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Abstract. We determine periodic and aperiodic points of certain piecewise affine maps in the

Euclidean plane. Using these maps, we prove that all integer sequences (ak)k∈Z satisfying

0 ≤ ak−1 + λak + ak+1 < 1 for some (fixed) λ ∈ {±1±
√

5
2

,±
√

2} are periodic.

1. introduction

In the past few decades discontinuous piecewise affine maps have found considerable interest
in the theory of dynamical systems. For an overview we refer the reader to [1, 7, 12, 13, 16,
17], for particular instances to [27, 15, 24] (polygonal dual billiards), [14] (polygonal exchange
transformations), [10, 29, 11, 8] (digital filters) and [18, 20, 21] (propagation of round-off errors in
linear systems). The present note deals with a presumably folklore conjecture on the periodicity
of a certain kind of these maps which was recently stated twice in the literature in an explicit
form. The first version appeared in [4]:

Conjecture 1.1. For every real λ with |λ| < 2, all integer sequences (ak)k∈Z satisfying

(1.1) 0 ≤ ak−1 + λak + ak+1 < 1

for all k ∈ Z are periodic.

Vivaldi [25] established an equivalent formulation: If λ ∈ (−2, 2) then all orbits of the lattice
map Z2 −→ Z2 given by

(x, y) 7−→ (bλxc − y, x)

are periodic. These two formulations are in fact equivalent: Assuming the truth of Conjecture (1.1)
then the integer sequence

xk+1 = bλxkc − xk−1

is periodic because it satisfies

0 ≤ (−xk−1) + (−λ)(−xk) + (−xk+1) < 1.

The reverse implication is seen analogously.
The last mentioned formulation of Conjecture (1.1) has originated from a discretization process

in a rounding-off scheme occurring in computer simulation of dynamical systems (we refer the
reader to [18] and [25] and the literature quoted there). On the other hand, the interest in integer
sequences satisfying (1.1) arose in the study of shift radix systems (see [4] and [2] for details).

Conjecture (1.1) is trivially true for λ = −1, 0, 1. A computer assisted proof for λ = 1−
√

5
2 was

given by Lowenstein, Hatjispyros and Vivaldi [18], where also the solution for the golden mean
λ = γ = 1+

√
5

2 was mentioned. A short proof (without use of computers) of the case λ = γ was
given by the authors [3].

The proof in [18] is based on a non-ergodic piecewise affine map on the unit square which is
treated by Kouptsov, Lowenstein and Vivaldi [17] for all quadratic λ corresponding to rational
rotations (λ = ±1±

√
5

2 ,±
√

2,±
√

3), by heavy use of computers. Important related work is due to
Adler, Kitchens and Tresser [1], Poggiaspalla [23], Vivaldi [25], Vivaldi and Lowenstein [26] and
others.
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In this note we further develop the method described in [18]. Let λ2 = bλ+ c with b, c ∈ Z. Set
x = {λak−1} and y = {λak}, where {z} = z − bzc denotes the fractional part of z. Then we have
ak+1 = −ak−1 − λak + y and

{λak+1} = {−λak−1 − λ2ak + λy} = {−x + (λ− b)y} = {−x + cy/λ} = {−x− λ′y},

where λ′ is the algebraic conjugate of λ. Therefore we are interested in the discontinuous measure-
preserving piecewise affine planar map T : [0, 1)2 → [0, 1)2 given by T (x, y) = (y, {−x − λ′y}).
Obviously, it suffices to study the periodicity of (T k(z))k∈Z for points z = (x, y) ∈ (Z[λ] ∩ [0, 1))2

in order to prove the conjecture. Note that people interested in dynamical systems usually neglect
sets of measure zero like the discontinuity lines and its images, but we cannot neglect them since
many points z ∈ (Z[λ] ∩ [0, 1))2 lie in these sets.

It turns out that investigating the dynamical system ([0, 1)2, T ) allows proving the conjecture
for all quadratic λ corresponding to rational rotations; furthermore, all possible period lengths
are explicitly determined and aperiodic points in (Q(λ) ∩ [0, 1))2 are given. Note that the set of
aperiodic points can be constructed similarly to a Cantor set, and that it is an open question of
Mahler [22] whether there exist algebraic points in the triadic Cantor set.

The paper is organized as follows. In Section 2 we reprove the conjecture for the above men-
tioned simplest non-trivial case, i.e. where λ equals the golden mean. Here our main tool for
the description of T is introduced, namely a related map S constructed from T by some scaling
procedure. An exposition of our domain exchange method is given in Section 3 where the ideas of
Section 2 are extended and the properties of S on suitable subsets of the unit square are exploited;
here and in the subsequent four sections we prove the conjecture for the cases λ = −γ,±1/γ,±

√
2

thereby making use of the fact that the scaling factor in the definition of S is the conjugate of a
Pisot unit in the quadratic number field Q(λ). We conclude this note by an observation relating
the famous Thue-Morse sequence to the trajectory of points for λ = ±γ,±1/γ. The proofs of the
conjecture for λ = ±

√
3 are much more involved and therefore postponed to future work. For

cubic λ, the analog of the map T is defined on [0, 1)4, and the proof of the conjecture requires
further efforts.

2. The case λ = γ = 1+
√

5
2 = −2 cos 4π

5

We consider first the golden mean λ = γ = 1+
√

5
2 , λ2 = λ + 1. Note that T is given by

(2.1) T (x, y) = (x, y)A + (0, dx− y/γe) with A =
(

0 −1
1 1/γ

)
.

Therefore, we have T (x, y) = (x, y)A if x ≤ y/γ and T (z) = zA + (0, 1) for the other points
z ∈ [0, 1)2, see Figure 2.1. A particular role is played by the set

R = {(x, y) ∈ [0, 1)2 : x > y/γ, x + y > 1, y > x/γ} ∪ {(0, 0)}.

If z ∈ R, z 6= (0, 0), then we have T k+1(z) = T k(z)A + (0, 1) for all k ∈ {0, 1, 2, 3, 4}, hence

T 5(z) = zA5 + (0, 1)(A4 + A3 + A2 + A1 + A0) = z + (0, 1)(A5 −A0)(A−A0)−1 = z

since A5 = A0. It can be easily verified that the minimal period length is 5 for all z ∈ R except
( γ2

γ2+1 , γ2

γ2+1 ) and (0, 0), which are fixed points of T . Therefore, it is sufficient to consider the
domain D = D0 ∪D1 with D0 = {(x, y) ∈ [0, 1)2 : x ≤ y/γ} \ {(0, 0)}, and D1 = [0, 1)2 \ (D0 ∪R)
in the following.

In Figure 2.2, we scale the polygons D0 and D1 by the factor 1/γ2 and follow their T -trajectory
until the return to D/γ2. Let P be the set of (gray) points in D which are not eventually mapped
to D/γ2, i.e.,

P = Dα ∪ T (Dα) ∪Dβ ∪ T (Dβ) ∪ T 2(Dβ),

where Dα is the closed pentagon {(x, y) ∈ D0 : y ≥ 1/γ2, x + y ≤ 1, y ≤ (1 + x)/γ} and Dβ is the
open pentagon R/γ2 \ {(0, 0)}. (In Figure 2.2, Dα is split up into {T k(Dα̃) : k ∈ {0, 2, 4, 6, 8}},
and Dβ is split up into {T k(Dβ̃) : k ∈ {0, 3, 6, 9, 12}}.) All points in P are periodic (with minimal
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Figure 2.1. The piece-wise affine map T and the set R, λ = γ = 1+
√

5
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Figure 2.2. The trajectory of the scaled domains and the (gray) set P, λ = γ.
(β̃k stands for T k(Dβ̃).)
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period length 1, 10 or 15). Figures 2.1 and 2.2 show that the action of the first return map on
D/γ2 is similar to the action of T on D, more precisely,

(2.2)
T (z)
γ2

=

{
T (z/γ2) if z ∈ D0,

T 6(z/γ2) if z ∈ D1.

For z ∈ D \ P, let s(z) = min{m ≥ 0 : Tm(z) ∈ D/γ2}. (Figure 2.2 shows s(z) ≤ 5.) By the map

S : D \ P → D, z 7→ γ2T s(z)(z),

we can completely characterize the periodic points. For z ∈ [0, 1)2, denote by π(z) the minimal
period length if (T k(z))k∈Z is periodic and set π(z) = ∞ if z is aperiodic.

Theorem 2.1. (T k(z))k∈Z is periodic if and only if z ∈ R or Sn(z) ∈ P for some n ≥ 0.

We postpone the proof to Section 3, where the more general Proposition 3.3 and Theorem 3.4
are proved (with U(z) = z/γ2, R(z) = z, T̂ (z) = T (z), π̂(z) = π(z), and z ∈ D1 or T (z) ∈ D1 for
all z ∈ D, |σn(1)| → ∞, see below).

(2.2) and Figure 2.2 suggest to define a substitution (or morphism) σ on the alphabetA = {0, 1},
i.e., a map σ : A → A? (where A? denotes the set of words with letters in A), by

σ : 0 7→ 0 1 7→ 101101

in order to code the trajectory of the scaled domains: We have T k−1(D`/γ2) ⊆ Dσ(`)[k] and
T |σ(`)|(z/γ2) = T (z)/γ2 for all z ∈ D`, where w[k] denotes the k-th letter of the word w and |w|
denotes its length. Furthermore, we have T k(D`/γ2)∩D/γ2 = ∅ for all k, 1 ≤ k < |σ(`)|. Extend
the definition of σ naturally to words in A? by setting σ(vw) = σ(v)σ(w), where vw denotes the
concatenation of v and w. Then we get the following lemma.

Lemma 2.2. For every integer n ≥ 0 and every ` ∈ {0, 1}, we have
• T |σ

n(`)|(z/γ2n) = T (z)/γ2n for all z ∈ D`,
• T k−1(D`/γ2n) ⊆ Dσn(`)[k] for all k, 1 ≤ k ≤ |σn(`)|
• T k(D`/γ2n) ∩ D/γ2n = ∅ for all k, 1 ≤ k < |σn(`)|.

The proof is again postponed to Section 3, Lemma 3.1. This lemma allows to determine the
minimal period lengths: If z ∈ Dα, then

T |σ
n(0101010101)|(z/γ2n) = T |σ

n(101010101)|(T (z)/γ2n) = · · · = T 10(z)/γ2n = z/γ2n

for all n ≥ 0. The only points T k(z/γ2n) with 1 ≤ k ≤ 5|σn(01)| which lie in D/γ2n are the
points Tm(z)/γ2n, 1 ≤ m ≤ 9, which are all different from z/γ2n if π(z) = 10. Therefore, we
obtain π(z/γ2n) = 5|σn(01)| in this case. A point z̃ lies in the trajectory of z/γ2n if and only if
Sn(z̃) = Tm(z) for some m ∈ Z, see Lemma 3.2. This implies π(z̃) = 5|σn(01)| for these z̃ as well.
Similarly, we obtain π(z) = 5|σn(101)| if Sn(z) ∈ Tm(Dβ) and π(Sn(z)) = 15. More precisely, the
following theorem holds.

Theorem 2.3. If λ = γ, then the minimal period lengths π(z) of (T k(z))k∈Z are
1 if z = (0, 0) or z = ( γ2

γ2+1 , γ2

γ2+1 )

5 if z ∈ R \ {(0, 0), ( γ2

γ2+1 , γ2

γ2+1 )}
(5 · 4n + 1)/3 if Sn(z) = Tm( 1/γ

γ2+1 , 2
γ2+1 ) for some n ≥ 0, m ∈ {0, 1}

5(5 · 4n + 1)/3 if Sn(z) ∈ Tm
(
Dα \ {( 1/γ

γ2+1 , 2
γ2+1 )}

)
for some n ≥ 0, m ∈ {0, 1}

(10 · 4n − 1)/3 if Sn(z) = Tm( 1
γ2+1 , 1

γ2+1 ) for some n ≥ 0, m ∈ {0, 1, 2}
5(10 · 4n − 1)/3 if Sn(z) ∈ Tm

(
Dβ \ {( 1

γ2+1 , 1
γ2+1 )}

)
for some n ≥ 0, m ∈ {0, 1, 2}

∞ if Sn(z) ∈ D \ P for all n ≥ 0
The minimal period length of (ak)k∈Z is π({γak−1}, {γak}) (which does not depend on k).

Proof. By Theorem 2.1, Proposition 3.3 and the remarks preceding the theorem, it suffices to
calculate |σn(0)| and |σn(1)|. Clearly, we have |σn(0)| = 1 for all n ≥ 0 and thus

|σn(1)| = |σn−1(101101)| = 4|σn−1(1)|+ 2 = 4(5 · 4n−1 − 2)/3 + 2 = (5 · 4n − 2)/3.
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If Sn(z) ∈ Tm(Dα), then π(z) = |σn(01)| and π(z) = 5|σn(01)| respectively. If Sn(z) ∈ Tm(Dβ),
then π(z) = |σn(101)| and π(z) = 5|σn(101)| respectively. �

Now consider aperiodic points z ∈ [0, 1)2, i.e., Sn(z) ∈ D \ P for all n ≥ 0. By (2.1) and
Figure 2.2, we have

S(z) = γ2T s(z)(z) = γ2
(
zAs(z) + t(z)

)
with

t(z) =


(0, 0) if s(z) = 0,
(0, 1) if s(z) ∈ {1, 2},
(0, 1)A2 + (0, 1) = (1/γ, 1/γ2) if s(z) = 3,
(0, 1)A3 + (0, 1)A2 + (0, 1) = (0,−1/γ) if s(z) ∈ {4, 5}.

Therefore we obtain inductively

Sn(z) = γ2nzAs(z)+s(S(z))+...+s(Sn−1(z)) +
n−1∑
k=0

γ2(n−k)t(Sk(z))As(Sk+1(z))+···+s(Sn−1(z))

For x ∈ Q(γ), let x′ be its algebraic conjugate, and w′ = (x′, y′) if w = (x, y) ∈ Q(γ)2. If
z ∈ Q(γ)2, we have then

(Sn(z))′ =

(
zAs(z)+s(S(z))+···+s(Sn−1(z))

)′
γ2n

+
n−1∑
k=0

(
t(Sk(z))As(Sk+1(z))+···+s(Sn−1(z))

)′
γ2(n−k)

and

‖(Sn(z))′‖∞ ≤ maxh∈Z ‖(zAh)′‖∞
γ2n

+
n−1∑
k=0

maxh∈Z,w∈D\P ‖(t(w)Ah)′‖∞
γ2n−k

.

Since

t(w)Ah ∈
{
(0, 0), (0, 1), (1, 1/γ), (1/γ,−1/γ), (−1/γ,−1), (−1, 0),

(1/γ, 1/γ2), (1/γ2,−1/γ2), (−1/γ2,−1/γ), (−1/γ, 0), (0, 1/γ),

(0,−1/γ), (−1/γ,−1/γ2), (−1/γ2, 1/γ2), (1/γ2, 1/γ), (1/γ, 0)
}
,

and zAh takes only the values z, zA, zA2, zA3 and zA4, we obtain

‖(Sn(z))′‖∞ ≤ maxh∈Z ‖(zAh)′‖∞
γ2n

+
n−1∑
k=0

γ2

γ2(n−k)
<

C(z)
γ2n

+ γ

for some constant C(z). If z ∈ ( 1
QZ[γ])2 for some integer Q ≥ 1, then Sn(z) ∈ ( 1

QZ[γ])2. Since
there exist only finitely many points w ∈ ( 1

QZ[γ] ∩ [0, 1))2 with ‖w′‖∞ < C(z) + γ, we must have
‖(Sn(z))′‖∞ ≤ γ for some n ≥ 0, which proves the following proposition.

Proposition 2.4. Let z ∈ ( 1
QZ[γ] ∩ [0, 1))2 be an aperiodic point. Then there exists an aperiodic

point z̃ ∈ ( 1
QZ[γ])2 ∩ D with ‖z̃′‖∞ ≤ γ.

For every denominator Q ≥ 1, it is therefore sufficient to check the periodicity of the (finite set
of) points z ∈ ( 1

QZ[γ])2 ∩D with ‖z′‖∞ ≤ γ in order to determine if all points in ( 1
QZ[γ]∩ [0, 1))2

are periodic.
Clearly, Z[γ] ⊂ 1

2Z[γ]. Therefore, we consider directly Q = 2. We have to take into account
coordinates of the form x = a + bγ ∈ [0, 1) with a, b ∈ 1

2Z and |x′| = |a − b/γ| ≤ γ. For b = 0,
we obtain x = 0 and x = 1/2; for b = 1/2, we obtain x = γ/2 and x = −1/2 + γ/2 = 1/(2γ);
for b = 1, we obtain x = −1 + γ = 1/γ; for other x with b ≥ 1, we must have a ≤ −3/2 and
thus x′ ≤ −3/2 − 1/γ < −γ; for b = −1/2, we obtain x = 1 − γ/2 = 1/(2γ2); other values with
b ≤ −1/2 are again impossible since a ≥ 3/2 implies x′ ≥ 3/2 + γ/2 > γ. Note that for Q = 1
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Figure 2.3. Aperiodic points, λ = γ.
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Figure 2.4. Aperiodic points, λ = −1/γ.

(which corresponds to the conjecture), only x = 0 and x = 1/γ are possible. Now consider S(x, y)
for (x, y) ∈ {0, 1/(2γ2), 1/(2γ), 1/2, 1/γ, γ/2}2 (if z ∈ D\P, otherwise we clearly have π(z) < ∞):

x \ y 0 1/(2γ2) 1/(2γ) 1/2 1/γ γ/2
0 ∈ R (0, 1/2) (0, γ/2) ∈ Dα ∈ Dα (0, 1/2)

1/(2γ2) (1/2, 0) (1/2, 1/2) (1/2, γ/2) ∈ Dα ∈ Dα (1/2, 1/2)
1/(2γ) (γ/2, 0) (γ/2, 1/2) (γ/2, γ/2) ∈ Dα ∈ Dα (1/2, γ/2)

1/2 ∈ T (Dα) ∈ T (Dα) ∈ T (Dα) (0, 1/2) ∈ R (0, 1/2)
1/γ ∈ T (Dα) ∈ T (Dα) ∈ T (Dα) ∈ R ∈ R ∈ R
γ/2 (0, 1/2) (1/2, γ/2) (1/2, 1/2) (0, 1/2) ∈ R ∈ R

For every point z ∈ ( 1
2Z[γ])2 ∩ D with ‖z′‖∞ ≤ γ, we have therefore some n ∈ {0, 1, 2} such that

Sn(z) ∈ P.
If Q = 3, then the situation is completely different. We have

S(0, 1/3) = (0, γ2/3), S(0, γ2/3) = γ2
(
(0, γ2/3)A5 + (0,−1/γ)

)
= (0, 2/3),

S(0, 2/3) = γ2
(
(0, 2/3)A5 + (0,−1/γ)

)
=

(
0, 1/(3γ2)

)
, S4(0, 1/3) = S

(
0, 1/(3γ2)

)
= (0, 1/3).

Therefore, we have Sn(0, 1/3) ∈ D \ P for all n ≥ 0 and π(0, 1/3) = ∞ by Theorem 2.3.

Theorem 2.5. π(z) is finite for all points z ∈ ( 1
2Z[γ] ∩ [0, 1))2, but (T k(0, 1/3))k∈Z is aperiodic.

3. General description of the method

In this section, we generalize the method presented in Section 2 in order to make it applicable
for λ = −γ,±1/γ,±

√
2.

For the moment, we only need that T : X → X is a bijective map on a set X. Fix D ⊆ X, let

R = {z ∈ X : Tm(z) 6∈ D for all m ≥ 0}
set r(z) = min{m ≥ 0 : Tm(z) ∈ D} for z ∈ X \ R, and

R : X \ R → D, R(z) = T r(z)(z).

Let T̂ be the first return map (of the iterates by T ) on D, i.e.,

T̂ : D → D, T̂ (z) = RT (z) = T r(T (z))+1(z),

in particular T̂ (z) = T (z) if T (z) ∈ D. Let A be a finite set, {D` : ` ∈ A} a partition of D and
define a coding map ι : D → AZ by ι(z) = (ιk(z))k∈Z such that T̂ k(z) ∈ Dιk(z) for all k ∈ Z. Let
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U : D → D, ε ∈ {−1, 1} and σ a substitution on A such that, for every ` ∈ A and z ∈ D`,

UT̂ (z) = T̂ ε|σ(`)|U(z),

T̂ εkU(z) 6∈ U(D) for all k, 1 ≤ k < |σ(`)|, and

σ(`) =
{

ι0(U(z)) ι1(U(z)) · · · ι|σ(`)|−1(U(z)) if ε = 1,
ι−|σ(`)|(U(z)) · · · ι−2(U(z)) ι−1(U(z)) if ε = −1.

Then the following lemma holds, which resembles Proposition 1 in [23].

Lemma 3.1. For every integer n ≥ 0, every ` ∈ A and z ∈ D`, we have

UnT̂ (z) = T̂ εn|σn(`)|Un(z),

T̂ εnkUn(z) 6∈ Un(D) for all k, 1 ≤ k < |σn(`)|, and

ι0(Un(z)) ι1(Un(z)) · · · ι|σn(`)|−1(Un(z)) = σn(`) if ε = 1,
ι0(Un(z)) ι1(Un(z)) · · · ι|σn(`)|−1(Un(z)) = (σσ̄)n/2(`) if ε = −1, εn = 1,

ι−|σn(`)|(Un(z)) · · · ι−2(Un(z)) ι−1(Un(z)) = (σσ̄)(n−1)/2σ(`) if ε = −1, εn = −1,

where σ̄(`) = `m · · · `2`1 if σ(`) = `1`2 · · · `m.

Proof. The lemma is trivially true for n = 0, and for n = 1 by the assumptions on σ. If we
suppose inductively that it is true for n− 1, then let σ(`) = `1`2 · · · `m if ε = 1, σ(`) = `m · · · `2`1
if ε = −1, and we obtain (by another induction) for all j, 1 ≤ j ≤ m,

(3.1) T̂ εn|σn−1(`1···`j−1`j)|Un(z) = T̂ εn|σn−1(`j)|Un−1T̂ ε(j−1)U(z) = Un−1T̂ εjU(z)

If ε = 1, then this follows immediately from the induction hypothesis; if ε = −1, then this follows
by setting k = |σn−1(`j)| in

(3.2) T̂ (−1)nkUn−1T̂
(
T̂−jU(z)

)
= T̂ (−1)n(k−|σn−1(`j)|)Un−1T̂−jU(z).

Therefore, we have

T̂ εn|σn(`)|Un(z) = T̂ εn|σn−1(`1···`m−1`m)|Un(z) = Un−1T̂ εmU(z) = Un−1T̂ ε|σ(`)|U(z) = UnT̂ (z).

If ε = 1, then (3.1) implies that

ι0(Un(z)) · · · ι|σn(`)|−1(Un(z)) =
(
ι0(Un−1U(z)) · · · ι|σn−1(`1)|−1(Un−1U(z))

)
· · ·(

ι0(Un−1T̂m−1U(z)) · · · ι|σn−1(`m)|−1(Un−1T̂m−1U(z))
)

= σn−1(`1) · · ·σn−1(`m) = σn(`);

if ε = −1 and εn = 1, then (3.1) and (3.2) provide

ι0(Un(z)) · · · ι|σn(`)|−1(Un(z)) =
(
ι−|σn−1(`1)|(U

n−1T−1U(z)) · · · ι−1(Un−1T−1U(z))
)

· · ·
(
ι−|σn−1(`m)|(Un−1T̂−mU(z)) · · · ι−1(Un−1T̂−mU(z))

)
= (σσ̄)(n−2)/2σ(`1) · · · (σσ̄)(n−2)/2σ(`m) = (σσ̄)n/2(`);

if ε = −1 and εn = −1, then

ι−|σn(`)|(Un(z)) · · · ι−1(Un(z)) =
(
ι0(Un−1T−mU(z)) · · · ι|σn−1(`m)|−1(Un−1T−mU(z))

)
· · ·

(
ι0(Un−1T̂−1U(z)) · · · ι|σn−1(`1)|(U

n−1T̂−1U(z))
)

= (σσ̄)(n−1)/2(`m) · · · (σσ̄)(n−1)/2(`1) = (σσ̄)(n−1)/2σ(`).

By (3.1), (3.2) and the induction hypothesis, the only points in (T̂ εnkUn(z))1≤k<|σn(`)| lying in
Un−1(D) are UnT̂ εj(z), 1 ≤ j < |σ(`)|. Since T̂ εj(z) 6∈ U(D) for these j, the lemma is proved. �

Remark. If z̃ = T̂−1(z) ∈ D`, then UnT̂ (z̃) = T̂ εn|σn(`)|Un(z̃), hence UnT̂−1(z) = T−εn|σn(`)|Un(z).

As in Section 2, a key role will be played by the map S. Assume that U is injective, let

P = {z ∈ D : T̂m(z) 6∈ U(D) for all m ∈ Z},
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fix ŝ(z) = min{m ≥ 0 : T̂m(z) ∈ U(D)} or ŝ(z) = max{m ≤ 0 : T̂m(z) ∈ U(D)} for every
z ∈ D \ P, let s(z) ∈ Z be such that T̂ ŝ(z)(z) = T s(z)(z), and define

S : D \ P → D, z 7→ U−1T̂ ŝ(z)(z) = U−1T s(z)(z).

Remark. Allowing s(z) and ŝ(z) to be negative decreases the δ in Proposition 3.5 in most cases.

Lemma 3.2. If SnR(z) exists, then we have some m ≥ 0 such that UnSnR(z) = Tm(z), and

z̃ = Tm(z) for some m ∈ Z if and only if SnR(z̃) = T̂ kSnR(z) for some k ∈ Z.

Proof. Suppose that SnR(z) exists. Then we have

UnSnR(z) = Un−1T̂ ŝ(Sn−1R(z))Sn−1R(z) = T̂m1Un−1Sn−1R(z) = · · · = T̂m1+···+mnR(z) = Tm(z)

for some m1, . . . ,mn,m ≥ 0.
If SnR(z̃) = T̂ kSnR(z) for some k ∈ Z, then let m1,m2 ≥ 0 be such that UnSnR(z) = Tm1(z),

UnSnR(z̃) = Tm2(z̃), and we have

Tm2(z̃) = UnSnR(z̃) = UnT̂ kSnR(z) = T̂ k1UnSnR(z) = T k2+m1(z)

for some k1, k2 ∈ Z, hence z̃ = Tm(z) with m = k2 + m1 −m2.
If z̃ = Tm(z) for some m ∈ Z and n = 0, then we have SnR(z̃) = T̂ knSnR(z) for some kn ∈ Z.

If we suppose inductively that this is true for n− 1, then

SnR(z̃) = ST̂ kn−1Sn−1R(z) = ST̂ kn−1−ŝ(Sn−1R(z))USnR(z) = SUT̂ knSnR(z) = T̂ knSnR(z)

for some kn−1, kn ∈ Z, and the statement is proved. �

If rT is constant on every D`, ` ∈ A, then we can define τ : A → N>0 by τ(`) = r(T (z))+ 1 for
z ∈ D` (cf. the definition of T̂ ) and extend τ naturally to words w ∈ A? by τ(w) =

∑
`∈A |w|`τ(`).

Let π(z), π̂(z) be the minimal period lengths of (T k(z))k∈Z and (T̂ k(z))k∈Z respectively, with
π(z) = ∞, π̂(z) = ∞ if the sequences are aperiodic. Then the following proposition holds.

Proposition 3.3. If π̂(SnR(z)) = p and `1 · · · `p = ι0(SnR(z)) · · · ιp−1(SnR(z)), then we have

π̂(R(z)) = |σn(`1`2 · · · `p)| and π(z) = τ(σn(`1`2 · · · `p)) (if τ is well defined).

Proof. Since UnSnR(z) = Tm(z) = T̂ m̂R(z) for some m, m̂ ∈ Z, and

T τ(σn(`1`2···`p))UnSnR(z) = T̂ |σ
n(`1`2···`p)|UnSnR(z) = UnT̂ pSnR(z) = UnSnR(z),

we have π̂(R(z)) ≤ |σn(`1 · · · `p)| and π(z) ≤ τ(σn(`1 · · · `p)) (if τ exists). Since p is minimal, we
can show similarly to the proof of Lemma 3.1 that these period lengths are minimal. �

We obtain the following characterization of periodic points z 6∈ R. Note that all points in P∪R
are periodic in our cases, hence the characterization is complete.

Theorem 3.4. Let R,S, T,D,P,R, σ be as in the preceding paragraphs of this section. Assume
that π̂(z) is finite for all z ∈ P, and that for every z ∈ D \ P there exist m ∈ Z, ` ∈ A, such that
T̂m(z) ∈ D` and |σn(`)| → ∞ for n →∞. Then we have for z 6∈ R:

(T k(z))k∈Z is periodic if and only if SnR(z) ∈ P for some n ≥ 0.

Proof. If SnR(z) ∈ P, then we have π̂(R(z)) = π̂(SnR(z)) < ∞, which implies π(z) < ∞.
Suppose now that SnR(z) ∈ D \ P for all n ≥ 0. Then we have mn ∈ Z and `n ∈ A

such that T̂mnSnR(z) ∈ D`n
and |σn(`n)| → ∞ for n → ∞ (because A is finite). We have

UnT̂mnSnR(z) = T̂ m̃nUnSnR(z) ∈ Un(D`n
) for some m̃n ∈ Z, hence T̂ m̃n+kUnSnR(z) 6∈ Un(D)

for all k, 1 ≤ k < |σn(`n)|, which implies π(z) ≥ π̂(R(z)) = π̂(UnSnR(z)) ≥ |σn(`n)| for all n ≥ 0,
thus π(z) = ∞. �
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Assume now λ ∈ {±
√

2, ±1±
√

5
2 ,±

√
3}, let λ′ be its algebraic conjugate, T : [0, 1)2 → [0, 1)2,

T (x, y) = (x, y)A + (0, dx + λ′ye) with A =
(

0 −1
1 −λ′

)
,(3.3)

U(z) = V −1(κV (z))

with 0 < κ < 1, κ ∈ Z[λ], |κκ′| = 1, and V (z) = z − v or V (z) = v − z for some v ∈ Z[λ]2. Let

t(z) = V
(
T s(z)(z)

)
− V (z)As(z)

for z ∈ D \ P. Since U−1(z) = V −1(V (z)/κ), we have

S(z) = U−1T s(z)(z) = V −1

(
V (z)As(z) + t(z)

κ

)
,

Note that Ah = A0 for some h ∈ {5, 8, 10, 12},

T−1(x, y) = (x, y)A−1 + (dλ′x + ye, 0) with A−1 =
(
−λ′ 1
−1 0

)
,

and T−1(x, y) = (x̃, ỹ) with (ỹ, x̃) = T (y, x). Since |ŝ(z)| < max`∈A |σ(`)|, there exist only a finite
number of values for t(z), and we obtain the following proposition.

Proposition 3.5. Let T, V, κ be as above and the assumptions of Theorem 3.4 be satisfied. Suppose
that π(z) = ∞ for some z ∈ ( 1

QZ[λ]∩ [0, 1))2 \R, where Q is a positive integer. Then there exists
an aperiodic point z̃ ∈ ( 1

QZ[λ])2 ∩ D with

‖V (z̃)′‖∞ ≤ δ

|κ′| − 1
, where δ = max{‖(t(z)Ah)′‖∞ : z ∈ D \ P, h ∈ Z}.

Proof. First note that δ exists since t(z) and Ah take only finitely many values. If π(z) = ∞ for
some z ∈ ( 1

QZ[λ] ∩ [0, 1))2 \ R, then SnR(z) ∈ D \ P for all n ≥ 0 by Theorem 3.4. We use the
abbreviations sn = s(SnR(z)) and tn = t(SnR(z)). Then we obtain inductively, for n ≥ 1,

V SnR(z) =
V Sn−1R(z)Asn−1 + tn−1

κ
=

V R(z)As0+s1+···+sn−1

κn
+

n−1∑
k=0

tkAsk+1+···+sn−1

κn−k
.

If we look at the algebraic conjugates, then note that |κ′| > 1, and we obtain

‖(V SnR(z))′‖∞ <

∥∥∥(
V R(z)As0+s1+···+sn−1

)′∥∥∥
∞

|κ′|n
+

δ

|κ′| − 1
,

thus ‖(V SnR(z))′‖∞ ≤ δ
|κ′|−1 for some n ≥ 0 (as in Section 2), and we can choose z̃ = SnR(z). �

Remarks.

• The last proof shows that, for every z ∈ (Q(λ)∩ [0, 1))2 \R with π(z) = ∞, there are only
finitely many possibilities for V SnR(z), hence (SnR(z))n≥0 is eventually periodic.

• For every z ∈ [0, 1)2 \ R with π(z) = ∞, we have

V R(z) =
(
V SnR(z)κn−

n−1∑
k=0

tkAsk+1+···+sn−1κk
)
A−s0−···−sn−1 = −

∞∑
k=0

tkA−
∑k

j=0 s(SjR(z))κk,

which is a κ-expansion (κ < 1) of V R(z) with (two-dimensional) “digits”−tkA−s0−s1−···−sk .
• As a consequence of Lemma 3.2 and the definition of U , for every aperiodic point z ∈

[0, 1)2 \ R and every c > 0, there exists some m ∈ Z such that ‖Tm(z)− v‖∞ < c.
• In all our cases, we have ε = κκ′.



10 S. AKIYAMA, H. BRUNOTTE, A. PETHŐ, AND W. STEINER

D0

D1

T (D1)T 2(D1)

T 3(D1)
Dβ

Dα

T̂→

T (D0)

T 4(D1)

Figure 4.1. The map T̂ , T̂ (D0) = T (D0), T̂ (D1) = T 4(D1), and the (gray) set R, λ = −1/γ.

4. The case λ = −1/γ = 1−
√

5
2 = −2 cos 2π

5

Now we apply the method in Section 3 for λ = −1/γ, i.e., λ′ = γ. To this end, set

D = {(x, y) ∈ [0, 1)2 : x + y ≥ 3− γ} = D0 ∪D1

with D0 = {(x, y) ∈ D : x + γy > 2}, D1 = {(x, y) ∈ D : x + γy ≤ 2}. Figure 4.1 shows that
T̂ is given by T̂ (z) = T τ(`)(z) if z ∈ D`, ` ∈ A = {0, 1}, with τ(0) = 1 and τ(1) = 4, and
R = {(0, 0)} ∪Dα ∪Dβ , with

Dα = {z ∈ [0, 1)2 : T k+1(z) = T k(z)A + (0, 1) for all k ≥ 0},

Dβ = {z ∈ [0, 1)2 : T k+1(z) = T k(z)A + (0, 2) for all k ≥ 0}.

As in Section 2, we have T 5(z) = z for all z ∈ R. If we set

U(z) =
z

γ2
+

( 1
γ

,
1
γ

)
= (1, 1)− (1, 1)− z

γ2
,

i.e., V (z) = (1, 1)− z, κ = 1/γ2, ε = 1 and

σ : 0 7→ 010 1 7→ 01110,

then Figure 4.2 shows that σ satisfies the conditions in Section 3, and P = U(Dα) ∪ U(Dβ). All
points in P are periodic and |σn(`)| → ∞ as n → ∞ for all ` ∈ A. Therefore, all conditions of
Proposition 3.3 and Theorem 3.4 are satisfied, and we obtain the following theorem.

Theorem 4.1. If λ = −1/γ, then the period lengths π(z) are
1 if z ∈ {(0, 0), ( 1

γ2+1 , 1
γ2+1 ), ( 2

γ2+1 , 2
γ2+1 )}

5 for the other points of the pentagons Dα, Dβ

2(5 · 4n + 1)/3 if SnR(z) = ( γ2

γ2+1 , γ2

γ2+1 ) for some n ≥ 0
10(5 · 4n + 1)/3 for the other points with SnR(z) ∈ U(Dα) for some n ≥ 0
(5 · 4n − 2)/3 if SnR(z) = ( 3

γ2+1 , 3
γ2+1 ) for some n ≥ 0

5(5 · 4n − 2)/3 for the other points with SnR(z) ∈ U(Dβ) for some n ≥ 0
∞ if SnR(z) ∈ D \ P for all n ≥ 0

Proof. We easily calculate(
|σn(0)|0
|σn(0)|1

)
= 4n

(
1/3
1/3

)
+

(
2/3
−1/3

)
,

(
|σn(1)|0
|σn(1)|1

)
= 4n

(
2/3
2/3

)
+

(
−2/3
1/3

)
,

hence τ(σn(0)) = 5
34n − 2

3 , τ(σn(1)) = 10
3 4n + 2

3 . If SnR(z) ∈ U(Dα), then π(z) = τ(σn(1)) and
π(z) = τ(σn(11111)) respectively; if SnR(z) ∈ U(Dβ), then π(z) = τ(σn(0)) and π(z) = 5τ(σn(0))
respectively. �
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U(Dβ)

U(Dα)

00

01

02

10

11

12

13

14

0315

Figure 4.2. The trajectory of the scaled domains and P, λ = −1/γ. (`k stands
for T̂ kU(D`).)

By Figure 4.2, we can choose ŝ(z), s(z) as follows and obtain the following t(z):

z ∈ T̂ 2U(D0) ∪ T̂ 2U(D1) : ŝ(z) = −2, s(z) = −5, t(z) = V (T̂−2(z))− V (z) = (−1/γ2, 0)

z ∈ T̂U(D1) : ŝ(z) = −1, s(z) = −1, t(z) = V (T̂−1(z))− V (z)A−1 = (1/γ, 0)

z ∈ U(D) : ŝ(z) = 0, s(z) = 0, t(z) = (0, 0)

z ∈ T̂ 4U(D1) : ŝ(z) = 1, s(z) = 1, t(z) = V (T̂ (z))− V (z)A = (0, 1/γ)

z ∈ T̂U(D0) ∪ T̂ 3U(D1) : ŝ(z) = 2, s(z) = 5, t(z) = V (T̂ 2(z))− V (z) = (0,−1/γ2)

With

{t(z)Ah : z ∈ D \ P, h ∈ Z} = {(0, 0), ±(0, 1/γ),±(1/γ,−1),±(−1, 1),±(1, 1/γ),±(−1/γ, 0),

± (0,−1/γ2),±(−1/γ2, 1/γ),±(1/γ,−1/γ),±(−1/γ, 1/γ2),±(1/γ2, 0)},

we obtain δ = γ2

γ2−1 = γ as in Section 2.

Theorem 4.2. π(z) is finite for all z ∈ ( 1
2Z[γ] ∩ [0, 1))2, but π

(
1− 1/(3γ), 1− 2/(3γ)

)
= ∞.

Proof. By Proposition 3.5, it suffices to show that all points in z ∈ ( 1
2Z[γ])2∩D with ‖V (z)′‖∞ ≤ 2

are periodic. Since V (D) = {(x, y) : x > 0, y > 0, x + y ≤ 1/γ}, we only have to take into account
points V (z) with coordinates in {1/(2γ2), 1/(2γ), 1/2} (cf. Section 2). In particular, we obtain
immediately that the conjecture holds. Since V

(
1

2γ2 , 1
2γ2

)
is in U(Dα), and V

(
1
2γ , 1

2γ

)
, V

(
1
2γ , 1

2γ2

)
,

V
(

1
2γ , 1

2γ2

)
are in U(Dβ), we obtain π(z) < ∞ for all z ∈ ( 1

2Z[γ] ∩ [0, 1))2 as well.
Now let V (z) =

(
1/(3γ), 2/(3γ)

)
. Then

V S(z) = γ2
(
V (z)A5 + (0,−1/γ2)

)
=

(
γ/3, 1/(3γ3)

)
V S2(z) = γ2

(
V S(z)A−5 + (−1/γ2, 0)

)
=

(
2/(3γ), 1/(3γ)

)
V S3(z) = γ2

(
V S2(z)A−5 + (0,−1/γ2)

)
=

(
1/(3γ3), γ/3)

)
V S4(z) = γ2

(
V S3(z)A5 + (0,−1/γ2)

)
=

(
1/(3γ), 2/(3γ)

)
= V (z),

hence Sn(z) ∈ D \ P for all n ≥ 0 and π(z) = ∞ by Theorem 4.1. �
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Figure 5.1. The map T̂ and the set R, λ =
√

2. (`k stands for T k(D`).)

5. The case λ =
√

2 = −2 cos 3π
4

Let λ =
√

2, i.e., λ′ = −
√

2 and set

D = {(x, y) ∈ [0, 1)2 :
√

2− 2 < x−
√

2y < 0, 0 <
√

2x− y <
√

2− 2} =
⋃

`∈A={0,1,2,3}
D`,

D0 = {(x, y) ∈ D : x <
√

2− 1}, D1 = {(x, y) ∈ D : x >
√

2− 1, y ≤
√

2− 1},

D2 = {(x, y) ∈ D : x >
√

2− 1, y >
√

2− 1}, D3 = {(x, y) ∈ D : x =
√

2− 1}.

Figure 5.1 shows that T̂ (z) = T τ(`)(z) if z ∈ D`, with τ(0) = 5, τ(1) = 9, τ(2) = 3, τ(3) = 11,
and R = {(0, 0)} ∪

⋃3
k=0 T k(Dα) ∪

⋃5
k=0 T k(Dβ) with Dα = {(0, y) : 1 − 1/

√
2 < y < 1/

√
2},

Dβ = {(0, 1/
√

2)}. If we set U(z) = (
√

2− 1)z, i.e., V (z) = z, κ =
√

2− 1, ε = −1 and

σ : 0 7→ 010 1 7→ 000 2 7→ 0 3 7→ 030,

then Figure 5.2 shows that σ satisfies the conditions in Section 3, and

P = {(x, y) ∈ D : x, y ≥
√

2− 1} = D2 ∪Dδ ∪ T (Dζ) ∪Dη

with Dζ = {(x,
√

2 − 1) :
√

2 − 1 < x < 2 −
√

2} and Dη = {(
√

2 − 1,
√

2 − 1)}. All points in P
are periodic and |σn(`)| → ∞ as n →∞ for all ` ∈ A. Therefore, all conditions of Proposition 3.3
and Theorem 3.4 are satisfied, and we obtain the following theorem.

Theorem 5.1. If λ =
√

2, then the minimal period length π(z) is
1 if z = (0, 0)
4 if z = Tm(0, 1/2), 0 ≤ m ≤ 3
8 for the other points of Tm(Dα), 0 ≤ m ≤ 3
6 if z = Tm(0, 1/

√
2), 0 ≤ m ≤ 5

2 · 3n + (−1)n if SnR(z) = (1/
√

2, 1/
√

2)
8(2 · 3n + (−1)n) for the other points with SnR(z) ∈ D2

4(3n+1 + 1 + (−1)n) if SnR(z) ∈ {(1/2,
√

2− 1), (
√

2− 1, 1/2)}
8(3n+1 + 1 + (−1)n) for the other points with SnR(z) ∈ Dζ ∪ T̂ (Dζ)
2 · 3n+1 + 4 + (−1)n if SnR(z) = (

√
2− 1,

√
2− 1)

∞ if SnR(z) ∈ D \ P for all n ≥ 0

Proof. We easily calculate(
|σn(0)|0
|σn(0)|1

)
= 3n

(
3/4
1/4

)
+ (−1)n

(
1/4
−1/4

)
,

(
|σn(1)|0
|σn(1)|1

)
= 3n

(
3/4
1/4

)
+ (−1)n

(
−3/4
3/4

)
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Figure 5.2. The trajectory of the scaled domains and P, λ =
√

2. (`k stands for T̂−kU(D`).)

and obtain τ(σn(0)) = 2 · 3n+1 − (−1)n, τ(σn(3)) = τ(σn−1(030)) = 2 · 3n+1 + 4 + (−1)n. If
SnR(z) ∈ D2 and n ≥ 1, then π(z) = τ(σn(2)) = τ(σn−1(0)) and π(z) = 8τ(σn−1(0)) respec-
tively; if SnR(z) ∈ Dδ, then π(z) = τ(σn(13)) = τ(σn−1(000030)) and π(z) = 2τ(σn−1(000030))
respectively; if SnR(z) = (

√
2− 1,

√
2− 1), then π(z) = τ(σn(3)). The given π(z) hold for n = 0

as well. �

By Figure 5.2, we can choose ŝ(z), s(z) as follows and obtain the following t(z):

z ∈ T̂−2U(D0 ∪D1 ∪D3) : ŝ(z) = −1, s(z) = −5, t(z) = T̂−1(z)− zA−5 = (
√

2− 1, 2−
√

2)

z ∈ U(D) : ŝ(z) = 0, s(z) = 0, t(z) = (0, 0)

z ∈ T̂−1U(D0 ∪D1 ∪D3) : ŝ(z) = 1, s(z) = 5, t(z) = T̂ (z)− zA5 = (2−
√

2,
√

2− 1)

Since A4 = −A0, we obtain

{t(z)Ah : z ∈ D\P, h ∈ Z} = {(0, 0), ±(2−
√

2,
√

2−1),±(
√

2−1, 0),±(0, 1−
√

2),±(1−
√

2,
√

2−2)}

and δ = (2 +
√

2)/
√

2 =
√

2 + 1.

Theorem 5.2. If λ =
√

2, then π(z) < ∞ for all z ∈ ( 1
2Z[

√
2]∩ [0, 1))2 and z ∈ ( 1

3Z[
√

2]∩ [0, 1))2,
but (T k( 3−

√
2

4 , 2
√

2−1
4 ))k∈Z is aperiodic.

Proof. Consider first z ∈ ( 1
2Z[

√
2])2 ∩ D \ P with ‖z′‖∞ ≤

√
2 + 1. The coordinates of z satisfy

x, y ∈ (0, 2−
√

2)∩ 1
2Z[

√
2], |x′|, |y′| ≤

√
2 + 1, hence x, y ∈ {(

√
2− 1)/2, (2−

√
2)/2,

√
2− 1, 1/2}

and x <
√

2y, y <
√

2x. Therefore it is easy to see that z ∈ P or S(z) = (
√

2 + 1)z ∈ P for all
these points. In particular, the conjecture follows.

If z ∈ ( 1
3Z[

√
2])2 ∩ D \ P and ‖z′‖∞ ≤

√
2 + 1, then

z ∈
{

1− 2
√

2
3

,

√
2− 1
3

,
2−

√
2

3
,
2
√

2− 2
3

,
1
3
,
4− 2

√
2

3
,
√

2− 1,

√
2

3
, 1−

√
2

3

}2

.
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Figure 5.3. Aperiodic points, λ =
√

2.
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Figure 5.4. Aperiodic points, λ = −
√

2.

Since all points (x, x) ∈ [0, 1)2 are periodic, S
(
(2
√

2 − 2)/3, 1/3
)

=
(
2/3, (

√
2 + 1)/3

)
∈ P,

S
(
1/3, (4 − 2

√
2)/3

)
=

(
(
√

2 + 1)/3, 2
√

2/3
)
∈ P, S

(
1/3,

√
2 − 1

)
=

(√
2 − 1, (4 − 2

√
2)/3

)
,

S
(
(4 − 2

√
2)/3,

√
2 − 1

)
=

(√
2 − 1, 1 −

√
2/3

)
∈ P, and π(x, y) < ∞ if and only if π(y, x) < ∞,

all these points are periodic.
For z = (3−

√
2

4 , 2
√

2−1
4 ), we have

S(z) =
(
zA5 + (2−

√
2,
√

2− 1)
)
/κ = (

√
2 + 1)

(9− 6
√

2
4

,
√

2− 5
4
)

=
(3
√

2− 3
4

,
3−

√
2

4
)
,

S2(z) =
(
S(z)A5 + (2−

√
2,
√

2− 1)
)
/κ = (

√
2 + 1)

(5− 3
√

2
4

,
√

2− 5
4
)

=
(2
√

2− 1
4

,
3−

√
2

4
)
,

S3(z) =
(
S2(z)A−5 + (

√
2− 1, 2−

√
2)

)
/κ = ( 3−

√
2

4 , 3
√

2−3
4 ) and S4(z) = ( 3−

√
2

4 , 2
√

2−1
4 ) = z. �

6. The case λ = −
√

2 = −2 cos π
4

Let λ = −
√

2, i.e., λ′ =
√

2, and set

D = {(x, y) ∈ [0, 1)2 :
√

2x + y > 2 or x +
√

2y > 2} =
⋃

`∈A={0,1,2}
D`,

with D0 = {(x, y) ∈ D : x +
√

2y > 2}, D1 = {(x, y) ∈ D : x +
√

2y < 2}, D2 = {(x, y) ∈
D : x +

√
2y = 2}. Figure 6.1 shows that T̂ (z) = T τ(`)(z) if z ∈ D`, with τ(0) = 1, τ(1) = 21,

τ(2) = 31, and

R = {(0, 0)} ∪
⋃3

k=0
T k(Dα) ∪Dβ ∪Dζ ∪

⋃9

k=0
T k(Dη)

with Dα = {(x, y) : 0 ≤ x, y ≤ 3−2
√

2}\{(0, 0), (3−2
√

2, 3−2
√

2)}, Dβ = {z ∈ [0, 1)2 : T k+1(z) =
T k(z)A + (0, 1) for all k ∈ Z}, Dζ = {z ∈ [0, 1)2 : T k+1(z) = T k(z)A + (0, 2) for all k ∈ Z},
Dη = {(1/

√
2, 0)}. If we set U(z) = (

√
2− 1)z + (2−

√
2, 2−

√
2) = (1, 1)− (

√
2− 1)

(
(1, 1)− z

)
,

i.e., V (z) = (1, 1)− z, κ =
√

2− 1, ε = −1 and

σ : 0 7→ 010 1 7→ 000 2 7→ 020,

then Figure 6.2 shows that σ satisfies the conditions in Section 3, and

P = Dϑ ∪
⋃5

k=0
T̂ k(Dµ) ∪

⋃2

k=0
T̂ k(Dν)

with Dϑ = {z ∈ [0, 1)2 : T k+1(z) = T k(z)A+(0, 3) for all k ∈ Z}, Dµ = {(x, 5− 3
√

2) : 8− 5
√

2 ≤
x < 1} and Dν = {(8− 5

√
2, 8− 5

√
2)}. All points in P are periodic and |σn(`)| → ∞ as n →∞
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Figure 6.1. The map T̂ and the set R, λ = −
√

2. (`k stands for T k(D`).)

Dϑ

00

01

02

10

11

12

20

21

22

Dµ

T̂ (Dµ)

T̂ 2(Dµ)

T̂ 3(Dµ)

T̂ 4(Dµ)

T̂ 5(Dµ)

Dν

T̂ (Dν)

T̂ 2(Dν)
03

13 23

Figure 6.2. The trajectory of the scaled domains and P, λ = −
√

2. (`k stands for T̂−kU(D`).)

for all ` ∈ A. Therefore, all conditions of Proposition 3.3 and Theorem 3.4 are satisfied, and we
obtain the following theorem.
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Theorem 6.1. If λ = −
√

2, then the minimal period length π(z) is
1 if z ∈ {(0, 0), (1/

√
2, 1/

√
2), (2−

√
2, 2−

√
2)}

4 if z = Tm(3/2−
√

2, 3/2−
√

2) for some m ∈ {0, 1, 2, 3}
10 if z = Tm(1/

√
2, 0) for some m ∈ {0, 1, . . . , 9}

8 for the other points in R
2 · 3n+1 − 5(−1)n if SnR(z) = (3− 3/

√
2, 3− 3/

√
2) for some n ≥ 0

8(2 · 3n+1 − 5(−1)n) for the other points with SnR(z) ∈ Dϑ

4(3n+2 + 5− 5(−1)n) if SnR(z) = T̂m
(
(9− 5

√
2)/2, 5− 3

√
2
)

for some m ∈ {0, . . . , 5}, n ≥ 0
8(3n+2 + 5− 5(−1)n) for the other points with SnR(z) ∈ T̂m(Dµ)
2 · 3n+2 + 20− 5(−1)n if SnR(z) = T̂m(8− 5

√
2, 8− 5

√
2) for some m ∈ {0, 1, 2}, n ≥ 0

∞ if SnR(z) ∈ D \ P for all n ≥ 0.

Proof. As for λ =
√

2, we have(
|σn(0)|0
|σn(0)|1

)
= 3n

(
3/4
1/4

)
+ (−1)n

(
1/4
−1/4

)
,

(
|σn(1)|0
|σn(1)|1

)
= 3n

(
3/4
1/4

)
+ (−1)n

(
−3/4
3/4

)
,

hence τ(σn(0)) = 2 · 3n+1 − 5(−1)n and τ(σn(2)) = τ(σn−1(020)) = 2 · 3n+1 + 20 + 5(−1)n. For
SnR(z) ∈ Dϑ, we have π(z) = τ(σn(0)) and π(z) = 8τ(σn(0)) respectively; if SnR(z) ∈ Tm(Dµ),
then π(z) = τ(σn(002000)) and π(z) = 2τ(σn(002000)) respectively; if SnR(z) = T̂m(Dν), then
π(z) = τ(σn(020)). �

By Figure 6.2, we can choose ŝ(z), s(z) as follows and obtain the following t(z):

z ∈ T̂−2U(D0 ∪D1 ∪D2) : ŝ(z) = −1, s(z) = −1, t(z) = V (T̂−1(z))− V (z)A−1 = (
√

2− 1, 0)

z ∈ U(D) : ŝ(z) = 0, s(z) = 0, t(z) = (0, 0)

z ∈ T̂−1U(D0 ∪D1 ∪D2) : ŝ(z) = 1, s(z) = 1, t(z) = V (T̂ (z))− V (z)A = (0,
√

2− 1)

Since A4 = −A0, we obtain

{(
√

2− 1)t(z)Ah : z ∈ D \ P, h ∈ Z} = {(0, 0), ±(1, 0),±(0,−1),±(−1,
√

2),±(
√

2,−1)}

and δ = (
√

2 + 1)
√

2/
√

2 =
√

2 + 1.

Theorem 6.2. If λ = −
√

2, then π(z) < ∞ for all z ∈ ( 1
2Z[

√
2]∩[0, 1))2 and z ∈ ( 1

3Z[
√

2]∩[0, 1))2,
but (T k( 3

4 , 5−
√

2
4 ))k∈Z is aperiodic.

Proof. Note that z ∈ D means that (
√

2+1)V (z) ∈ {(x, y) ∈ [0, 1)2 : x+
√

2y < 1 or
√

2x+y < 1}.
If z ∈ ( 1

2Z[
√

2])2 ∩D \ P and ‖(V (z))′‖∞ ≤
√

2 + 1, we have thus ‖((
√

2 + 1)V (z))′‖∞ ≤ 1, hence
(
√

2 + 1)V (z) ∈ {1/2, 1/
√

2}2, which is impossible for z ∈ D \ P.
If z ∈ ( 1

3Z[
√

2])2 ∩ D \ P and ‖((
√

2 + 1)V (z))′‖∞ ≤ 1, then we have (
√

2 + 1)V (z) ∈ {(
√

2 −
1)/3, 1/3, 2/3, (1 +

√
2)/3}2. Since (

√
2 + 1)V

(
1/3, (

√
2 − 1)/3

)
∈ (

√
2 + 1)V (P) and (

√
2 +

1)V S
(
2/3, (

√
2− 1)/3

)
= (1/3, 1/3) ∈ (

√
2 + 1)V (P), all these points are periodic.

For z = (3
4 , 5−

√
2

4 ), we have (
√

2 + 1)V (z) = (
√

2+1
4 , 1

4 ) and

(
√

2 + 1)V S(z) =
(
(
√

2 + 1)V (z)A + (0, 1)
)
/κ = (

√
2 + 1)

(1
4
,
3− 2

√
2

4
)

=
(√2 + 1

4
,

√
2− 1
4

)
,

(
√

2 + 1)V S2(z) =
(
(
√

2 + 1)V S(z)A + (0, 1)
)
/κ = (

√
2 + 1)

(1−
√

2
4

,
1
4
)

=
(1
4
,

√
2 + 1
4

)
,

(
√

2 + 1)V S3(z) = (
√

2−1
4 ,

√
2+1
4 ) and (

√
2 + 1)V S4(z) = (

√
2+1
4 , 1

4 ) = (
√

2 + 1)V (z). �
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Figure 7.1. The map T̂ , λ = 1/γ. (`k stands for T k(D`).)

7. The case λ = 1/γ = −2 cos 3π
5

Let λ = 1/γ, i.e., λ′ = −γ, and set

D = {(x, y) ∈ [0, 1)2 : γx− 1 < y < x/γ} =
⋃

`∈A={0,1,2,3}
D`,

with D0 = {(x, y) ∈ D : y > x − 1/γ2}, D1 = {(x, y) ∈ D : 0 < y < x − 1/γ2}, D2 = {(x, y) ∈
D : y = x − 1/γ2}, D3 = {(x, 0) : 1/γ2 < x < 1/γ}. Figure 7.1 shows that T̂ (z) = T τ(`)(z) if
z ∈ D`, with τ(0) = 6, τ(1) = 4, τ(2) = 7, τ(3) = 5, and R = {(0, 0)}. If we set U(z) = z/γ2, i.e.,
V (z) = z, κ = 1/γ2, ε = 1, and

σ : 0 7→ 010 1 7→ 01110 2 7→ 012 3 7→ 01112,

then Figure 7.2 shows that σ satisfies the conditions in Section 3, and

P = Dα ∪Dβ ∪D3 ∪
⋃3

k=0
T̂ k(Dζ) ∪Dη ∪

⋃1

k=0
T̂ k(Dϑ)

with Dα = {z ∈ D : T̂ k(z) ∈ D0 for all k ∈ Z}, Dβ = {z ∈ D : T̂ k(z) ∈ D1 for all k ∈ Z},
Dζ = {(x, 0) : 1/γ3 < x < 1/γ2}, Dη = {(1/γ2, 0)} and Dϑ = {(1/γ3, 0)}. All points in P are
periodic and |σn(`)| → ∞ as n → ∞ for all ` ∈ A. Therefore, all conditions of Proposition 3.3
and Theorem 3.4 are satisfied, and we obtain the following theorem.

Theorem 7.1. If λ = 1/γ, then the minimal period length π(z) is
1 if z = (0, 0)

2(5 · 4n + 4)/3 if SnR(z) =
(

γ
γ2+1 , 1/γ

γ2+1

)
for some n ≥ 0

10(5 · 4n + 4)/3 for the other points with SnR(z) ∈ Dα

4(5 · 4n − 2)/3 if SnR(z) =
(

γ2

γ2+1 , 1
γ2+1

)
for some n ≥ 0

20(5 · 4n − 2)/3 for the other points with SnR(z) ∈ Dβ

5(4n+1 − 1)/3 if SnR(z) = (0, 1/2) for some n ≥ 0
10(4n+1 − 1)/3 for the other points with SnR(z) ∈ D3

5(2 · 4n+1 + 7)/3 if SnR(z) = T̂m(1/(2γ), 0) for some m ∈ {0, 1, 2, 3} and n ≥ 0
10(2 · 4n+1 + 7)/3 for the other points with SnR(z) ∈ T̂m(Dζ)
(10 · 4n + 11)/3 if SnR(z) = (1/γ2, 0) for some n ≥ 0
(5 · 4n+1 + 19)/3 if SnR(z) = T̂m(1/γ3, 0) for some m ∈ {0, 1} and n ≥ 0

∞ if SnR(z) ∈ D \ P for all n ≥ 0.
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Figure 7.2. The trajectory of the scaled domains and P, λ = 1/γ. (`k stands for T̂ kU(D`).)

Proof. As for λ = −1/γ, we have(
|σn(0)|0
|σn(0)|1

)
= 4n

(
1/3
1/3

)
+

(
2/3
−1/3

)
,

(
|σn(1)|0
|σn(1)|1

)
= 4n

(
2/3
2/3

)
+

(
−2/3
1/3

)
,

hence τ(σn(0)) = 10
3 4n + 8

3 , τ(σn(1)) = 20
3 4n− 8

3 , τ(σn(2)) = 10
3 4n + 11

3 , τ(σn(3)) = 20
3 4n− 5

3 . For
SnR(z) ∈ Dα, we have π(z) = τ(σn(0)) and π(z) = 5τ(σn(0)) respectively; if SnR(z) ∈ Dβ , then
π(z) = τ(σn(1)) and π(z) = 5τ(σn(1)) respectively; if SnR(z) ∈ D3, then π(z) = τ(σn(3)) and
π(z) = 2τ(σn(3)) respectively; if SnR(z) ∈ Dζ , then π(z) = τ(σn(0002)) and π(z) = 2τ(σn(0002))
respectively; if SnR(z) = (1/γ2, 0) (Dη), then π(z) = τ(σn(2)); if SnR(z) = T̂m(1/γ3, 0) (Dϑ),
then π(z) = τ(σn(02)). �

By Figure 7.2, we can choose ŝ(z), s(z) as follows and obtain the following t(z):

z ∈ T̂ 2U(D) : ŝ(z) = −2, s(z) = −10, t(z) = T̂−2(z)− z = (−1/γ,−1/γ2)

z ∈ T̂U(D1 ∪D2 ∪D3) : ŝ(z) = −1, s(z) = −6, t(z) = T̂−1(z) + zA−1 = (1, 1/γ)

z ∈ U(D) : ŝ(z) = 0, s(z) = 0, t(z) = (0, 0)

z ∈ T̂ 4U(D1) : ŝ(z) = 1, s(z) = 6, t(z) = T̂ (z) + zA = (1/γ, 0)

z ∈ T̂ 4U(D3) : ŝ(z) = 1, s(z) = 7, t(z) = T̂ (z) + zA2 = (0,−1/γ)

z ∈ T̂U(D0) ∪ T̂ 3U(D1) : ŝ(z) = 2, s(z) = 10, t(z) = T̂ 2(z)− z = (−1/γ2, 0)

z ∈ T̂ 3U(D3) : ŝ(z) = 2, s(z) = 11, t(z) = T̂ 2(z)− zA = (0, 1/γ2)

With

{t(z)Ah : z ∈ D \ P, h ∈ Z} = {(0, 0), ±(1, 1/γ),±(1/γ, 0),±(0, 1/γ),±(1/γ, 1),±(1, 1),

± (−1/γ,−1/γ2),±(−1/γ2, 0),±(0, 1/γ2),±(1/γ2, 1/γ),±(1/γ, 1/γ)}

we obtain δ = γ2

γ2−1 = γ as in Section 2.

Theorem 7.2. π(z) is finite for all z ∈ ( 1
2Z[γ]∩[0, 1))2∪( 1

3Z[γ]∩[0, 1))2, but π
(
1/4, 1/(4γ3)

)
= ∞.

Proof. For z ∈ ( 1
2Z[γ]∩[0, 1))2, we have to show that all points z ∈ {0, 1/(2γ2), 1/(2γ), 1/2, 1/γ, γ/2}2

with z ∈ D are periodic, similarly to Section 2. All such points lie either in P or on a discontinuity
line. Note that all points on the line y = 0 are periodic, hence all points on the discontinuity lines
are periodic as well.
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Figure 7.3. Aperiodic points, λ = 1/γ.
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Figure 7.4. Aperiodic points, λ = −γ.

For z ∈ ( 1
3Z[γ] ∩ [0, 1))2, we have to consider

z ∈
{

0,
1

3γ3
,

1
3γ2

,
1
3γ

,
1
3
,

2
3γ

,
3− γ

3
,
γ

3
,
1
γ

,
2
3
,
2γ − 1

3
,
4− γ

3
,
γ2

3
,
3γ − 2

3

}2

.

All points on the discontinuity lines y = 0 and x = 1/γ are periodic. For the other points
z ∈ D \ P, S(z) is given by S( 1

3γ , 1
3γ3 ) = ( 1

3γ , 1
3 ), S(γ

3 , 1
3γ3 ) = ( 2

3γ , 1
3γ ), S(γ

3 , 1
3γ2 ) = ( 2

3 , 1
3γ ),

S( 2
3 , 1

3γ2 ) = ( 2γ−1
3 , 1

3 ), S( 2
3 , 1

3 ) = ( 2γ−1
3 , 1

3 ), S( 2γ−1
3 , 2

3γ ) = ( 1
3 , 1

3γ3 ), S( 4−γ
3 , 2

3γ ) = ( 3−γ
3 , 1

3γ3 ),

S( 4−γ
3 , 3−γ

3 ) = ( 3−γ
3 , 1

3γ ) and S(γ2

3 , 3−γ
3 ) = ( 2

3 , 1
3γ ), hence S(z) ∈ P.

If z =
(
1/4, 1/(4γ3)

)
, then we have S(z) =

(
γ2/4, 1/(4γ)

)
, S2(z) = γ2

(
S(z) − (1/γ2, 0)

)
=(

(3γ − 2)/4, γ/4
)
, and S3(z) = γ2

(
S2(z)− (1/γ, 1/γ2)

)
=

(
(1/4, 1/(4γ3)

)
= z. �

8. The case λ = −γ = −2 cos π
5

Let λ = −γ, i.e., λ′ = 1/γ, and set

D = {(x, y) ∈ [0, 1)2 : x < y, γ(1− x) + (1− y) ≤ 1/γ3} = D0 ∪D1

with D0 = {(x, y) ∈ D : 1− x < 1/γ5}, D1 = {(x, y) ∈ D : 1− x ≥ 1/γ5}. Figure 8.1 shows that
T̂ (z) = T τ(`)(z) if z ∈ D`, with τ(0) = 42, τ(1) = 28, and

R = {(0, 0)} ∪Dα ∪Dβ ∪
⋃4

k=0
T k(Dζ) ∪

⋃1

k=0
T k(Dη) ∪

⋃24

k=0
T k(Dϑ) ∪

⋃10

k=0
T k(Dµ)

with Dα = {z ∈ [0, 1)2 : T k+1(z) = T k(z)A + (0, 1) for all k ∈ Z}, Dβ = {z ∈ [0, 1)2 : T k+1(z) =
T k(z)A + (0, 2) for all k ∈ Z}, Dζ = {(x, y) ∈ [0, 1)2 : T 2k+1(z) = T 2k(z)A + (0, 2), T 2k(z) =
T 2k−1(z)A + (0, 1) for all k ∈ Z}, Dη = {(x, y) : 0 ≤ x, y ≤ 1/γ4} \ {(0, 0), (1/γ4, 1/γ4)}, Dϑ =
{(x, x) : 1 − 1/γ5 < x < 1}, Dµ = {(1 − 1/γ5, 1 − 1/γ5)}. If we set U(z) = z/γ2 + (1/γ, 1/γ) =
(1, 1)−

(
(1, 1)− z

)
/γ2, i.e., V (z) = z, κ = 1/γ2, ε = 1, and

σ : 0 7→ 010 1 7→ 01110,

then Figure 8.2 shows that σ satisfies the conditions in Section 3, and P = Dρ ∪Dν with Dν =
{z ∈ D : T k(z) ∈ D0 for all k ∈ Z}, Dρ = {z ∈ D : T k(z) ∈ D1 for all k ∈ Z}. All points in P
are periodic and |σn(`)| → ∞ as n →∞ for all ` ∈ A. Therefore, all conditions of Proposition 3.3
and Theorem 3.4 are satisfied, and we obtain the following theorem.
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α0

β0

η0

η1

η2

η3

η4

ζ0

ζ1

00

01

02

03

04

05

06

07

08

09

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

20

21

22

23

24

25

26

27

28

29

210

211

212

213

214

215

216

10

11

12

13

14

15

16

17

18

19

110

ϑ0

ϑ1

ϑ2

ϑ3

ϑ4

ϑ5

ϑ6

ϑ7

ϑ8

ϑ9

ϑ10

ϑ11

ϑ12

ϑ13

ϑ14

ϑ15

ϑ16

ϑ17

ϑ18

ϑ19

ϑ20

ϑ21

ϑ22

ϑ23

ϑ24

µ0

µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

µ9

µ10
025

217

111

0010

T̂→

042

128

Figure 8.1. The map T̂ and the set R, λ = −γ. (`k stands for T k(D`).)
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Figure 8.2. The trajectory of the scaled domains and P, λ = −γ. (`k stands for T̂ kU(D`).)
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Theorem 8.1. If λ = −γ, then the minimal period length π(z) is
1 if z ∈ {(0, 0), (1/γ2, 1/γ2), (2/γ2, 2/γ2)}
2 if z ∈ {( 5−γ

γ2+1 , 2/γ2

γ2+1 ), ( 2/γ2

γ2+1 , 5−γ
γ2+1 )}

5 if z = Tm(1/(2γ4), 1/(2γ4)) for some m ∈ {0, 1, 2, 3, 4}
10 for the other points of Dα, Dβ, Dζ , T (Dζ), Tm(Dη)
11 if z = Tm(1− 1/γ5, 1− 1/γ5) for some m ∈ {0, 1, . . . , 10}
25 if z = Tm(1− 1/(2γ5), 1− 1/(2γ5)) for some m ∈ {0, 1, . . . , 24}
50 for the other points of Tm(Dϑ)

2(35 · 4n + 28)/3 if SnR(z) is the center of Dν

10(35 · 4n + 28)/3 for the other points of Dν

4(35 · 4n − 14)/3 if SnR(z) is the center of Dρ

20(35 · 4n − 14)/3 for the other points of Dρ

∞ if SnR(z) ∈ D \ P for all n ≥ 0.

Proof. As for λ = −1/γ and λ = 1/γ, we have(
|σn(0)|0
|σn(0)|1

)
= 4n

(
1/3
1/3

)
+

(
2/3
−1/3

)
,

(
|σn(1)|0
|σn(1)|1

)
= 4n

(
2/3
2/3

)
+

(
−2/3
1/3

)
,

hence τ(σn(0)) = (70 · 4n + 56)/3, τ(σn(1)) = (140 · 4n − 56)/3. For SnR(z) ∈ Dν , we have
π(z) = τ(σn(0)) and 5τ(σn(0)) respectively; if SnR(z) ∈ Dρ, then π(z) = τ(σn(1)) and 5τ(σn(1))
respectively. �

By Figure 8.2, we can choose ŝ(z), s(z) as follows and obtain the following t(z):

z ∈ T̂ 2U(D0 ∪D1) : ŝ(z) = −2, s(z) = −70, t(z) = V (T̂−2(z))− V (z) = (−1/γ6,−1/γ6)

z ∈ T̂U(D1) : ŝ(z) = −1, s(z) = −42, t(z) = V (T̂−1(z))− V (z)A−2 = (1/γ5, 1/γ5)

z ∈ U(D) : ŝ(z) = 0, s(z) = 0, t(z) = (0, 0)

z ∈ T̂ 4U(D1) : ŝ(z) = 1, s(z) = 42, t(z) = V (T̂ (z))− V (z)A2 = (1/γ4, 0)

z ∈ T̂U(D0) ∪ T̂ 3U(D1) : ŝ(z) = 2, s(z) = 70, t(z) = V (T̂ 2(z))− V (z) = (−1/γ5, 0)

With

{t(z)Ah/γ4 : z ∈ D\P, h ∈ Z} = {(0, 0), ±(1/γ, 1/γ),±(1/γ,−1),±(−1, 0),±(0, 1),±(1,−1/γ),

± (−1/γ2,−1/γ2),±(−1/γ2, 1/γ),±(1/γ, 0),±(0,−1/γ),±(−1/γ, 1/γ2)},

we obtain δ = γ6

γ2−1 = γ5.

Theorem 8.2. π(z) is finite for all z ∈ ( 1
2Z[γ] ∩ [0, 1))2, but π

(
1− 1/(3γ2), 1− 1/(3γ5)

)
= ∞.

Proof. We have V (D) = {(x, y) ∈ (0, 1/γ4)2 : x > y, γx + y ≤ 1/γ3}. Hence we have to show
that all points z ∈ D with γ4V (z) ∈ {1/(2γ2), 1/(2γ), 1/2, 1/γ, γ/2}2 are periodic. This is true
since V

(
1

2γ5 , 1
2γ6

)
∈ Dν , V

(
1

2γ4 , 1
2γ6

)
∈ Dν , S2V

(
1
γ5 , 1

2γ6

)
= SV

(
3

2γ5 , 1
2γ7

)
= SV

(
1

2γ4 , 1
2γ5

)
=

V
(

1
2γ3 , 1

2γ5

)
∈ Dρ, V

(
1

2γ3 , 1
2γ6

)
∈ Dρ and SV ( 1

γ5 , 1
2γ4

)
= V

(
1
γ5 , 1

2γ5

)
∈ Dρ.

If V (z) =
(
1/(3γ2), 1/(3γ5)

)
, then we have

V S(z) = γ2
(
V (z)−

( 1
γ5

, 0
))

=
( 2
3γ4

,
1

3γ3

)
, V S2(z) = γ2

(
V S(z)−

( 1
γ6

,
1
γ6

))
=

(γ2 + 1
3γ5

,
2

3γ5

)
,

V S3(z) = γ2
(
V S2(z)−

( 1
γ6

,
1
γ6

))
=

(3γ − 2
3γ4

,
1

3γ7

)
, V S4(z) = γ2

(
V S3(z)−

( 1
γ5

, 0
))

= V (z).

�
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9. The Thue-Morse sequence and the golden mean

We conclude by exhibiting a relation between the Thue-Morse sequence and substitutions we
used in golden mean cases (see [6] for a survey on links between fractal objects and automatic
sequences). The Thue-Morse sequence is a fixed point of the substitution 0 7→ 01, 1 7→ 10:

0 1 10 1001 10010110 1001011001101001 10010110011010010110100110010110 · · ·
It can be written as

01120111021202110112011102110112021201110212021101120212011102110112011102120211011201 · · ·
By subtracting 1 from each term of the sequence of exponents (the run-lenghts of 0’s and 1’s) we
obtain the sequence

0 10 01110010 01001110011100111001001001110010 · · ·
which is easily shown to be the fixed point of the substitution 0 7→ 010, 1 7→ 01110 (see [5]), which
is equal to σ in the cases λ = −1/γ, λ = 1/γ, λ = −γ. In case λ = γ, we have that σ∞(1)
is the image of this word by the morphism 0 7→ 10, 1 7→ 110 since σ(10) = (10)(110)(10) and
σ(110) = (10)(110)(110)(110)(10).
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[3] S. Akiyama, H. Brunotte, A. Pethő, W. Steiner, Remarks on a conjecture on certain integer sequences,

Period. Math. Hung. 52 (2006), 1–17.
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