Theorem 5.1.

Proposition 5.3. For d ≥ 2 we have Dd ∩ E
(1)
d = (1) ⊙D

(2)
d−1.

The situation for E
(C)
d is more complicated. Here Theorem 5.1 yields only partial results.

Observe that the sets on the left hand sides in Propositions 5.4 - 5.6 are proper subsets of E
(C)
d .

Proposition 5.4. For d ≥ 3 we have Dd ∩ (1, 0) ⊙ Ed−2 = (1, 0) ⊙D
(4)
d−2.

Proposition 5.5. For d ≥ 3 we have Dd ∩ (1, 1) ⊙ Ed−2 = (1, 1) ⊙D
(3)
d−2.

Proposition 5.6. For d ≥ 3 we have Dd ∩ (1,−1) ⊙ Ed−2 = (1,−1) ⊙D
(6)
d−2.

Note that for d ≥ 4 more results of this type follow from Theorem 5.1.
In order to prove Theorem 5.1 we need the following simple auxiliary lemma, whose proof is

incorporated for the sake of completeness.

Lemma 5.7. Let (xn)n≥0 be a sequence with

xn =

L
∑

i=1

Ai(n)λn
i

where Ai(n) =
∑mi

j=0 A
(j)
i nj are polynomials with coefficients A

(j)
i ∈ C and λ1, . . . , λL are pairwise

disjoint roots of unity. If A
(j)
i 6= 0 for some pair (i, j) with j ≥ 1 then xn is not bounded.

Proof. Let q ≥ 1 be the largest integer such that there is a pair (i, q) with A
(q)
i 6= 0. Then, after

a possible rearrangement of the indices of the λi, there is a positive integer K ≤ L such that

|xn| = nq

∣

∣

∣

∣

∣

K
∑

i=1

A
(q)
i λn

i

∣

∣

∣

∣

∣

+ O(nq−1).

If we can show that B(n) :=
∑K

i=1 A
(q)
i λn

i is bounded away from zero for infinitely many n, we are
done. Since the λi are roots of unity B(n) is periodic in n and it suffices to prove that B(n) 6= 0
for at least one n. Suppose this is false. Then

K
∑

i=1

A
(q)
i λn+k

i = 0 (0 ≤ k < K).

However, as the determinant of this system is a multiple of a Vandermonde determinant, this

would imply that A
(q)
i = 0 for all i, a contradiction to our assumption. �
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Proof of Theorem 5.1. We start with showing the sufficiency of the two conditions. Suppose that
(i) and (ii) are satisfied. Let x ∈ Zd+q and (xn)n∈N := τ∗

s⊙r
(x). We have to show that (xn)n∈N

ends up periodically. For convenience set sq := 1. By (3.1) we know that

(5.1) (yn)n∈N := τ∗
r
(y) = Vs((xn)n∈N)

holds with

y :=

(

q
∑

i=0

sixi,

q
∑

i=0

sixi+1 . . . ,

q
∑

i=0

sixi+d−1

)

.

As q ≥ 1 we have b ≥ 1 and thus r ∈ D
(α1)
d and a fortiori r ∈ Dd. Hence, there exists an

index n0 and a (minimal) positive integer l such that yn = yn+l for n ≥ n0. We therefore have
〈yn0

, . . . , yn0+l−1〉 ∈ C(r).
The sequence (xn)n≥n0

satisfies the recurrence relation

(5.2)

q
∑

i=0

sixn0+k+i = yn0+k = yn0+k+l =

q
∑

i=0

sixn0+k+l+i

for k ≥ 0. Its characteristic equation is

(tl − 1)χR(s)(t) = 0.

Denote its roots by λ1, . . . , λg and suppose that they are arranged in a way that λ1, . . . , λw are
roots of tl − 1 only, λw+1, . . . , λl are roots of tl − 1 and of χR(s)(t), and λl+1, . . . , λg are roots

of χR(s)(t) only. As tl − 1 as well as χR(s)(t) have only simple roots by the pairwise disjointness
assertion in (i) we conclude λw+1, . . . , λl have multiplicity two while all the other roots have
multiplicity one. Thus

(5.3) xn0+k =

g
∑

j=1

A
(0)
j λk

j +

l
∑

j=w+1

A
(1)
j kλk

j

for l + q complex constants A
(ν)
j . The sequence (xn)n≥n0

is periodic if and only if A
(1)
j = 0 for all

j ∈ {w + 1, . . . , l}. If xl − 1 and χR(s) have no common roots (i.e., if α1 ∤ l, . . . , αb ∤ l) then all
roots are simple and the second sum in (5.3) is empty. Thus (xn)n∈N ends up periodically in this
case and we are done. Suppose in the sequel that xl − 1 and χR(s) have common roots, i.e., that
w < l.

In order to calculate the constants A
(ν)
j we use (5.2) to obtain

(5.4)

yn0+k =

g
∑

j=1

A
(0)
j

q
∑

h=0

shλk+h
j +

l
∑

j=w+1

A
(1)
j

q
∑

h=0

sh(k + h)λk+h
j

=

g
∑

j=1

A
(0)
j λk

j χR(s)(λj) +
l
∑

j=w+1

A
(1)
j (kλk

j χR(s)(λj) + λk+1
j χ′

R(s)(λj))

=
w
∑

j=1

A
(0)
j λk

j χR(s)(λj) +
l
∑

j=w+1

A
(1)
j λk+1

j χ′
R(s)(λj).

The latter equality holds because χR(s)(λj) = 0 for j > w. Taking k ∈ {0, . . . , l − 1} this is a

system of l linear equalities for the l constants A
(0)
1 , . . . , A

(0)
w , A

(1)
w+1, . . . , A

(1)
l . We will show that

condition (ii) implies that A
(1)
j = 0 for each j ∈ {w+1, . . . , l}. This will yield ultimate periodicity

of (xn)n∈N in view of (5.3).
The linear system in (5.4) can be rewritten as

(5.5) (yn0
, . . . , yn0+l−1)

T = G(A
(0)
1 , . . . , A(0)

w , A
(1)
w+1, . . . , A

(1)
l )T
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with

G =













χR(s)(λ1) · · · χR(s)(λw) χ′
R(s)(λw+1)λw+1 · · · χ′

R(s)(λl)λl

χR(s)(λ1)λ1 · · · χR(s)(λw)λw χ′
R(s)(λw+1)λ

2
w+1 · · · χ′

R(s)(λl)λ
2
l

...
...

...
...

χR(s)(λ1)λ
l−1
1 · · · χR(s)(λw)λl−1

w χ′
R(s)(λw+1)λ

l
w+1 · · · χ′

R(s)(λl)λ
l
l













.

Thus by Cramer’s Rule

A
(1)
j =

detGj

detG

where Gj equals the matrix G with the jth row exchanged by the vector (yn0
, . . . , yn0+l−1)

T . One
has det G 6= 0 since it is a non-zero multiple of the determinant of a Vandermonde matrix. We
have to show that det Gj = 0. We have

det Gj =

w
∏

k=1

χR(s)(λk)l

l
∏

k=w+1
k 6=j

(λkχ′
R(s)(λk))lDj,(5.6)

where

Dj :=det











1 · · · 1 yn0
1 · · · 1

λ1 · · · λj−1 yn0+1 λj+1 · · · λl

...
...

...
...

λl−1
1 · · · λl−1

j−1 yn0+l−1 λl−1
j+1 · · · λl−1

l











.

As the products in (5.6) are obviously nonzero we have to deal with the determinant Dj . In

order to calculate this determinant add the λj
k+1

multiple of the kth row to the last row for each
k ∈ {1, . . . , l − 1}. This does not change the determinant which now can be written as

Dj = det















1 · · · 1 yn0
1 · · · 1

λ1 · · · λj−1 yn0+1 λj+1 · · · λl

...
...

...
...

λl−2
1 · · · λl−2

j−1 yn0+k+l−2 λl−2
j+1 · · · λl−2

l

0 · · · 0
∑l−1

k=0 λj
k+1

yn0+k 0 · · · 0















.

We shall now prove that
∑l−1

k=0 λj
k
yn0+k = 0. This implies that thus the last determinants Dj ,

detGj and therefore A
(1)
j as well are equal to zero for each j ∈ {w + 1, . . . , l}. Indeed, as λj is a

root of xl − 1 and χR(s), in view of condition (i) there exists a p ∈ {1, . . . , b} with αp | l and thus

λj and, hence, λj as well are primitive αpth roots of unity. As αp | l and 〈yn0
, . . . , yn0+l−1〉 ∈ C(r)

we have

(5.7) Sαp
(〈yn0

, . . . , yn0+l−1〉) =

l−1
∑

k=0

ξk
αp

yn0+k = 0

for each αpth root of unity ξαp
by condition (ii). Hence, in particular,

∑l−1
k=0 λj

k
yn0+k = 0. This

shows that Dj = 0 for each j ∈ {w + 1, . . . , l}. Thus det Gj = 0 and therefore also A
(1)
j = 0 for

w + 1 ≤ j ≤ l. In view of (5.3) this shows the ultimate periodicity of (xn)n∈N and we are done.
We will now show the necessity of the conditions (i) and (ii).

(i) Since r ⊙ s ∈ Dd+q the second inclusion in (1.2) implies that 1 ≥ ρ(R(r ⊙ s)) ≥ ρ(R(s)).
Since s0 6= 0, s is related to a polynomial over Z each of whose roots are nonzero and
bounded by one in modulus. This implies that each root of this polynomial is a root of
unity.

Still we have to show that χR(s) has no root of multiplicity greater than 1. Suppose on

the contrary that χR(s) has a root of multiplicity at least 2, say λj0 . Let x ∈ Zd+q and
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(xn)n∈N := τ∗
s⊙r

(x). We will show that (xn)n∈N does not end up periodically. As (xn)n∈N

satisfies the recurrence relation (5.2) there are polynomials Aj (1 ≤ j ≤ g) such that

xn0+k =

g
∑

j=1

Aj(k)λk
j .

Inserting (5.2) we obtain

(5.8) yn0+k =

g
∑

j=1

q
∑

h=1

shAj(k + h)λk+h
j .

Taking k ∈ {1, . . . l} these are l equations for the l + q coefficients A
(ν)
j of the polynomials

Aj . However, q of these l + q coefficients do not occur in (5.8) because they are cancelled

out in a similar way as in (5.4). One of the coefficients not occurring in (5.8) is A
(1)
j0

, as

its multiplier in (5.8) is easily seen to be

kλk
j0

χR(s)(λj0) + λk+1
j0

χ′
R(s)(λj0).

This vanishes as λj0 is a double zero of χR(s). Thus we use (5.8) in order to calculate l of

the l+q coefficients A
(ν)
j . Each q-tuple z1, . . . , zq of integers yields a system of q equations.

Indeed,

zk =

g
∑

j=1

Aj(k)λk
j (1 ≤ k ≤ q)

This system can be used in order to calculate the remaining q coefficients A
(ν)
j , among

which we have A
(1)
j0

. We choose z1, . . . , zq in a way that A
(1)
j0

6= 0. This choice gives us

values for all coefficients A
(ν)
j .

For k ≥ q define the integers zk by

zk :=

g
∑

j=1

Aj(k)λk
j .

Then by (5.2) the sequence τ∗
s⊙r

((z0, . . . , zd+l−1)) obviously satisfies the recurrence rela-

tion
∑q

i=0 sizn0+k+i =
∑q

i=0 sizn0+k+l+i. As A
(1)
j0

6= 0 this sequence does not end up
periodically by Lemma 5.7, a contradiction.

(ii) Since r⊙s ∈ Dd+q, (xn)n∈N in (5.3) is ultimately periodic. By Lemma 5.7 this implies that

A
(1)
j = 0 for each j ∈ {w + 1, . . . , l}. The proof of the sufficiency of the three conditions

shows that this is equivalent to Dj = 0 and thus to the fact that (5.7) holds for α1, . . . , αb.
As the latter is just a reformulation of (ii) we are done.

�

We continue with the short proof of Proposition 5.2. It is then clear how to deduce the other
propositions from Theorem 5.1.

Proof of Proposition 5.2. Set s = (−1) and note that χR(s) = Φ1. Then an application of Theo-
rem 5.1 immediately shows the result. �

The following corollary gives a criterion which ensures that certain points do not belong to

D
(p)
d .

Corollary 5.8. If Φp | χR(r) then r 6∈ D
(p)
d .

Proof. Suppose on the contrary that r ∈ D
(p)
d . We will derive a contradiction. Let q := ϕ(p)

where ϕ denotes Euler’s totient function. Define s ∈ Zq by the equation χR(s) = Φp. Then by

Theorem 5.1 we have r ⊙ s ∈ Dd+q. On the other hand, since Φp | χR(r), there exists r′ ∈ Rd−q

such that r = r′ ⊙ s. As r ∈ Dd Theorem 5.1 implies that r′ ∈ D
(p)
d−q. Thus we have r′ ⊙ (s⊙ s) =
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r⊙ s ∈ Dd+q. However, because r ∈ D
(p)
d and χR(s⊙s) = Φ2

p is not the product of pairwise disjoint
cyclotomic polynomials this contradicts Theorem 5.1. �

6. Algorithms and concrete results

6.1. An algorithm for describing D
(p)
d . After the formal introduction of the sets D

(p)
d in (4.1)

we will present a way for characterizing these sets algorithmically. For p = 0 an algorithm can be
found in [1] (see also [4, 19, 20]). We first give a brief outline of this algorithm and afterwards we
apply similar ideas in order to generalize it for other values of p.

Definition 6.1. Let r ∈ Dd. A set V ⊂ Zd that satisfies

(1) ∀x ∈ Zd ∃k ∈ N, (b1, . . . ,bk) ∈ Vk : x =
∑k

j=1 bj ,

(2) x ∈ V ⇒ τr(x),−τr(−x) ∈ V

is called a set of witnesses of r.

Such a set exists and can be chosen to be finite because the linear part of the mapping τr is
contractive. We refer to [1], where details are discussed.

A set of witnesses has nice properties concerning τr.

Theorem 6.2 (cf. [1, Theorem 5.1]). Let r ∈ Dd and let V be a set of witnesses of r. We have

r ∈ D
(0)
d if and only if V does not contain purely periodic points with respect to τr except 0.

The definition of the set of witnesses can be extended to sets Q ⊂ Dd.

Definition 6.3. Let Q ⊂ Dd. A set V ⊂ Zd that satisfies

(1) ∀x ∈ Zd ∃k ∈ N, (b1, . . . ,bk) ∈ Vk : x =
∑k

j=1 bj ,

(2) τr(V) ∪ −τr(−V) ⊂ V holds for all r ∈ Q

is called a set of witnesses of Q.

Such a set exists and can be chosen to be finite provided that the diameter of Q is small. For
details we refer again to [1].

Further define the following graph.

Definition 6.4. For a finite set W ⊂ Zd and a set Q ⊂ Dd, we define G(W, Q) = (V, E) to be the
smallest directed graph with vertices V ⊂ Zd and edges E ⊂ Zd × Zd such that

(1) W ⊆ V ,
(2) τr(V ) ⊂ V for all r ∈ Q,
(3) E = {(x, τr(x))|x ∈ V, r ∈ Q}.

We are interested in the (directed, simple) cycles of such a graph, i.e., in paths of the form
v0 → v1 → . . . → vl−1 → v0 with pairwise disjoint vi (0 ≤ i ≤ l − 1). To avoid confusion with
cycles of τr we will refer to cycles of graphs as graph-cycles although the two types of cycles are
closely related to each other. A graph-cycle of length l consists of l d-dimensional integer vectors.
By the definition of the edges a graph-cycle has the shape

(x0, . . . , xd−1) → (x1, . . . , xd) → · · · → (xl−1, . . . , xd−2) → (x0, . . . , xd−1).

Similar to a cycle of τr, a graph-cycle is uniquely determined by the l integers x0, . . . , xl−1. Again
the elements are ordered cyclically. This enables us to identify a graph-cycle of G(V , Q) for some
sets V and Q with the integer sequence of corresponding length that determines it and denote it
also by 〈x0, . . . , xl−1〉.

Finally, for some graph-cycle 〈x0, . . . , xl−1〉, consider the system of l double inequalities

(6.1) 0 ≤ r0xj + · · · + rd−1xj+d−1 + xj+d < 1, (0 ≤ j < l),

where the indices of the xi have to be taken modulo l, and denote

Pd (〈x0, . . . , xl−1〉) :=
{

(r0, . . . , rd−1) ∈ Rd | (r0, . . . , rd−1) satisfies (6.1)
}

.

Note that a graph-cycle B is a cycle of τr for some r ∈ Dd if and only if Pd(B) 6= ∅. More precisely,

r ∈ Pd (〈x0, . . . , xl−1〉) ⇐⇒ 〈x0, . . . , xl−1〉 ∈ C(r).
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It is possible to characterize Q∩D
(0)
d by using a corresponding set of witnesses V provided that

it is finite. This characterization is based on an idea of Brunotte (see [7]).

Theorem 6.5 (Brunotte Algorithm, cf. [1, Theorem 5.2]). Let Q ⊂ Dd and suppose that V is a
finite set of witnesses of Q. Furthermore denote by Π the set of graph-cycles of G(V , Q) without
the trivial one 〈0〉. Then

D
(0)
d ∩ Q = Q \

⋃

π∈Π

Pd(π).

Our aim is to adapt Theorem 6.2 and Theorem 6.5 in order to get algorithms for describing

D
(p)
d for p 6= 0. The main problem is that even though a set of witnesses of a set Q (where Q may

consist of one point only) contains enough cycles to completely characterize Q ∩ D
(0)
d it may not

include all cycles of τr with r ∈ Q.
Suppose that p 6= 0 and r ∈ Dd. For a given set of witnesses of r we have the following situation.

When 0 is the only purely periodic point of τr then r ∈ D
(0)
d by Theorem 6.2 and therefore, as

D
(0)
d ⊂ D

(p)
d , we immediately conclude that r ∈ D

(p)
d . If the set of witnesses includes other purely

periodic points than 0 then these points induce a set Π of cycles. If this set contains a cycle B

with Sp(B) 6= 0 then r 6∈ D
(p)
d and we are done. A problem occurs if Π 6= {(0)} and Sp(B) = 0 for

all B ∈ Π since we do not know whether there exists a cycle B′ with B′ 6∈ Π and Sp(B′) 6= 0.
The following lemma will show that we can use the idea of the set of witnesses even for analyzing

the structure of D
(p)
d , however, with some additional expenditure.

Lemma 6.6. Let r ∈ Dd and V a set of witnesses of r. If x ∈ Zd is purely periodic w.r.t. τr then

there exist integer points z1, . . . , zn ∈ V such that
∑n

j=1 zj = x and
∑k

j=1 zj is purely periodic

(w.r.t. τr) for all k ∈ {1, . . . , n}.

Proof. Let y be an arbitrary purely periodic point with respect to τr having period l. For proving
the lemma it suffices to show that we can find w1, . . . ,wm ∈ V such that y =

∑m

j=1 wj and
∑m−1

j=1 wj is purely periodic.
By Definition 6.1 y can be represented as

y =
m
∑

j=1

w′
j

with w′
1, . . . ,w

′
m ∈ V . Let q ∈ N. Then q applications of τ l

r
yield

τ lq
r

(y) = y = τ lq
r





m−1
∑

j=1

w′
j



+ w′′
m

with w′′
m ∈ V by the construction of the set of witnesses. Since r ∈ Dd we can choose q such that

τ lq
r

(

∑m−1
j=1 w′

j

)

is a purely periodic point of τr. On the other hand, again by the construction of

the set of witnesses, we have

τ lq
r





m−1
∑

j=1

w′
j



 =

m−1
∑

j=1

w′′
j

for some w′′
1 , . . . ,w′′

m−1 ∈ V . Setting wj := w′′
j for all j ∈ {0, . . . , m} shows the claim. �

We first show how Lemma 6.6 can be used to check whether a given point r ∈ Ed is contained

in D
(p)
d or not. After that we will generalize this to sets Q ⊂ Ed.

Theorem 6.7. Let p ∈ N, r ∈ Ed and V a finite set of witnesses of r. If there exists a set W ⊂ Zd

with

• 0 ∈ W ,
• V + Z ⊂ W ,
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where Z consists of all purely periodic points (w.r.t τr) contained in W , such that for each cycle

B generated by elements of W we have Sp(B) = 0, then r ∈ D
(p)
d .

Proof. The theorem is a direct consequence of Lemma 6.6. �

Note that by [1, Theorem 5.1] there always exists a finite set of witnesses whenever r ∈ Ed.

Theorem 6.7 provides an algorithm for verifying whether r ∈ D
(p)
d or not. We can now construct

a set W that satisfies the conditions of Theorem 6.7 as follows. Set W0 := V . Now, for every
k = 0, 1, 2, . . . define Wk recursively as follows: let Πk be the set of all cycles contained in Wk

without the trivial one 〈0〉. If Π = ∅ then we can stop and conclude that r ∈ D
(p)
d . If there exists

a cycle B ∈ Πk with Sp(B) 6= 0 then we can stop, too, and we obviously have r 6∈ D
(p)
d . If Πk 6= ∅

and Sp(B) = 0 for all B ∈ Πk then denote by Zk ⊂ Zd all purely periodic points induced by the
cycles in Πk and let

Wk+1 := V + Zk.

It can be shown easily by induction on k that, whenever Wk+1 contains a purely periodic point,
Wk+1 contains all purely periodic points of the corresponding cycle. We also see by Lemma 6.6
that this procedure terminates at some stage k = k0 since C(r) is finite for r ∈ Ed. This leads to
a set W := Wk0

satisfying the conditions of Theorem 6.7 in the relevant case.

Finally we are going to generalize the results from above in order to characterize Q ∩ D
(p)
d for

some Q ⊂ Ed using Theorem 6.5.

Theorem 6.8. Let p ∈ N, Q ⊂ Ed closed and V a finite set of witnesses of Q. Denote by W ⊂ Zd

a finite set with

• 0 ∈ W ,
• V + Z ⊂ W ,

where Z consists of all purely periodic points w.r.t. τr for some r ∈ Q contained in W . Then

Q ∩ D
(p)
d = Q \

⋃

B∈Π,Sp(B) 6=0

Pd(B)

where Π consists of the graph-cycles of G(W, Q) except 〈0〉.

Proof. The theorem is a direct consequence of Lemma 6.6. �

By [1, Theorem 5.2] (see also [19, Lemma 2.2]) there exists a finite set of witnesses of closed
Q ⊂ Ed provided that Q is sufficiently small. To construct W again set W0 := V . Now, for every
k = 0, 1, 2, . . ., let Πk the set of all graph-cycles of G(Wk, Q) (without the trivial one 〈0〉) that are
cycles for some r ∈ Q. If

(6.2) {B ∈ Πk \ Πk−1|Sp(B) = 0} = ∅

we stop and have

Q ∩ D
(p)
d = Q \

⋃

B∈Πk,Sp(B) 6=0

Pd(B).

If (6.2) does not hold let Zk ⊂ Zd all purely periodic points induced by the cycles of Πk and let

Wk+1 := V + Zk.

Again this process terminates at some level k = k0. Setting W := Wk0
yields a set W satisfying

the conditions of the theorem.

6.2. The behavior of τr on the boundary of E3. We now apply the algorithms of the last

subsection in order to describe D
(p)
2 for p ∈ {1, 2} and D

(p)
1 for p ∈ {3, 4, 6}. Together with the

results of Section 5 this will give us a characterization of the parameters r ∈ ∂E3 for which τr has
only periodic orbits, i.e., a characterization of the set Dd \ Ed. As one can easily derive from the
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Figure 3. The triangles E
(−1)
3 (left hand side) and E

(1)
3 (right hand side). The

dark grey regions correspond to parameters r for which τr is ultimately periodic
for each starting value z ∈ Z3. For the parameters r in the black regions there
exists at least one starting value z ∈ Z3 such that the orbit (τk

r
(z))k∈N becomes

unbounded. The light grey regions are not yet characterized.

Figure 4. The boundary of D3. On the left hand side we see a view of D3

where the surface E
(C)
3 is transparent. Some lines of it can be characterized with

help of Propositions 5.4 to 5.6. On the right hand side another view of D3 is

presented. Here we see the two triangles E
(−1)
3 and E

(1)
3 . The colors have the

following meaning. Black: there exist unbounded orbits; dark grey: all orbits are
ultimately periodic; light grey: not yet characterized.

results in Section 3, ∂E3 = ∂D3 consists of the two triangles E
(−1)
3 and E

(1)
3 and of the surface

E
(C)
3 . In particular, from (2.4) we easily see that

E
(1)
3 = {(s, s + t + st, st + t + 1) | − 1 ≤ s, t ≤ 1} and

E
(−1)
3 = {(s, s − t − st, st + t − 1) | − 1 ≤ s, t ≤ 1}.

The periodic parameters in E
(−1)
3 (i.e., the parameters r for which τr(z) is ultimately periodic

for each starting value z ∈ Z3) can be described via the set D
(1)
2 by Proposition 5.2. According
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to Lemma 4.2, D
(1)
2 is equal to D

(0)
2 apart from few exceptional points on the boundary. Thus we

can use the description of the set D
(0)
2 which has been studied extensively (cf. e.g. [4]) in order to

get the periodic parameters of large parts of E
(−1)
3 .

The periodic parameters in E
(1)
3 can be described via the set D

(2)
2 by Proposition 5.3. Since

large parts of D
(2)
2 can be characterized with help of the algorithms presented in the last subsection

we obtain a description of the periodic parameters of large parts of E
(1)
3 .

Finally, small parts of E
(C)
3 can be characterized by using Propositions 5.4 to 5.6. Indeed they

yield straight lines on the surface E
(C)
3 which belong to D3.

The results of the algorithmic description of the periodic orbits of ∂E3 are visualized in Figures 3
and 4. The pictures suggest that the set of parameters r ∈ ∂Ed that give rise to periodic orbits of
τr has a very complicated structure.
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