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1. Introduction

Let2 (r1, . . . , rd)T = r ∈ Rd. Akiyama, Borbély, Brunotte, Thuswaldner
and myself introduced [1] the nearly linear mapping τr : Zd 7→ Zd such
that if a = (a1, . . . , ad)T ∈ Zd then

(1) τr(a) = (a2, . . . , ad,−brTac)T .

For k ≥ 0 let

τk(a) =





a, if k = 0,

τ
(
τk−1(a)

)
, if k > 0

and ad+k+1 = −brT τk
r (a)c. We also defined the sets

Dd = {r : {τk
r (a)}∞k=0 is bounded for all a ∈ Zd}

and Ed, which is the set of real monic polynomials, whose roots are lying
in the closed unit circle. We proved in the same paper that if r ∈ Dd then
R(X) = Xd + rdX

d−1 + · · · + r2X + r1 ∈ Ed and if R(X) is lying in the
interior of Ed then r ∈ Dd.

It is natural to ask what happens if R(X) belongs to the boundary of
Ed, i.e. some of its roots are lying on the unit circle. The case d = 2 was
studied by Akiyama et al in [2], but they was not able to completely set-
tle it. They proved that D2 is equal to the closed triangle with vertices
(−1, 0), (1,−2), (1, 2), but without the points (1,−2), (1, 2), the line seg-
ment {(x,−x − 1) : 0 < x < 1} and, possible, some points of the line
segment {(1, y) : −2 < y < 2}. Write in the last case y = 2 cosα and
ω = cosα + i sinα. It is easy to see, that if y = 0,±1 (i.e. α = 0,±π/2)
then (1, y) belongs to D2 and we conjectured in [2] that this is true for all
points of the line segment. In [3] the conjecture was proved for the golden
mean, i.e. for y = 1+

√
5

2 and in [4] for those ω, which are quadratic algebraic
numbers.

Kirschenhofer, Pethő and Thuswaldner [5] studied the sequences {τk
r (a)}

for r = (1, λ2, λ2), where λ denotes the golden mean. They not only proved
that r /∈ D3, but found some connection between the Zeckendorf expansion
of the coordinates of the initial vector a and the periodicity of {τk

r (a)}.
1The author was supported partially by the Hungarian National Foundation for Scien-

tific Research Grant No. T67580 and by TéT project JP-26/2006.
2In this note a vector is always a column vector and vT means its transpose
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In the present notes we continue the above investigations about the
boundary of Ed for d ≥ 3 in a systematic way. Our most general result
is

Theorem 1. Assume that some t-th roots of unity β1, . . . , βs are simple
zeroes of R(X) and the other zeroes of it have modulus less than one.
Then there exist constants c1 depending on β1, . . . , βs and c2 depending on
β1, . . . , βs and a1, . . . , ad such that if k > c2 then

|ak+t − ak| < c1.

Further, if t is even and β1, . . . , βs are primitive t-th roots of unity, then

|ak+t/2 + ak| < c1

holds as well.

The importance of Theorem 1 is that c1 does not depend on the initial
vector a, with other words, the sequence {τk

r (a)} is the union of a finite set
and finitely many sequences with bounded growth.

Let define the integral vectors 1 = (1, . . . , 1)T , 1̄ = (1,−1, . . . , (−1)d−1)T ,
i = (1, 0,−1, 0, . . . ) and ī = (0, 1, 0,−1, . . . ). As a consequence of Theorem
1 we prove

Theorem 2. Assume that 1,−1 or i is a simple zero of R(X) and the other
zeroes of it have modulus less than one. Then there exists a computable
finite set A ⊂ Zd with the following property: for all a ∈ Zd there exist a
constant k depending on the zeroes of R(X) and a and integers L,K such
that τk

r (a− L1) ∈ A, τk
r (a− L1̄) ∈ A and τk

r (a− Li−K ī) ∈ A respectively.

Theorem 2 implies immediately an algorithm to test r ∈ Dd provided
1,−1 or i is a simple root of R(X). Of course we have to test for all a ∈ A
whether the sequence {τn

r (a)} is ultimately periodic or divergent. We show
that for d = 3 both cases occur.

By a recent result of Paul Surer [10] the boundary of E3 can be
parametrized by the union of the sets B1 = {(−s, s− (s+1)t, (s+1)t− 1) :
−1 ≤ s, t ≤ 1}, B2 = {(s, s + (s + 1)t, (s + 1)t + 1) : −1 ≤ s, t ≤ 1}
and B3 = {(v, 1 + 2tv, 2t + v) : −1 ≤ t, v ≤ 1}. We prove that large
portions of B1 belong to D3 and others do not belong. For example if
0 ≤ (s+1)(t+1) < 1 and a0 = 0, a1 = 1, a2 = 2 then τk

r (a) = (k, k+1, k+2)
hold for all k, i.e. r /∈ D3. On the other hand if s ≥ 0, s ≤ (s + 1)t ≤ 1 then
{τk

r (a)} is ultimately constant, i.e. r ∈ D3. Experiments show that these
examples are typical for elements both for B1 and B2.

Choosing the values s = 1, t = λ
2 , v = 1 shows that the point r =

(1, λ2, λ2)T studied in [5] belongs to B2 ∩B3.

2. Preparatory results

To prove Theorem 1 we need some preparation from linear algebra and
from linear recurring sequences. We recapitulate here with minor changes
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Chapter 2 of [7], because we need the notations in the sequel. First of all we
analyze the mapping τ = τr defined by equation (1). Let P = P(r) ∈ Zd×d

be the companion matrix of R(X), i.e.

P =




0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−r1 −r2 . . . −rd


 .

With this definition we have the following assertion

Lemma 1. Let a = (a1, . . . , ad)T ∈ Zd and 1 ≤ k ∈ Z. Then there exist
−1 < δ1, . . . , δk ≤ 0 such that

τk(a) = Pka +
k∑

j=1

Pk−jδj

holds, where δj = (0, . . . , 0, δj)T ∈ Rd.

Proof. See the simple proof of Lemma 2 of [7]. ¤

Let {Gn}∞n=0 be the linear recurring sequence defined by the initial terms
G0 = · · · = Gd−2 = 0, Gd−1 = 1 and by the difference equation

(2) Gn+d = −rdGn+d−1 − · · · − r1Gn.

Let further Gn = (Gn, . . . , Gn+d−1)T and for n ≥ 0 denote by Gn the d× d
matrix, whose columns are Gn, . . . ,Gn−d+1. Then we have obviously

Gn = PGn−1 for n = 1, 2, . . . .

This implies

(3) Gn = Pn G0 for n ≥ 0.

As

G0 =




Gd−1 Gd−2 . . . G0

Gd Gd−1 . . . G1

...
...

. . .
...

G2d−1 G2d−2 . . . Gd−1




is a lower triangular matrix with entries 1 in the main diagonal, it is non
singular and its invers is

G−1
0 =




1 0 . . . 0 0
rd 1 . . . 0 0
...

...
. . .

...
...

r3 r4 . . . 1 0
r2 r3 . . . rd 1




.



4

Thus we get

(4) Pn = GnG−1
0 .

Denoting by p
(n)
ij , 1 ≤ i, j ≤ d, n ≥ 0 the entries of Pn and setting rd+1 = 1

we obtain

(5) p
(n)
1j =

d−j∑

u=0

rj+u+1Gn+u, j = 1, . . . , d,

in particular p
(n)
1d = Gn.

As ak+1 is the first coordinate of τk(a), Lemma 1 and (5) imply

(6) ak+1 =
d∑

j=1

p
(k)
1j aj +

k∑

j=1

p
(k−j)
1d δj =

d∑

j=1

p
(k)
1j aj +

k∑

j=1

Gk−jδj .

On the other hand if β1, . . . , βh denote the distinct zeroes of the poly-
nomial R(X) = Xd + rdX

d−1 + · · · + r1 with multiplicity e1, . . . , eh ≥ 1
respectively, then

(7) Gn = g1(n)βn
1 + · · ·+ gh(n)βn

h

holds for any n ≥ 0, where gi(X), 1 ≤ i ≤ h denote polynomials with
coefficients of the field Q(β1, . . . , βh) of degree at most ei − 1. (See e.g. [8].)

Equations (5) and (7) imply that there exist polynomials gij`(X) with
coefficients of the field Q(β1, . . . , βh) of degree at most e` − 1 such that

(8) p
(n)
ij =

h∑

`=1

gij`(n)βn
` .

Using this equality, (7) and (6) we obtain

(9) ak+1 =
d∑

j=1

aj

h∑

`=1

g1j`(k)βk
` +

k∑

j=1

δj

h∑

`=1

g`(k − j)βk−j
` .

3. Proof of Theorems 1 and 2

Proof of Theorem 1. Our starting point is equation (9). It was used in
a simpler form in [1] for the proof that if all roots of R(X) have modulus
less than one, then {τk

r (a)} is ultimately periodic. This is true, because both
summands in (9) are bounded. If, however, one of the roots of R(X) is lying
on the unit circle, then we have usually no control on the second summand,
it can be bounded or unbounded. A closer look at (9) makes it possible to
prove our theorem.
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Let t ≥ 1. Then equation (9) implies

ak+t+1 − ak+1 =
h∑

`=1

βk
`

d∑

j=1

aj

(
βt

`g1j`(k + t)− g1j`(k)
)

+
k+t∑

j=k+1

δj

h∑

`=1

g`(k + t− j)βk+t−j
`

+
k∑

j=1

δj

h∑

`=1

βk−j
`

(
g`(k + t− j)βt

` − g`(k − j)
)
.

As β1, . . . , βs are t-th roots of unity, we have βt
i = 1, i = 1, . . . , s. Further,

as they are simple zeroes of R(X), the polynomials g1j`(X), j = 1, . . . , d, ` =
1, . . . , s and g`(X), ` = 1, . . . , s are constants depending only on β1, . . . , βh.
Thus

(10) βt
`g1j`(k + t)− g1j`(k) = g`(k + t− j)βt

` − g`(k − j) = 0

for all ` = 1, . . . , s, j = 1, . . . , d. Thus our expression for ak+t+1 − ak+1

simplifies to

|ak+t+1 − ak+1| ≤
∣∣∣∣∣∣

h∑

`=s+1

βk
`

d∑

j=1

aj

(
βt

`g1j`(k + t)− g1j`(k)
)
∣∣∣∣∣∣

+

∣∣∣∣∣∣

k+t∑

j=k+1

δj

h∑

`=1

g`(k + t− j)βk+t−j
`

∣∣∣∣∣∣

+

∣∣∣∣∣∣

k∑

j=1

δj

h∑

`=s+1

βk−j
`

(
g`(k + t− j)βt

` − g`(k − j)
)
∣∣∣∣∣∣
.

Changing j to j + k we can estimate the second summand as follows∣∣∣∣∣∣

t∑

j=1

δj+k

h∑

`=1

g`(t− j)βt−j

∣∣∣∣∣∣
≤

t−1∑

j=0

h∑

`=1

|g`(j)|.

As |β`| < 1 for ` = s + 1, . . . , h and |δj | < 1 for j = 1, . . . , k there exists a
constant c3 depending only on the roots of R(X) and a such that if k ≥ c3

then ∣∣∣∣∣∣
βk

`

d∑

j=1

aj

(
g1j`(k + t)βt

` − g1j`(k)
)
∣∣∣∣∣∣
<

1
2h

.

By the same reason there exists a constant c4 depending only on the roots
of R(X) such that if k ≥ c4 then

∣∣∣∣∣
h∑

`=s+1

βk
`

(
g`(k + t)βt

` − g`(k)
)
∣∣∣∣∣ < |β`|k/2.
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Thus

|ak+t+1 − ak+1| ≤ 1/2 +
t−1∑

j=0

h∑

`=1

|g`(j)|

+

∣∣∣∣∣∣

k−c4∑

j=1

δj

h∑

`=s+1

βk−j
`

(
g`(k + t− j)βt

` − g`(k − j)
)
∣∣∣∣∣∣

+

∣∣∣∣∣∣

k∑

j=k−c4+1

δj

h∑

`=s+1

βk−j
`

(
g`(k + t− j)βt

` − g`(k − j)
)
∣∣∣∣∣∣
.

The third summand is bounded by
∞∑

j=0

|βj/2
` | = 1

1− |β1/2
` |

,

while the fourth summand can be estimated as above and we get for it the
upper bound

c4−1∑

j=0

h∑

`=s+1

∣∣g`(t + j)βt
` − g`(j)

∣∣ ,

which is a constant depending only on the roots of R(X). The sum of these
bounds depends only on the roots of R(X) and we can choose it as c1. To
finish the proof of the first statement put c2 = max{c3, c4}.

If t is even we estimate |ak+t/2+1 +ak+1| as in the previous case. The only
important difference is that we use

βt
`g1j`(k + t) + g1j`(k) = g`(k + t− j)βt

` + g`(k − j) = 0

instead of (10). This is true because β1 . . . , βs are primitive t-th roots of
unity, thus β

t/2
j = −1, j = 1, . . . , s. ¤

Proof of Theorem 2. If R(1) = 0 then rT1 = r1 + · · · + rd = −1, thus
τr(1) = 1. Let n be an integer, then rT (n1) = nr1 + · · · + nrd = −n, thus
τr(n1) = n1, i.e (n1) is a fixed point of τr for all integers n.

We apply Theorem 1 with t = 1. Let a ∈ Zd. There exist a constant c1

such that if k is large enough, then |ak+1−ak| < c1. Fix such a k and consider
d consecutive terms ak+i, i = 0, . . . , d − 1 of {an}. Put L = min{ak+i, i =
0, . . . , d−1} and assume that L = ak+j for some j ∈ [0, d−1]. If h ∈ [0, d−1]
then 0 ≤ ak+h − L ≤ (d− 1)c1. Indeed the lower bound holds by the choice
of L. To prove the upper bound assume that h > j. Then

ak+h − L = ak+h − ak+j = ak+h − ak+h−1 + · · ·+ ak+j+1 − ak+j

≤ |ak+h − ak+h−1|+ · · ·+ |ak+j+1 − ak+j |
≤ (d− 1)c1.

The case h < j can be handled similarly.
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Let b = a− L1. Then we have

τu
r (b) = τu

r (a)− τu
r (L1) = τu

r (a)− L1

for all u ≥ 0. Putting u = k − 1 we get τk−1
r (a − L1) = τk−1

r (a) − L1 =
(ak − L, . . . , ak+d−1 − L). Thus the set A = {0, . . . , (d− 1)c1}d satisfies the
assertion.

If R(−1) = 0 then rT 1̄ = r1 + r2(−1) + · · ·+ rd(−1)d−1 = (−1)d+1, thus
τr(1̄) = (−1)d1̄. This implies that if n is an integer, then rT (n1̄) = (−1)dn1̄,
i.e n1̄ is a fixed point of τr or τ2

r according as d is even or odd. Using that −1
is a primitive second root of unity we have not only |ak+2−ak| < c1, but also
|ak+1 + ak| < c1. The rest of the proof is analogous as in the case R(1) = 0
and we conclude that A = {0, . . . , (2d− 1)c1}d satisfies the assertion of the
theorem.

Finally, if i is a root of R(X), then R(X) = (X2 +1)(Xd−2 + qd−3X
d−3 +

· · · + q0) with qd−3, . . . , q0 ∈ R. It is easy to check that if n,m ∈ Z and
v = ni+mī then τ4

r (v) = v. Further, as i is a primitive fourth root of unity
we have |ak+4 − ak| < c1 and |ak+2 + ak| < c1. The rest of the proof is
analogous again to the case R(1) = 0. ¤

4. The case d = 3

In this section we specialize the results of Theorems 1 and 2 to the case
d = 3. First we compute p

(n)
1j by using (5) and get p

(n)
11 = r2Gn + r3Gn+1 +

r4Gn+2 = −r1Gn−1, p
(n)
12 = r3Gn + Gn+1 and p

(n)
13 = Gn. Inserting these

values into (6) we obtain

(11) ak+1 = −r1Gk−1a1 + (Gk+1 + r3Gk)a2 + Gka3 +
k∑

j=1

Gk−jδj .

In the sequel we need the following lemma of M. Ward [9].

Lemma 2. Let the linear recurring sequence {Gn}∞n=0 be defined by (2).
Assume that R(X) is square-free and denote α1, . . . , αd its roots. Then

Gn =
d∑

h=1

αn
h

R′(αh)
,

where R′(X) denotes the derivative of R(X).

By a recent result of Paul Surer [10] the boundary of E3 is the union
of the sets B1 = {(−s, s − (s + 1)t, (s + 1)t − 1) : −1 ≤ s, t ≤ 1}, B2 =
{(s, s+(s+1)t, (s+1)t+1) : −1 ≤ s, t ≤ 1} and B3 = {(v, 1+2tv, 2t+v) :
−1 ≤ t, v ≤ 1}.
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4.1. The set B1. In this case R(X) = X3 + ((s + 1)t − 1)X2 + (s − (s +
1)t)X − s = (X − 1)(X2 + (s + 1)tX + s) = (X − 1)(X − α)(X − β). We
have

(1−α)(1− β) = R′(1) = 3 + 2((s + 1)t− 1) + (s− (s + 1)t) = (s + 1)(t + 1).

Using this and Lemma 2 we get

Gn =
1

R′(1)
+

αn

R′(α)
+

βn

R′(β)

=
1

(s + 1)(t + 1)
+

αn(β − 1)− βn(α− 1)
(α− β)(α− 1)(β − 1)

=
1

(s + 1)(t + 1)

(
1 +

αn(β − 1)− βn(α− 1)
α− β

)
.

Later we need the difference of two consecutive terms of the sequence {Gn},
which is

Gn −Gn−1 =
1

(s + 1)(t + 1)

(
αn(β − 1)− αn−1(β − 1)− βn(α− 1) + βn−1(α− 1)

α− β

)

=
αn−1 − βn−1

α− β
.

Using this expression and (11) we are able to compute ak+1 − ak for any
k ≥ 2.

ak+1 − ak = sa1
αk−2 − βk−2

α− β
+ a2

(
αk − βk

α− β
+ ((s + 1)t− 1)

αk−1 − βk−1

α− β

)

+
αk−1 − βk−1

α− β
a3 +

k−1∑

j=1

δj
αk−j−1 − βk−j−1

α− β
.

Notice that the summand G0δk = 0, therefore we omitted it. We estimate
the last summand∣∣∣∣∣∣

k−1∑

j=1

δj
αk−j−1 − βk−j−1

α− β

∣∣∣∣∣∣
≤ 1
|α− β|

(
1

1− |α| +
1

1− |β|
)

.

As |α|, |β| < 1 the absolute value of the first three summands can be made
arbitrary small choosing k large enough. Thus we get

Theorem 3. Assume that −1 < s, t < 1, r = (−s, s−(s+1)t, (s+1)t−1)T .
Let α, β be the roots of R(X) = X3 + ((s + 1)t− 1)X2 + (s− (s + 1)t)X − s,
which have modulus less than 1. Let

c11 =
⌊

1
|α− β|

(
1

1− |α| +
1

1− |β|
)⌋

and A = A(c11) = {(x1, x2, x3) ∈ Z3 : 0 ≤ x1 ≤ c11, x1 − c11 ≤ x2 ≤
x1 + c11, x2 − c11 ≤ x3 ≤ x2 + c11}. There exist for any (a1, a2, a3) ∈ Z3

integers L, k such that τk
r (a1 − L, a2 − L, a3 − L) ∈ A.
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We present later an application of Theorem 3. Before that we show that
a large portion of B1 does not belong to D3.

Theorem 4. Assume that −1 < s, t < 1, r = (−s, s− (s+1)t, (s+1)t−1)T

and put u = (s + 1)t.
(1) If u < −s and a = (0, 1, 2)T then an+1 = an + 1 holds for all n ≥ 0.
(2) If u ≥ −s and s < 0 and a = (0, 0, 1)T then a3 = 1 and an+2 = an+1

holds for all n ≥ 0.
(3) If 1 − 2s ≤ u < −s/2 and s > 2/3 and a = (0, 1, 3)T then a3 =

4, a4 = 3 and an+2 = an + 2 holds for all n ≥ 0.
(4) If s+2

2 < u < 2s+3
3 and s > 3/4 and a = (0, 1, 2)T then a3 = 0, a4 = 3

and an+5 = an + 1 holds for all n ≥ 0.
(5) If 3s+4

4 < u < 4s+5
5 and s > 10/11 and a = (0, 3, 2)T then a3 =

1, a4 = 4, a5 = 0, a6 = 5 and an+7 = an + 1 holds for all n ≥ 0.
In the above cases r does not belong to D3.

Proof. (1) We have ak = k for k = 0, 1, 2. Assume that this is true for
k < n + 2. Then

an+2 = −b−s(n− 1) + (s− u)n + (u− 1)(n + 1)c
= −b−n− 1 + s + uc = n + 2

because u < −s.
(2) We have a3 = −bu − 1c = 1. Assume that a2n = a2n+1 = n and

a2n+2 = n + 1. Then

a2n+3 = −b−sn + (s− u)n + (u− 1)(n + 1)c
= −b−n− 1 + uc = n + 1 = a2n+1 + 1.

Similar computation shows that if a2n+1 = n and a2n+1 = a2n+2 = n + 1
then a2n+4 = n + 2 = a2n+2 + 1.

(2) As a = (0, 1, 2) we have a3 = −bs + u− 2c. Using the inequalities for
u and s we get

s + u− 2 ≥ s + s/2− 1 > 0
< 5s/3− 1 < 1

thus a3 = 0. Similarly a4 = −bs− 2uc and as

s− 2u ≥ s− s− 2 = −2
< s− 4s/3− 2 = −s/3− 2 > −3

a4 = 3; a5 = −b−2s + 3u− 3c and as

−2s + 3u− 3 ≥ −2s + 3s/2 + 3− 3 > −1
< 2s− 2s + 3− 3 = 0

a5 = 1; a6 = −b3s− 2u− 1c and as

3s− 2u− 1 ≥ 3s− 4s/3− 3 > −2
< 3s− s− 2− 1 < −1
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a6 = 2; a7 = −b−2s + u− 2c and as

−2s + u− 2 ≥ −2s + s/2 > −3
< −2s + 2s/3− 1 < −2

a7 = 3. As (a5, a6, a7) = (a0, a1, a2) + 1 and τk
r (a+ 1) = τk

r (a) + 1 for k ≥ 0
the assertion follows.

The proof of case (5) is similar, therefore we omit it. ¤

In contrast to the last theorem we prove now that large portions of B1

belong to D3.

Theorem 5. Assume that −1 < s, t < 1, r = (−s, s− (s+1)t, (s+1)t−1)T

and a ∈ Z3. If
(1) −s, s− (s + 1)t, (s + 1)t− 1) ≤ 0 or
(2) s ∈ (0.334, 0.399) and t = − s

s+1

then {τk
r (a)} is ultimately constant, i.e. r ∈ D3.

Proof. (1) As τk
r (a + L1) = τk

r (a) + L1 adding L1 with a suitable integer L
we arrive that all coordinates of a+L1 are non negative, thus we may assume
this already for the initial vector a. Now assume that an−1, an, an+1 ≥ 0 for
some n ≥ 1. Then

−max{an−1, an, an+1} ≤ −san−1 + (s− (s + 1)t)an + ((s + 1)t− 1)an+1

≤ −min{an−1, an, an+1}
and equality holds if and only if an−1 = an = an+1, in which case we are
done. Otherwise, min{an−1, an, an+1} + 1 ≤ an+2 ≤ max{an−1, an, an+1},
i.e., the minimum of three consecutive terms is increasing, but their maxi-
mum is not, thus the sequence becomes constant after some steps.

(2) In this case we apply Theorem 3. In the actual case the polynomial
R(X) has the form R(X) = (X−1)(X2− sX + s). Its roots α, β are for 0 ≤
s ≤ 1 conjugate complex numbers, hence |α| = |β| = √

s. Further |α− β| =√
4s− s2. Using these expressions Theorem 3 implies c11 = 2

(1−√s)
√

4s−s2
. It

is easy to see, that c11 as a function of s is always larger than 4 and is less
than 5 provided s ∈ (0.079, 0.478).

For the initial points a ∈ A(4) we tested the sequence {an} for s ∈
(0.334, 0.399). Of course it is impossible to do this directly, because there are
uncountable many values in the interval, but the convexity property of the
mapping τr (see [1] Theorem 4.6) allows us to test only the end points of the
interval. We done this by using the computer algebra system MAPLE 9 and
found that τr(0.334)(a) = τr(0.399)(a) except when a = (0, 4, 0), (0,−4, 0). If
a = (0,−4, 0) then {an} = (0,−4, 0, 3, 3, 2, 2, 3, 4, 4, 4), if 0.334 ≤ s ≤ 0.375
and {an} = (0,−4, 0, 4, 4, 3, 3, 4, 5, 5, 5), if 0.375 < s ≤ 0.468. Similarly if
a = (0, 4, 0) then {an} = (0, 4, 0,−2,−1, 1, 2, 2, 2), if 0.334 ≤ s < 0.375 and
{an} = (0, 4, 0,−3,−2, 0, 1, 1, 1), if 0.375 ≤ s ≤ 0.468. This completes the
proof of case (2). ¤
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Remark that the examples of the last two theorems seems to be typical
in the sense that if {an} is bounded then it is ultimately periodic.

4.2. The set B2. In this case R(X) = X3 + ((s + 1)t + 1)X2 + (s + (s +
1)t)X + s = (X + 1)(X2 + (s + 1)tX + s) = (X + 1)(X − α)(X − β). We
show again that large portions of B2 belong to D3 and others do not.

First we prove the analogue of Theorem 3 for the actual case.

Theorem 6. Assume that −1 < s, t < 1, r = (s, s + (s + 1)t, (s + 1)t + 1)T .
Let α, β be the roots of R(X) = X3 + ((s + 1)t + 1)X2 + (s + (s + 1)t)X + s,
which have modulus less than 1. Let

c12 =
⌊

1
|α− β|

(
max{1, |α + 1|}

1− |α| +
max{1, |β + 1|}

1− |β|
)⌋

and A = A(c12) = {(x1, x2, x3, x4) ∈ Z4 : 0 ≤ x1 ≤ c12,−x1 − c12 ≤
x2 ≤ −x1 + c12, x2 − c12 ≤ x3 ≤ x2 + c12,−x3 − c12 ≤ x4 ≤ −x3 + c12}.
For (a1, a2, a3)T ∈ Z3 and L, k ∈ Z define a

(L)
d+k+1 = −brT τk

r (a1 + L, a2 −
L, a3 + L). Then there exist for any (a1, a2, a3) ∈ Z3 integers L, k such that
(a(L)

k , a
(L)
k+1, a

(L)
k+2, a

(L)
k+3) ∈ A.

Proof. The proof is analogous to the proof of Theorem 3 therefore we present
only the important differences. We have

Gn =
1

(s + 1)(1− t)

(
(−1)n +

αn(β + 1)− βn(α + 1)
α− β

,

)

thus

Gn+1 + Gn =
αn − βn

α− β
and Gn+2 −Gn =

αn(α + 1)− βn(β + 1)
α− β

,

which imply the inequalities

|ak+1 + ak| ≤ 1
|α− β|

(
1

1− |α| +
1

1− |β|
)

and

|ak+2 − ak| ≤ 1
|α− β|

( |α + 1|
1− |α| +

|β + 1|
1− |β|

)
.

Taking the maximum of the right hand sides and using that ak+1 + ak and
ak+2 − ak are integers we get the assertion. ¤

In the next theorem we show that some portion of B2 belong to D3, while
other does not.

Theorem 7. Assume that −1 < s, t < 1, r = (s, s + (s + 1)t, (s + 1)t + 1)T

and put u = (s + 1)t.
(1) If −1 < s ≤ 0 and t > 0, but (s, t) 6= (−1, 1) and a = (0, 0, 1)T , then

a2n+f = (−1)fn, n = 0, 1, . . . , f = 0, 1.
(2) If s ≤ 0 and 1 + 2s < u < 1 + s

2 and a = (0,−1, 3)T then a3 =
−4, a4 = 6, a5 = −7 and an+6 = an + 9 holds for all n ≥ 0.
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(3) If s, u + 1 ≥ 0, but s + u < 0 then the sequence {an} is for all initial
vectors ultimately periodic with period L,−L for some integer L.

In cases (1) and (2) r does not belong to D3, while in case (3) it does belong.

Proof. (1) For the initial vector the statement is true. Assume that it is true
for a2n, a2n+1, a2n+2. Then

a2n+3 = −bsn− (s + u)n + (u + 1)(n + 1)c
= −bn + 1 + uc = −(n + 1)

because u = (s+1)t is positive and less than 1. The case a2n+1, a2n+2, a2n+3

can be treated similarly.
(2) We have a3 = −b−(s + u) + 3(u + 1)c = −b−s + 2u + 3c = −4,

a4 = −b−s + 3(s + u) − 4(u + 1)c = −b2s − u − 4c = 6. The proof of the
remaining statements is similar.

(3) As τk
r (a + L(1,−1, 1)T ) = τk

r (a) + (−1)kL(1,−1, 1)T holds for all
a ∈ Z3 and k ≥ 0, we may assume that a1, a3 ≥ 0 and a2 ≤ 0. Let
k = min{a1, |a2|, a3} and K = max{a1, |a2|, a3} and assume that k 6= K,
otherwise we are done. Then

sa1 + (s + u)a2 + (u + 1)a3 = sa1 − (s + u)|a2|+ (u + 1)a3.

Here all summands are non-negative, therefore the sum is greater than k
and less than K and we get −K + 1 ≤ a4 ≤ −k. We have a2, a4 ≤ 0 and
a3 ≥ 0, which justify the equality

sa2 + (s + u)a3 + (u + 1)a4 = −(s|a2| − (s + u)a3 + (u + 1)|a4|).
As the summands in the bracket are non-negative we obtain −K ≤ sa2 +
(s + u)a3 + (u + 1)a4 ≤ −k and equality holds only if a2 = −a3 = a4. If this
is not true then k + 1 ≤ a5 ≤ K. This means that the lower bound for the
absolute value of the terms |an| is increasing, but the upper bound is not
decreasing, thus {|an|} must became ultimately constant. ¤
4.3. The set B3. By Surer’s [10] characterization R(X) = X3+(2t+v)X2+
(2tv + 1)X + v = (X + v)(X2 + 2tX + 1) = (X + v)(X − α)(X − ᾱ). We
study only the case t = 0, |v| ≤ 1 and prove

Theorem 8. The points r = (v, 1, v)T , |v| ≤ 1 belong to D3 \ D0
3.

Proof. Let {an} be a sequence of integers satisfying

0 ≤ van−1 + an + van+1 + an < 1

for all n ≥ 1. Putting bn = an + an+2, n ≥ 0 we rewrite the last inequality
as

(12) 0 ≤ vbn−1 + bn < 1.

If 0 ≤ v < 1 then v ∈ D0
1 by Proposition 4.4. [2], i.e. the sequence {bn} is

ultimately zero. We prove that for the other values of v, i.e. −1 ≤ v < 0 and
v = 1 the sequence {bn} is ultimately constant. This is obviously true for
v = ±1. If b0 = 0 then bn = 0 for all n ≥ 0.
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Assume that −1 < v < 0. If b0 > 0 then 1 ≤ bn ≤ bn−1 holds for all n ≥ 1.
Indeed bn ≥ −vbn−1 > 0, which proves the left inequality. On the other hand
bn < 1 − vbn−1 < 1 + bn−1. As both bn and bn−1 are integers we get the
right hand side inequality. We proved that {bn} is non-negative and mono-
tonically decreasing, thus it is ultimately constant. If b0 < 0 then one can
analogously prove that {bn} is non-positive and monotonically increasing,
thus it is ultimately constant to.

After this preparation we turn to the proof of the theorem. We may
assume without loss of generality that bn = b, n ≥ 0. Let a0, a1 ∈ Z. Then
a2 = b − a0, a3 = b − a1 and a4k+j = aj for all j = 0, 1, 2, 3; k = 0, 1, . . . .
Thus {an} is an ultimately periodic sequence, i.e. r ∈ D3. As we may choose
a0, a1 arbitrarily, e.g. such that {an} is not the zero sequence, thus r /∈ D0

3.
This completes the proof of the theorem. ¤
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[4] S. Akiyama, H. Brunotte, A. Pethő and W. Steiner, Periodicity of certain
piecewise affine planar maps, to appear.
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