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Abstract. Canonical number systems can be viewed as natural generalizations of radix repre-
sentations of ordinary integers to algebraic integers. A slightly modified version of an algorithm
of B. Kovács and A. Pethő is presented here for the determination of canonical number sys-
tems in orders of algebraic number fields. Using this algorithm canonical number systems of
some quartic fields are computed.

1. Introduction

The investigation of the question wether an algebraic number field is monogenic is a classical
problem in algebraic number theory (cf. [9]). According to B. Kovács [19] the existence of a power
integral basis in an algebraic number field is equivalent to the existence of a canonical number
system for its maximal order. Moreover, using a deep result of K. Győry [13] on generators of
orders of algebraic number fields B. Kovács [19] proved that up to translation by integers there
exist only finitely many canonical number systems in the maximal order of an algebraic number
field.

Let R be an order of an algebraic number field and α ∈ R.

Definition 1.1. (cf. [3], Definition 4.1, [5]) The algebraic integer α is called a basis of a canonical
number system (or CNS basis) for R if every nonzero element of R can be represented in the form

n0 + n1α + · · ·+ nlα
l

with ni ∈ {0, . . . , |NormQ(α)|Q(α)| − 1}, nl 6= 0.

Canonical number systems can be viewed as natural generalizations of radix representations
of ordinary integers (V. Grünwald [12]) to algebraic integers. Originating from observations
of D. E. Knuth [17] (see also [18], Ch. 4) the theory of canonical number systems was devel-
oped by I. Kátai and J. Szabó [16], B. Kovács [19], I. Kátai and B. Kovács ([14], [15]),
W. J. Gilbert [10] and others. There are connections to the theories of finite automata (see
e.g. K. Scheicher [30], J. M. Thuswaldner [32]) and fractal tilings (see e.g. S. Akiyama
and J. M. Thuswaldner [5]). Recently S. Akiyama et al. [2] put canonical number systems
(CNS) into a more general framework thereby opening links to other areas, e.g. to a long-standing
problem on Salem numbers.

B. Kovács and A. Pethő [20] established an algorithm for finding all CNS bases of mono-
genic algebraic number fields (see also [27] for a comprehensive description of this algorithm and
its background). In this note we present a slightly modified version of this algorithm for the de-
termination of CNS bases of orders of algebraic number fields. The method is exploited here for
some families of number fields of low degrees; our main applications are cyclotomic and simple
fields of degree four. CNS bases in quadratic number fields were described by several authors (see
[14],[15],[10],[11],[32],[4] and others); further, CNS bases are explicitely known for some cubic and
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quartic fields ([20], [3], [27]). The list of CNS bases of simplest cubic fields given in [3] is extended
in the present note too.

The authors wish to express many thanks to Professors S. Akiyama and J. M. Thuswaldner for
their constant support.

2. CNS bases of algebraic number fields

In the sequel we denote by Q the field of rational numbers, by Z the set of integers and by
N the set of nonnegative integers. For an algebraic integer γ we let µγ ∈ Z[X] be its minimal
polynomial and Cγ the set of all CNS bases for Z[γ]. We denote by C the set of CNS polynomials;
for the general definition of CNS polynomials we refer the reader to A. Pethő [25], however,
for our purposes it suffices to keep in mind that α is a CNS basis for Z[α] if and only if µα is a
CNS polynomial. It can algorithmically be decided whether a given integral polynomial is a CNS
polynomial or not (see [1]).

B. Kovács [19] introduced the following set of polynomials

K = {pdX
d + pd−1X

d−1 + · · ·+ p0 ∈ Z[X] | d ≥ 1, 1 = pd ≤ pd−1 ≤ . . . ≤ p1 ≤ p0 ≥ 2}
which plays a decisive role in the theory of CNS polynomials (see [1], Theorem 2.3).

Lemma 2.1. (B. Kovács – A. Pethő) For every nonzero algebraic integer α the following
constants can be computed effectively:

kα = min{k ∈ Z |µα(X + n) ∈ K for all n ∈ Z with n ≥ k},
cα = min{k ∈ Z |µα(X + k) ∈ C}.

Proof. See [20], Section 5. ¤
Note that cα ≤ kα by ([19], Lemma 2) and that if β is a conjugate of α then kβ = kα and

cβ = cα.

Corollary 2.2. If α is a CNS basis for an order R then cα ≤ 0, α− cα is a CNS basis for R, but
α− cα + 1 is not a CNS basis for R.

Proof. This is clear by the definitions. ¤
To a polynomial P (X) = pdX

d + pd−1X
d−1 + · · ·+ p0 ∈ Z[X], pd = 1 we associate the mapping

τP = τ : Zd → Zd defined by

τP (A) =
(
−

⌊
p1A1 + · · ·+ pdAd

p0

⌋
, A1, . . . , Ad−1

)
,

where A = (A1, . . . , Ad) ∈ Zd. This turned out very useful to prove P (X) ∈ C. Indeed Brunotte
[7] proved the following theorem, that gives an efficient algorithm for testing if a polynomial is
CNS or not.

Theorem 2.1. Assume that E ⊆ Zd has the following properties:
(i) (1, 0, . . . , 0) ∈ E,
(ii) −E ⊆ E,
(iii) τ(E) ⊆ E,
(iv) for every e ∈ E there exist some l > 0 with τ l(e) = 0.

Then P (X) ∈ C.
Let d ≥ 1 be an integer and r = (r1, . . . , rd) ∈ Rd. To r we associate the mapping τ : Zd −→ Zd

in the following way: if z = (z1, . . . , zd) ∈ Zd then let

τr(z) = (−brzc, z1, . . . , zd−1),

where rz = r1z1 + · · ·+ rdzd, i.e. the inner product of the vectors r and z. Then (Zd, τr) is called
shift radix system (for short SRS) on Zd. Let

Dd = {r ∈ Rd : ∀z ∈ Zd, the sequence τk
r (z) is eventually periodic}

D0
d = {r ∈ Rd : ∀z ∈ Zd, ∃k > 0 : τk

r (z) = 0}.
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Theorem 2.2. (S. Akiyama et al. [2]) Let P (X) = Xd + pd−1X
d−1 + · · · + p1X + p0 ∈ Z[X].

Then P (X)) ∈ C if and only if r =
(

p1
p0

, . . . , pd−1
p0

, 1
p0

)
∈ D0

d.

Theorem 2.3. (S. Akiyama et al. [2]) Let r1, . . . , rk be points of Dd and denote by H the convex
hull of r1, . . . , rk. We assume that H is contained in the interior of Dd and is sufficiently small in
diameter. For z ∈ Zd take M(z) = max1≤i≤k{−brizc}. Then there exist an algorithm to create a
finite directed graph (V,E) with vertices V ⊂ Zd and edges E ∈ V × V which satisfy

(1) each d-dimensional standard unit vector (0, . . . , 0,±1, 0, . . . , 0) ∈ V
(2) for each z = (z1, . . . .zd) ∈ V and

j ∈ [−M(−z),M(z)] ∩ Z
we have (j, z1, . . . , zd−1) ∈ V and a directed edge (z1, . . . , zd) −→ (j, z1, . . . , zd−1) in E.

(3) H ∩D0
d = H\∪π P (π), where π are taken over all nonzero primitive cycles of (V,E); here

P (π) denotes a certain convex polyhedron defined by π.

The following notion seems to be convenient for the intentions of the present note.

Definition 2.3. The algebraic integer α is called a fundamental CNS basis for R if it satisfies the
following properties:

(1) α− n is a CNS basis for R for all n ∈ N.
(2) α + 1 is a not CNS basis for R.

Theorem 2.4. Let γ be an algebraic integer. Then there exist finite effectively computable disjoint
subsets F0(γ),F1(γ) ⊂ Cγ with the properties:

(i) For every α ∈ Cγ there exists some n ∈ N with α + n ∈ F0(γ) ∪ F1(γ).
(ii) F1(γ) consists of fundamental CNS bases for Z[γ].

Proof. By ([20], Theorem 5) there exist finitely many effectively computable

α1, . . . , αt ∈ Z[γ], n1, . . . , nt ∈ Z, N1, . . . , Nt ⊂ Z, N1, . . . , Nt finite

such that for every α ∈ Z[γ] we have

α ∈ Cγ ⇐⇒ α = αi − h for some i ∈ {1, . . . , t}, h ∈ Z and h ≥ ni or h ∈ Ni.(2.1)

Therefore the set

F := {αi − ni | i = 1, . . . , t} ∪
t⋃

i=1

{αi − h |h ∈ Ni}

is a finite effectively computable subset of Cγ .
For every α ∈ F let

Mα = {m ∈ Z |m ≤ kα, α− k ∈ Cγ for all k = m, . . . , kα}.
Observing m ≥ cα for all m ∈ Mα we see using Lemma 2.1 that Mα is a nonempty finite effectively
computable set. Let

mα = min Mα

and
F0(γ) = {α− cα |α ∈ F,mα > cα}, F1(γ) = {α− cα |α ∈ F,mα = cα}.

We show that F1(γ) consists of fundamental CNS bases for Z[γ]. Let ϕ ∈ F1(γ), hence ϕ =
α− cα with some α ∈ F . By Corollary 2.2 we have ϕ ∈ Cγ , ϕ + 1 /∈ Cγ . For n ∈ N we find

ϕ− n = α− (mα + n) ∈ Cγ ,

because for mα + n ≤ kα this is clear by the definition of mα, and for mα + n > kα we have
µϕ−n = µα(X + (mα + n)) ∈ K and therefore ϕ− n ∈ Cγ by ([19], Lemma 2).

Finally. let β ∈ Cγ . By (2.1) there are i ∈ {1, . . . , t} and h ∈ Z with

β = αi − h and h ≥ ni or h ∈ Ni.
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If h ∈ Ni then β ∈ F and β − cβ ∈ F0(γ) ∪ F1(γ) by Corollary 2.2. If h ≥ ni then α = αi − ni ∈
F, h− ni − cα ∈ N and

β + (h− ni − cα) = α− cα ∈ F0(γ) ∪ F1(γ).

¤

Remark 2.5. Note that ϕ ∈ F0(γ) implies ϕ − n ∈ F1(γ) for some n ∈ N \ {0}. Therefore the
theorem of B. Kovács ([19], Lemma 2) can be rephrased in the following form: An algebraic
number field is monogenic if and only if there exists a fundamental CNS basis for its maximal
order.

Slightly modifying the algorithm of B. Kovács and A. Pethő [20] we now present the al-
gorithm for finding the above mentioned sets F0(γ) and F1(γ). The (finite) set T is introduced
to keep track of the calculations performed; in some cases (see e.g. Theorem 3.1) the amount of
computations can thereby be reduced. Recall that algebraic integers α, β are called equivalent if
there is some z ∈ Z such that β = z ± α (see e.g. [9]).

Algorithm 2.6. (CNS basis computation)

[Input] A nonzero algebraic integer γ and a (finite) set B of representatives of the equivalence
classes of generators of power integral bases of Z[γ].

[Output] The sets F0(γ) and F1(γ).

(1.) [Initialize] Set {β1, . . . , βt} = B ∪ (−B), F0 = F1 = T = ∅ and i = 1.

(2.) [Compute minimal polynomial] Compute P = µβi .

(3.) [Element of F0 ∪ F1 found?] If there exist k ∈ Z, δ ∈ {0, 1} with (P, k, δ) ∈ T insert βi − k
into Fδ and go to step 11.

(4.) [Determine upper and lower bounds] Calculate kβi and cβi .

(5.) [Insert element into F1?] If kβi − cβi ≤ 1 insert βi − cβi into F1, (P, cβi , 1) into T and go
to step 11, else perform step 6 for l = cβi + 1, . . . , kβi − 1, put pkβi

= 1, k = cβi and go to step 8.

(6.) [Check CNS property] If P (X + l) ∈ C set pl = 1, otherwise set pl = 0.

(7.) [Check CNS basis condition] If pk = 0 then go to step 9.

(8.) [Insert element into F0 ∪ F1] If pk+1 = · · · = pkβi
= 1 insert βi − k into F1, (P, k, 1) into T

and go to step 11, else insert βi − k into F0 and (P, k, 0) into T .

(9.) [Next value of k] Set k ← k + 1.

(10.) [CNS basis check finished?] If k ≤ kβi − 1 then go to step 7.

(11.) [Next generator] Set i ← i + 1.

(12.) [Finish?] If i ≤ t then go to step 2.

(13.) [Terminate] Output F0(γ) = F0 and F1(γ) = F1 and terminate the algorithm.

We verify that the algorithm above delivers all CNS bases of a given order Z[γ].

Theorem 2.7. Let γ be a nonzero algebraic integer and B a set of representatives of the equiva-
lence classes of generators of power integral bases of Z[γ]. Then Algorithm 2.6 computes the sets
F0(γ),F1(γ) with properties (i) and (ii) of Theorem 2.4.
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Proof. It is easy to see that F0(γ)∪F1(γ) ⊂ Cγ and that F1(γ) consists of fundamental CNS bases
for Z[γ]. Let α ∈ Cγ , hence α = n + β with some n ∈ Z, β ∈ B ∪ (−B). Clearly, −n ≥ cβ . By
construction there is some integer k ∈ [cβ , kβ ] with β − k ∈ F0(γ)∪F1(γ). Let l1, . . . , ls ∈ [cβ , kβ ]
be exactly those indices with plσ = 0 (σ = 1, . . . , s) and cβ < p1 < . . . < ps < kβ . If −n ≥ ls + 1
then ϕ = β − (ls + 1) ∈ F1(γ) and α = ϕ− (−n− (ls + 1)). Finally, let −n < ls + 1, and observe
that −n /∈ {l1, . . . , ls}. Then −n < l1 or lσ < −n < lσ+1 for some σ ∈ {1, . . . , s − 1} imply
α ∈ F0(γ). ¤

The following example illustrates the application of Algorithm 2.6. For polynomials outside the
set K the CNS property was checked by the algorithm described in [7] (an improved version of
this algorithm was implemented by T. Borbély [6]).

Remark 2.8. Note that if cβ < kβ and µβ(X + k) ∈ C for all k ∈ {cβ + 1, . . . , kβ − 1} then
−cβ + β ∈ F1(γ).

Lemma 2.9. Let k ∈ Z.
(i) For fk = f(X + k) with f = X3 −X + 3 ∈ Z[X] we have

fk ∈ K ⇐⇒ k ≥ 3

and
fk ∈ C ⇐⇒ k = 0 or k ≥ 2.

(ii) For fk = f(X + k) with f = X3 −X − 3 ∈ Z[X] we have

fk ∈ K ⇐⇒ k ≥ 4

and
fk ∈ C ⇐⇒ k ≥ 3.

(iii) For fk = f(X + k) with f = X3 − 2X2 − 69X − 369 ∈ Z[X] we have

fk ∈ K ⇐⇒ k ≥ 13 ⇐⇒ fk ∈ C.
(iv) For fk = f(X + k) with f = X3 + 2X2 − 69X + 369 ∈ Z[X] we have

fk ∈ K ⇐⇒ k ≥ 5

and
fk ∈ C ⇐⇒ k ≥ 4.

Proof. (i) The first statement is clear because fk = X3 + 3kX2 + (3k2 − 1)X + k3 − k + 3. Using
this, Gilbert’s theorem (see [3], Theorem 3.1) and ([3], Proposition 3.12) the second statement
follows.
(ii) The first statement is clear because fk = X3 + 3kX2 + (3k2 − 1)X + k3 − k − 3. Using this
and Gilbert’s theorem (see [3], Theorem 3.1) and checking f3 ∈ C the second statement follows.
(iii) Clearly, k < 13 implies fk = X3+(3k−2)X2+(3k2−4k−69)X +k3−2k2−69k−369 /∈ K∪C.
(iv) Observing fk = X3 + (3k + 2)X2 − (3k2 + 4k − 69)X + k3 + 2k2 − 69k + 369 and checking
f4 ∈ C these statements can be proved analogously. ¤

For a monogenic algebraic number field K we write Fδ(K) instead of Fδ(γ) where γ is some
generator of a power integral basis of K (δ ∈ {0, 1}).
Example 2.10. Let ϑ be a root of the polynomial X3 −X + 3 ∈ Z[X]. By ([9], Section 11.1) up
to equivalence all generators of power integral bases of Z[ϑ] are given by ϑ and −5ϑ + 3ϑ2. By
Lemma 2.9 we have cϑ = 0, kϑ = 3, and therefore by Algorithm 2.6

ϑ ∈ F0(Q(ϑ)),−2 + ϑ ∈ F1(Q(ϑ)).

Analogously, we have µ−ϑ = X3 −X − 3, c−ϑ = 3, k−ϑ = 4, and then

−3 + ϑ ∈ F1(Q(ϑ)).

Similarly, we have µ−5ϑ+ϑ2 = X3 − 2X2 − 69X − 369, c−5ϑ+ϑ2 = k−5ϑ+ϑ2 = 13, and

−13− 5ϑ + ϑ2 ∈ F1(Q(ϑ)),
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and finally µ5ϑ−ϑ2 = X3 + 2X2 − 69X + 369, c5ϑ−ϑ2 = 4, k5ϑ−ϑ2 = 5, and

−4 + 5ϑ− ϑ2 ∈ F1(Q(ϑ)).

Collecting our results we find F0(Q(ϑ)) = {ϑ} and

F1(Q(ϑ)) = {−2 + ϑ,−3− ϑ,−13− 5ϑ + ϑ2,−4 + 5ϑ− ϑ2}.
In some cases the determination of CNS bases is considerably easier if γ is an algebraic integer

with at least one real conjugate. We then denote by M(γ) (m(γ)) the integer part of the maximum
(minimum) of the real conjugates of γ.

Proposition 2.11. Let γ be a nonzero algebraic integer with at least one real conjugate and B a
set of representatives of the equivalence classes of generators of power integral bases of Z[γ].

(i) For α ∈ Z[γ] \ {0} we have cα ≥ M(α) + 2 and c−α ≥ −m(α) + 1.
(ii) Let β ∈ B. Then β −M(β)− 2 ∈ F1(γ) if µβ−M(β)−2 ∈ K, and −β + m(β)− 1 ∈ F1(γ) if

µ−β+m(β)−1 ∈ K.
(iii) If µβ−M(β)−2, µ−β+m(β)−1 ∈ K for all β ∈ B then we have F0(γ) = ∅ and

F1(γ) =
{
β −M(β)− 2,−β + m(β)− 1 |β ∈ B}

.

Proof. (0) For every α ∈ Z[γ] we have real embeddings τα, ρα of Q(γ) with

M(α) ≤ τα(α), ρα(α) < m(α) + 1.

(i) Assume cα = M(α) + 2 − k for some k ∈ N \ {0}. Then µα(X + M(α) + 2 − k) ∈ C, thus by
([1], Theorem 2.1)

τα(α)− (M(α) + 2− k) < −1

which by (0) yields the contradiction

M(α) < M(α)− k + 1.

The other inequality is proved analogously.
(ii) It is enough to show that (β−M(β)−2)+1, (−β +m(β)−1)+1 /∈ C. In view of ([1], Theorem
2.1) this is clear because by (0)

τβ(β −M(β)− 1) = τβ(β)−M(β)− 1 ≥ M(β)−M(β)− 1 = −1,

ρβ(−β + m(β)) > −m(β)− 1 + m(β) = −1.

(iii) Denoting by F =
{
β −M(β)− 2,−β + m(β)− 1 |β ∈ B}

it suffices to show that

Cγ ⊂
{
ϕ− n |ϕ ∈ F, n ∈ N}

.

Let α ∈ Cγ , β ∈ B, n ∈ Z with α = n± β. In case α = n + β we have −M(β)− 2− n ∈ N by (0)
and

α + (−M(β)− 2− n) = β −M(β)− 2 ∈ F,

and in case α = n− β we analogously find m(β)− 1− n ∈ N and

α + (m(β)− 1− n) = −β + m(β)− 1 ∈ F.

¤

3. CNS bases in quadratic and cubic number fields

We conclude our observations by computing F0 and F1 of several quadratic, cubic and quartic
number fields. For the sake of completeness we start with the formulation of some well-known
results in our language.

CNS bases of quadratic number fields were studied by several authors (see [14],[15],[10],[11],[32],[4]
and others).



CNS BASES IN QUARTIC FIELDS 7

Theorem 3.1. (I. Kátai – B. Kovács, W. J. Gilbert) Let D 6= 0, 1 be a square-free rational
integer and ϑ =

√
D. Then F0(Q(ϑ)) = ∅ and

F1(Q(ϑ)) =





{−
⌊

1+
√

D
2

⌋
+ −3+ϑ

2 ,
⌊

1−√D
2

⌋
− 3+ϑ

2

}
, if D > 0, D ≡ 1 ( mod 4),

{−2−
⌊√

D
⌋

+ ϑ,−2−
⌊√

D
⌋
− ϑ

}
, if D > 0, D 6≡ 1 ( mod 4),{−3+ϑ

2 ,− 3+ϑ
2

}
, if D = −3,{

1+ϑ
2 , 1−ϑ

2

}
, if D < 0, D 6= −3, D ≡ 1 ( mod 4),{−1 + ϑ,−1− ϑ

}
, if D = −1,{

ϑ,−ϑ
}

, if D < 0, D 6= −1, D 6≡ 1 ( mod 4).

Proof. A representative of the generators of power integral bases of Q(ϑ) is given by β = 1+ϑ
2 if

D ≡ 1 (mod 4) (β = ϑ if D 6≡ 1 (mod 4)). If D > 0 we have m(β) =
⌊

1−√D
2

⌋
,M(β) =

⌊
1+
√

D
2

⌋

for D ≡ 1 (mod 4) (m(β) =
⌊
−√D

⌋
, M(β) =

⌊√
D

⌋
for D 6≡ 1 (mod 4)) and our assertions

follow from Proposition 2.11 and ([10], Theorem 1). For D < 0 Algorithm 2.6 and ([10], Theorem
1) yield the assertions. ¤

Using a theorem of S. Körmendi [21] S. Akiyama et al. ([3], Theorem 4.5) described all CNS
in a family of pure cubic number fields.

Theorem 3.2. ( S. Kőrmendi – S. Akiyama et al.) Let m ∈ N \ {0} be not divisible by 3 and
m3 + 1 squarefree. For ϑ = 3

√
m3 + 1 we have F0(Q(ϑ)) = ∅ and

F1(Q(ϑ)) = {−ϑ,−m− 2 + ϑ,−2m2 − 2 + mϑ + ϑ2,−m2 − 2−mϑ− ϑ2}.
Further, S. Akiyama et al. ([3], Theorem 4.4) determined all CNS in a family of simplest cubic

number fields (for details see D. Shanks [31]). We state and slightly extend their result in our
context.

Theorem 3.3. (S. Akiyama et al.) Let t ∈ Z, t ≥ −1 and ϑ denote a root of the polynomial

X3 − tX2 − (t + 3)X − 1.

Then we have F0(Q(ϑ)) = ∅ and

F1(Q(ϑ)) = {−3− ϑ,−t− 5− tϑ + ϑ2,−1 + (t + 1)ϑ− ϑ2} ∪ G ∪ G−1 ∪ G0 ∪ G2

where

G =

{
{−t− 3 + ϑ,−1 + tϑ− ϑ2,−t− 5− (t + 1)ϑ + ϑ2}, if t ≥ 0,

∅ otherwise,

G−1 =





{−3 + ϑ,−2− ϑ− ϑ2,−5 + ϑ2,−19 + 9ϑ + 4ϑ2,−5− 9ϑ− 4ϑ2,−22 + 5ϑ + 9ϑ2,

−2− 5ϑ− 9ϑ2,−25− 4ϑ + 5ϑ2, 1 + 4ϑ− 5ϑ2,−7− ϑ + ϑ2,−1 + ϑ− ϑ2,

−6 + 2ϑ + ϑ2,−2− 2ϑ− ϑ2,−6 + ϑ + 2ϑ2,−2− ϑ− ϑ2}, if t = −1,

∅ otherwise,

G0 =





{−9 + 2ϑ + ϑ2,−2− 2ϑ− ϑ2,−11− 3ϑ + 2ϑ2,−1 + 3ϑ− 2ϑ2,

−10− ϑ + 3ϑ2,−1 + ϑ− 3ϑ2}, if t = 0,

∅ otherwise,

G2 =





{−37 + 3ϑ + 2ϑ2,−2− 3ϑ− 2ϑ2,−42− 20ϑ + 9ϑ2, 3 + 20ϑ− 9ϑ2,

−43− 23ϑ + 7ϑ2,−4 + 23ϑ− 7ϑ2}, if t = 2,

∅ otherwise.

Proof. We proceed similarly as in Example 2.10, but leave the verifications of computational
details to the reader. By [9] up to equivalence all generators of power integral bases of Z[ϑ] are
the following:

• for arbitrary t: ϑ,−tϑ + ϑ2, (t + 1)ϑ− ϑ2;
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• for t = −1 additionally: 9ϑ + 4ϑ2, 5ϑ + 9ϑ2,−4ϑ + 5ϑ2,−ϑ + ϑ2, 2ϑ + ϑ2, ϑ + 2ϑ2;
• for t = 0 additionally: 2ϑ + ϑ2,−3ϑ + 2ϑ2,−ϑ + 3ϑ2;
• for t = 2 additionally: 3ϑ + 2ϑ2,−20ϑ + 9ϑ2,−23ϑ + 7ϑ2.

The proof is now accomplished by Proposition 2.11 and Table 1 below where we use the following
notation: β is a generator of a power integral basis of Q(ϑ). The minimal polynomial µβ =
X3 +a1X

2 +a2X +a3 of β is given by (a1, a2, a3). Lower bounds for the constants cβ , kβ are given
by Proposition 2.11. For their determination ([3], Theorem 3.1) and ([8], Theorem 5.1) are used.
Observe that in all cases considered here Remark 2.8 applies if cβ ≤ kβ − 2 or c−β ≤ k−β − 2. ¤

β t µβ m(β) M(β) cβ kβ c−β k−β

ϑ ≥ 5 (−t,−t− 3,−1) −2 t + 1 t + 3 t + 3 3 3
ϑ 0, . . . , 4 (−t,−t− 3,−1) −2 t + 1 t + 3 t + 3 3 4
ϑ −1 (1,−2,−1) −2 1 3 4 3 4

−tϑ + ϑ2 ≥ 5 (−2t− 6, t2 + 7t + 9, 0 t + 3 t + 5 t + 5 1 1
−t2 − 3t− 1)

−tϑ + ϑ2 2, 3, 4 (−2t− 6, t2 + 7t + 9, 0 t + 3 t + 5 t + 6 1 1
−t2 − 3t− 1)

−ϑ + ϑ2 1 (−8, 17,−5) 0 4 6 7 1 2
ϑ2 0 (−6, 9,−1) 0 3 5 6 1 2

ϑ + ϑ2 −1 (−4, 3, 1) −1 2 4 5 2 3
(t + 1)ϑ− ϑ2 ≥ 3 (t + 6, 3t + 9, 2t + 3) −t− 4 −1 1 2 t + 5 t + 5
(t + 1)ϑ− ϑ2 0, 1, 2 (t + 6, 3t + 9, 2t + 3) −t− 4 −1 1 2 t + 5 t + 6

−ϑ2 −1 (5, 6, 1) −4 −1 1 3 5 6
3ϑ + 2ϑ2 2 (−34,−39,−11) −1 35 37 37 2 3
−20ϑ + 9ϑ2 2 (−86, 2041,−8029) 4 40 42 43 −3 −3
−23ϑ + 7ϑ2 2 (−52, 477,−1217) 5 41 43 43 −4 −3
9ϑ + 4ϑ2 −1 (−11,−102,−181) −4 17 19 19 5 6
5ϑ + 9ϑ2 −1 (−40, 391, 181) −1 20 22 23 2 2
−4ϑ + 5ϑ2 −1 (−29, 138,−181) 2 23 25 25 −1 0
−ϑ + ϑ2 −1 (−6, 5,−1) 0 5 7 7 1 2
2ϑ + ϑ2 0 (−6,−9,−3) −1 7 9 9 2 3
2ϑ + ϑ2 −1 (−3,−4,−1) −1 4 6 6 2 3
−3ϑ + 2ϑ2 0 (−12, 27,−17) 1 9 11 11 0 1
−ϑ + 3ϑ2 0 (−18, 87,−53) 0 8 10 11 1 1
ϑ + 2ϑ2 −1 (−9, 20, 1) −1 4 6 7 2 2

Table 1

4. CNS bases in quartic cyclotomic fields

In this section we treat the cyclotomic fields of degree 4.

Theorem 4.1. Let ζ be a primitive eighth root of unity. Then we have F0(Q(ζ)) = ∅ and

F1(Q(ζ)) = {−3± ζk | k = 1, 3, 5, 7}.
Proof. By R. Robertson [29] up to equivalence all generators of power integral bases of Q(ζ)
are given by ζk, k ∈ Z, k odd. Observing µζ = X4 + 1 one immediately finds kζ = 4. The
algorithm described in [7] and ([4], Theorem 5.4) yield cζ = 3, and a straightforward application
of Algorithm 2.6 concludes the proof. ¤
Theorem 4.2. Let ζ be a primitive twelfth root of unity. Then we have F0(Q(ζ)) = ∅ and

F1(Q(ζ)) = {−3 + ζ,−3− ζ,−3 + ζ−1,−3− ζ−1,−1− ζ2 + ζ−1,−2 + ζ2 − ζ−1}.
Proof. The proof works analogously as that of Theorem 4.1. ¤
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Theorem 4.3. Let ζ be a primitive fifth root of unity. Then we have F0(Q(ζ)) = ∅ and

F1(Q(ζ)) = {−2 + ζ,−3− ζ,−2 + ζ + ζ3,−3− ζ − ζ3}.

Proof. By [28] up to equivalence all generators of power integral bases of Z[ζ] are ζ and 1
1+ζ . One

immediately checks that

fk(X) = µζ(X + k) ∈ K ⇐⇒ k ≥ 4,

hence kζ = 4. By ([4], Theorem 5.4) one finds k ≥ −5 for fk ∈ C. Trivially, f0, f−1 /∈ C, and an
application of the algorithm described in [7] yields fk /∈ C for k = −5,−4,−3,−2, 1, but f2, f3 ∈ C.
Thus we have shown that

fk ∈ C ⇐⇒ k ≥ 2,

hence cζ = 2 and fk ∈ C for all k ∈ {cζ , . . . , kζ}.

β µβ cβ kβ c−β k−β

ζ (1, 1, 1, 1) 2 4 3 5
−ζ − ζ3 (−2, 4,−3, 1) 3 5 2 4

Table 2

Therefore by Algorithm 2.6 we find −2+ζ ∈ F1(Q(ζ)). Similarly, the other cases are dealt with.
The main data are listed in Table 2 below where we use the following notation: β is a generator
of a power integral basis of Q(ζ), the minimal polynomial µβ = X4 + a1X

3 + a2X
2 + a3X + a4 of

β is given by (a1, a2, a3, a4). ¤

5. CNS bases in quartic number fields

For the convenience of the reader we rephrase a result of A. Pethő ([27], Theorem 15) in our
settings.

Theorem 5.1. (A. Pethő) Let f ∈ N, f ≥ 3, f odd, m = f2 + 2 and n = f2 − 2. Then we have
F0(Q(

√
m,
√

n)) = ∅ and

F1(Q(
√

m,
√

n)) = {−f − 1 + ϑ1,−f − 1− ϑ1,−1− 3f3 + f

2
+ ϑ2,−2− f3 − f

2
− ϑ2}

where

ϑ1 =
√

m +
√

n

2
, ϑ2 = f

1 +
√

mn

2
+
√

n + (f2 − 1)
√

m +
√

n

2
.

For t ∈ Z \ {0,±3} let

Pt(X) = X4 − tX3 − 6X2 + tX + 1.

Let ϑ = ϑt be a root of Pt(X), then the infinite parametric family of number fields Kt = K = Q(ϑt)
is called simplest quartic fields. P. Olajos [24] proved that Kt admits a power integral bases if and
only if t = 2 and t = 4, moreover he found all generators of power integral bases in these fields.
Using his result we are able to compute all CNS bases in such fields.
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Theorem 5.2. We have F0(Q(ϑ)) = ∅ and F1(Q(ϑ2)) = G2 and F1(Q(ϑ4)) = G4 where

G2 =
{
−1

2
ϑ3 + ϑ2 +

7
2
ϑ− 4,

1
2
ϑ3 − ϑ2 − 7

2
ϑ− 2, 2ϑ3 − 9

2
ϑ2 − 11ϑ− 9

2
,

−2ϑ3 +
9
2
ϑ2 + 11ϑ− 19

2
,
1
2
ϑ3 − 2ϑ− 13

2
,−1

2
ϑ3 + 2ϑ− 5

2
,
1
2
ϑ2 + ϑ− 23

2
,−1

2
ϑ2 − ϑ− 5

2
,

ϑ3 − 3
2
ϑ2 − 7ϑ− 9

2
,−ϑ3 +

3
2
ϑ2 + 7ϑ− 11

2
,
3
2
ϑ3 − 2ϑ2 − 21

2
ϑ− 6,−3

2
ϑ3 + 2ϑ2 +

21
2

ϑ− 8,

1
2
ϑ3 − 2ϑ2 +

1
2
ϑ− 1,−1

2
ϑ3 + 2ϑ2 − 1

2
ϑ− 11,−ϑ3 +

5
2
ϑ2 + 5ϑ− 13

2
, ϑ3 − 5

2
ϑ2 − 5ϑ− 5

2
,

1
2
ϑ2 − ϑ− 9

2
,−1

2
ϑ2 + ϑ− 3

2
,
1
2
ϑ2 − 15

2
,−1

2
ϑ2 − 3

2

}

G4 =
{
−1

4
ϑ3 +

3
4
ϑ2 +

11
4

ϑ− 13
4

,
1
4
ϑ3 − 3

4
ϑ2 − 11

4
ϑ− 11

4
,
1
4
ϑ3 − 3

4
ϑ2 − 7

4
ϑ− 23

4
,

−1
4
ϑ3 +

3
4
ϑ2 +

7
4
ϑ− 13

4
,−3

4
ϑ3 +

13
4

ϑ2 +
13
4

ϑ− 27
4

,
3
4
ϑ3 − 13

4
ϑ2 − 13

4
ϑ− 9

4
,

3
4
ϑ3 − 11

4
ϑ2 − 21

4
ϑ− 11

4
,−3

4
ϑ3 +

11
4

ϑ2 +
21
4

ϑ− 25
4

,−1
4
ϑ3 +

5
4
ϑ2 − 1

4
ϑ− 23

4
,

1
4
ϑ3 − 5

4
ϑ2 +

1
4
ϑ− 13

4
,−1

4
ϑ3 +

5
4
ϑ2 +

3
4
ϑ− 19

4
,
1
4
ϑ3 − 5

4
ϑ2 − 3

4
ϑ− 5

4

}
.

Proof. Let γ be a generator of power integral basis in ZK . P. Olajos [24] showed that only the
following cases can occur:

• t = 2, γ = x · ϑ + y · 1+ϑ2

2 + z · ϑ+ϑ3

2 where
(x, y, z) = (4, 2,−1), (−13,−9, 4), (−2, 1, 0), (1, 1, 0), (−8,−3, 2),
(−12,−4, 3), (0,−4, 1), (6, 5,−2), (−1, 1, 0), (0, 1, 0).

• t = 4, γ = x · ϑ + y · 1+ϑ2

2 + z · 1+ϑ+ϑ2+ϑ3

4 where
(x, y, z) = (3, 2,−1), (−2,−2, 1), (4, 8,−3), (−6,−7, 3), (0, 3,−1), (1, 3,−1).

From here on we proceed as in the proof of Theorem 5.3. The details of the computation are
given in Table 3 below where we use the following notation: (x, y, z) denote the coordinates of γ
as in the table above, the minimal polynomial µγ = X4 + a1X

3 + a2X
2 + a3X + a4 of γ is given

by (a1, a2, a3, a4).

(x, y, z) γ µγ cγ kγ c−γ k−γ

(4, 2,−1) − 1
2ϑ3 + ϑ2 + 7

2ϑ + 1 (−8, 19,−12, 1) 5 7 1 3
(−13,−9, 4) 2ϑ3 − 9

2ϑ2 − 11ϑ− 9
2 (36, 451, 2176, 2641) 0 0 14 15

(−2, 1, 0) 1
2ϑ3 − 2ϑ + 1

2 (−6, 1, 4, 1) 7 8 2 4
(1, 1, 0) 1

2ϑ2 + ϑ + 1
2 (−12, 19,−8, 1) 12 12 2, 3

(−8,−3, 2) ϑ3 − 3
2ϑ2 − 7ϑ− 3

2 (6, 1,−4, 1) 2 4 7 8
(−12,−4, 3) 3

2ϑ3 − 2ϑ2 − 21
2 ϑ− 2 (4,−29, 44,−19) 4 5 10 10

(0,−4, 1) 1
2ϑ3 − 2ϑ2 + 1

2ϑ− 2 (20, 115, 260, 205) 0 1 14 14
(6, 5,−2) −ϑ3 + 5

2ϑ2 + 5ϑ + 5
2 (−22, 169,−508, 421) 9 11 0 1

(−1, 1, 0) 1
2ϑ2 − ϑ + 1

2 (−8, 19,−12, 1) 5 7 1 3
(0, 1, 0) 1

2ϑ2 + 1
2 (−10, 25,−20, 5) 8 9 1 3

(3, 2,−1) − 1
4ϑ3 + 3

4ϑ2 + 11
4 ϑ + 3

4 (−4, 2, 4,−1) 4 6 2 4
(−2,−2, 1) 1

4ϑ3 − 3
4ϑ2 − 7

4ϑ− 3
4 (0,−8,−8,−2) 5 6 4 5

(4, 8,−3) − 3
4ϑ3 + 13

4 ϑ2 + 13
4 ϑ + 13

4 (−24, 208,−760, 958) 10 11 −1 0
(−6,−7, 3) 3

4ϑ3 − 11
4 ϑ2 − 21

4 ϑ− 11
4 (16, 88, 200, 158) 0 1 9 10

(0, 3,−1) − 1
4ϑ3 + 5

4ϑ2 − 1
4ϑ + 5

4 (−8, 16,−8,−2) 7 8 2 3
(1, 3,−1) − 1

4ϑ3 + 5
4ϑ2 + 3

4ϑ + 5
4 (−12, 50,−84, 47) 6 8 0 2

Table 3
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¤
Power integral bases in the polynomial order Z[α] of Kt were described by G. Lettl and A.

Pethő [22].

Theorem 5.3. Let t ∈ N \ {0, 3} and ϑ denote a root of the polynomial

X4 − tX3 − 6X2 + tX + 1.

Then we have F0(Q(ϑ)) = ∅ and F1(Q(ϑ)) = G ∪ G1 ∪ G2 ∪ G4 where

G =

{
{−3− ϑ,−t− 2 + ϑ,−2− 6ϑ− tϑ2 + ϑ3,−t− 3 + 6ϑ + tϑ2 − ϑ3}, if t ≥ 5,

∅ otherwise,

G1 =





{−4 + ϑ,−4− ϑ,−5 + 6ϑ + ϑ2 − ϑ3,−3− 6ϑ− ϑ2 + ϑ3,−23 + 3ϑ2 − ϑ3,

−1− 3ϑ2 + ϑ3,−14 + 25ϑ + 2ϑ2 − 4ϑ3,−10− 25ϑ− 2ϑ2 + 4ϑ3}, if t = 1,

∅ otherwise,

G2 =

{
{−5 + ϑ,−3− ϑ,−5 + 6ϑ + 2ϑ2 − ϑ3,−3− 6ϑ− 2ϑ2 + ϑ3}, if t = 2,

∅ otherwise,

G4 =





{−6 + ϑ,−3− ϑ, 1 + 9ϑ− 22ϑ2 + 4ϑ3,−78− 9ϑ + 22ϑ2 − 4ϑ3,

−7 + 6ϑ + 4ϑ2 − ϑ3,−3− 6ϑ− 4ϑ2 + ϑ3,−62 + 74ϑ + 30ϑ2 − 9ϑ3,

−15− 74ϑ− 30ϑ2 + 9ϑ3}, if t = 4,

∅ otherwise.

Before embarking on the proof of Theorem 5.3 we need some preparation. For checking the
CNS property of some polynomials we exploit a technical lemma which we state in a more general
form without any extra amount of effort. For the notation the reader is referred to [2].

Lemma 5.4. The vector r = (r1, . . . , r4) ∈ R4 with the properties
(i) r2 ≥ 2r1 > 0
(ii) r4 ≥ 1 + r1

(iii) r1 + 2r3 − r4 ≤ 0
(iv) 2r2 − r3 + 2r4 < 2

belongs to D0
4.

Proof. Let

E = {(e1, . . . , e4) ∈ Z4 | |ei| ≤ 2 (i = 1, . . . , 4), (e3, e4) 6= (0,±2),

eiei+1 ≤ 0 (i = 1, 2, 3), |ei| = 2 =⇒ ei+1 6= 0 (i = 1, 2, 3)}
and τr(a) = (a2, a3, a4,−br1a1 + · · ·+ r4a4c) be a mapping on Z4. Clearly, property (i) of ([2],
Theorem 5.1) is satisfied. We show (ii) and (iii) of ([2], Theorem 5.1) in several steps thereby

using the notation of ([26], Lemma 1): a
(S)−→ indicates that τr(a) falls into step(s) S considered

before.
(1) e1 ≥ 0, τr(e1, 0, 0, 0) = 0

(2) e1 ≤ 0, (e1, 1, 0, 0)
(1)−→

(3) (e1,−1, 1, 0)
(2)−→

(4) e2 ∈ {0, 1}, (e1, e2,−1, 1)
(3)−→

(5) (e1,−1, 1,−1)
(4)−→

(6) (e1, 2,−1, 1)
(3,5)−→

(7) (e1, 0, 1,−1)
(4)−→

(8) e2 ∈ {0, 1}, (e1, e2, 0, 1)
(7)−→

(9) (e1, e2, 0, 0)
(1,8)−→
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(10) (e1, 0, 1, 0)
(9)−→

(11) (e1,−1, 0, 1)
(7,10)−→

(12) (e1, 2,−1, 0)
(11)−→

(13) (e1,−1, 2,−1)
(6,12)−→

(14) (e1, 1,−1, 2)
(13)−→

(15) (e1, e2, 1,−1)
(4,5,7,14)−→

(16) e1 ≤ −1, (e1, e2, 2,−1)
(6,12)−→

(17) (e1, 0,−1, 2)
(16)−→

(18) (e1, 1, 0,−1)
(4,17)−→

(19) (e1, e2, 1, 0)
(9)−→

(20) (e1, e2,−1, 0)
(11)−→

(21) (e1, e2, e3, 0)
(9,19,20)−→

(22) e4 ≥ 1, (e1, e2, e3, e4)
(13,15,21)−→

(23) (e1, 2,−1, 1)
(21)−→

(24) (e1, e2, e3,−1)
(4,6,17)−→

(25) (e1, e2, e3, e4)
(21,22,24)−→

This concludes the proof. ¤

We shall make use of the following consequence of this lemma.

Corollary 5.5. The polynomial X4 + p3X
3 + p2X

2 + p1X + p0 ∈ Z[X] with the properties

(i) p0 ≥ 4
(ii) p1 ≥ p0 + 1
(iii) p3 ≥ 2
(iv) p1 ≥ 2p2 + 1
(v) 2p1 − p2 + 2p3 ≤ 2p0 − 1

is a CNS polynomial.

Proof. This is clear by Lemma 5.4 and ([2], Theorem 3.1). ¤

We are now in a position to verify Theorem 5.3.
Proof of Theorem 5.3. By [9] up to equivalence all generators of power integral bases of Z[ϑ]

are the following:

• for t ∈ N \ {0, 3}: ϑ, 6ϑ + tϑ2 − ϑ3,
• for t = 1 additionally: 3ϑ2 − ϑ3, 25ϑ + 2ϑ2 − 4ϑ3,
• for t = 4 additionally: 9ϑ− 22ϑ2 + 4ϑ3,−74ϑ− 30ϑ2 + 9ϑ3.

We proceed analogously as in the proof of Theorem 3.3 by using Proposition 2.11 and Table 4 below
with the following notation: β is a generator of a power integral basis of Q(ϑ). The minimal poly-
nomial µβ = X4 +a1X

3 +a2X
2 +a3X +a4 of β is listed in the form (a1, a2, a3, a4). Lower bounds

for the constants cβ , kβ are given by Proposition 2.11. For their determination ([3], Theorem 3.1)
and Corollary 5.5 are used in a straightforward way. Similarly as in the proof of Theorem 3.3
Remark 2.8 is used. ¤



CNS BASES IN QUARTIC FIELDS 13

β t µβ m(β) M(β) cβ kβ c−β k−β

ϑ 6= 1, 2 (−t,−6, t, 1) −2 t t + 2 t + 2 3 4
ϑ 1 (−1,−6, 1, 1) −3 2 4 6 4 5
ϑ 2 (−2,−6, 2, 1) −2 3 5 6 3 5

6ϑ + tϑ2 − ϑ3 6= 1, 2, 4 (−3t, 3t2 − 6, −1 t + 1 t + 3 t + 4 2 2
−t3 + 11t,−5t2 + 1)

6ϑ + ϑ2 − ϑ3 1 (−1,−6, 1, 1) −3 2 4 6 4 5
6ϑ + 2ϑ2 − ϑ3 2 (−6,−6, 14,−19) −2 3 5 7 3 4
6ϑ + 4ϑ2 − ϑ3 4 (−12, 42,−20,−79) −2 5 7 8 3 3

3ϑ2 − ϑ3 1 (−23, 39,−22, 4) 0 21 23 23 1 3
25ϑ + 2ϑ2 − 4ϑ3 1 (13,−96, −9 12 14 14 10 12

−1993,−7241)
9ϑ− 22ϑ2 + 4ϑ3 4 (84, 618, 1580, 1361) −77 −3 −1 1 78 78
−74ϑ− 30ϑ2 + 9ϑ3 4 (20,−1878, −61 13 15 17 62 62

29932,−144239)

Table 4

Finally we consider another family of orders in a parametrized family of quartic number fields,
where all power integral bases are known. Let t ∈ Z, t ≥ 0, and P (X) = X4− tX3−X2 + tX +1.
Denote by α one of the zeros of P (X). In the following we deal with the order O = Z[α] of Q(α).

M. Mignotte, A. Pethő and R. Roth [23] gave the following result:

Theorem 5.6. (M. Mignotte, A. Pethő, R. Roth ) Let t ≥ 4. Then every element γ ∈ O
such that Z[γ] = O is equivalent to some element γ = xα + yα2 + zα3 with

(x, y, z) ∈ {(1, 0, 0), (1, t,−1), (t, t− 1,−1), (t,−t− 1, 1), (1, 0,−1), (1,−t(t2 + 1), t2)}
except when t = 4, in which case additionally (x, y, z) ∈ {(209, 140,−49), (209,−312, 64)}. 1

Theorem 5.7. Let t ≥ 4. We have F0(Q(α)) = ∅ and F1(Q(α)) = G4 ∪ Gt where

G4 =
{
209α + 140α2 − 49α3 + 350, 209α− 312α2 + 64α3 − 71

}

Gt =
{
α + t + 1, α + tα2 − α3 + t + 2, tα + (t− 1)α2 − α3 + 8,

tα− (t + 1)α2 + α3 + 2, α− α3 + 2, α− t(t2 + 1)α2 + t2α3 − t + 1
}

.

To prove this Theorem we need the some Lemmata.

Lemma 5.8. If p0 = p1 − p2 + p3 and p3 < p0 < p2 < p1 and p0 ≤ p2 − p3 < 2p0 and
p2 − 2p3 + 2 < p0, then X4 + p3X

3 + p2X
2 + p1X + p0 is not a CNS polynomial.

Proof. Considering (2,−1, 0, 1) and applying mapping τ we get (−2, 2,−1, 0), since−b2+p2−2p3+1
p0

c =
−2. Calculating in a similar way we get the following sequence:

(2,−1, 0, 1), (−2, 2,−1, 0), (2,−2, 2,−1), (−1, 2,−2, 2), (0,−1, 2,−2),
(1, 0,−1, 2), (−1, 1, 0,−1), (1,−1, 1, 0), (−1, 1,−1, 1),
(1,−1, 1,−1), (0, 1,−1, 1), (−1, 0, 1,−1), (2,−1, 0, 1).

This sequence contains a cycle starting with (2,−1, 0, 1), hence polynomials with the properties
above are not CNS. ¤

Lemma 5.9. The polynomial P (X) = X4 + (8 + t)X3 + (23 + 6t)X2 + (28 + 11t)X + 13 + 6t is
a CNS polynomial for every t ≥ 4.

The proof of this lemma is quite complicated, therefore we postpone it after the proof of
Theorem 5.7.

1In Theorem 4 of [23] the last vector reads (209,−352, 64), but its correct value is (209,−312, 64).
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Proof of Theorem 5.7. We follow the same line as in the proof of Theorem 5.3. First we compute
the data necessary to apply Algorithm 2.6. For the zeroes of the polynomial P (X) we use the
following estimates:

α1 = t− 1/t3 − 1/t5 − 4/t7 − 9/t9, α2 = −1/t− 1/t5 − 1/t7 − 5/t9,

α3 = 1 + 1/2t + 1/8t2 + 1/2t3, α4 = −1 + 1/2t− 1/8t2.

In a straightforward way we obtain M(γ) for any possible value of γ. Knowing M(γ) it is easy to
establish kγ . Because of the special form of P (X) we do not need k−γ . Indeed denote by σ the
automorphism of Q(α), which maps α to − 1

α . Then an easy computation shows that

σ(−α) = α + tα2 − α3 − t

σ(−(tα + (t− 1)α2 − α3)) = tα− (t− 1)α2 + α3 + 1
σ(−(α− α3)) = α− t(t2 + 1)α2 + t2α3 + t3

and if t = 4 then

σ(−(209α + 140α2 − 49α3)) = 209α− 312α2 + 64α3 + 116.

The details of the computation are given in Table 5 below where we use the following notation:
(x, y, z) denote the coordinates of γ = xα+ yα2 + zα3 as in Theorem 5.6, the minimal polynomial
µγ = X4 + a1X

3 + a2X
2 + a3X + a4 of γ is given by (a1, a2, a3, a4). We gave cγ as well, although

its computation is detailed after the table.

γ µγ m(γ) M(γ) cγ kγ

α (−t,−1, t, 1) −1 t− 1 t + 1
t + 3, if t = 4
t + 2, if t > 4

α + tα2 − α3 (−3t, 3t2 − 1, t− t3, 1) 0 t t + 2 t + 4

tα + (t− 1)α2 − α3 (2− 2t,−3t + 5,−t + 4, 1) −1 6
2t− 1

8
2t + 1

8, if t = 4
2t + 1, if t > 4

tα− (t + 1)α2 + α3 (2t + 2, 3t + 5, t + 4, 1) −2t− 1 −2 2 3
α− α3 (t3 − t, 3t2 − 1, 3t, 1) −t3 + t −1 2 3

α− t(t2 + 1)α2 + t2α3

(3t3 + t,
3t6 + 3t4 + 3t2 − 1,
t9 + 3t7 + 6t5 − 2t3 − 3t,
t10 + 3t8 − t6 − 3t4 + 1)

−t3 − 1 −t− 1 −t + 1 −t + 1

209α + 140α2 − 49α3 (−4, 2, 4,−1) −43 348 350 350
209α− 312α2 + 64α3 (0,−8,−8,−2) −465 −74 −71 −70

Table 5

As all zeroes of P (X) are real, by Proposition 2.11 it is enough to test the polynomials µγ(X+n)
for M(γ) + 2 ≤ n < kγ .

Case(1) γ = α. Then

µγ(X + t + 1) = X4 + (4 + 3t)X3 + (5 + 9t + 3t2)X2 + (2 + 8t + 6t2 + t3)X + 1 + 2t + 3t2 + t3,

which belongs to C. To show this put

E = {e = (a,−a + ε1, a− ε1 + ε2,−a + ε1 − ε2 + ε3) : ε1, ε2, ε3 ∈ {−1, 0, 1}, |a| ≤ 3t2 + 9t + 7}.
Then we prove that it is a set of witnesses for µγ(X + t + 1). Indeed (i) and (ii) of Theorem 2.1
obviously hold. We have

a(2 + 8t + 6t2 + t3)− (a− ε1)(5 + 9t + 3t2) + (a− ε1 + ε2)(4 + 3t)− a + ε1 − ε2 + ε3

1 + 2t + 3t2 + t3
= a + R,

where

R =
ε1(3t2 + 6t + 2) + 3ε2(t + 1) + ε3 − a

1 + 2t + 3t2 + t3
.
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If t > 6 then |R| < 1. Thus, if a ≥ 0, then −τ(e)1 ≤ e1. If a < 0, then τ(e)1 ≤ −e1 + 1 and if
a < −(3t2 + 9t + 6) then τ(e)1 ≤ −e1, i.e. E satisfies (iii) too, as t = 4, 5 can be directly checked.

If a < 0 then τ(e)1 ≥ 0. If a > 0 then applying τ some times we get 0 ≤ τ(e)k
1 < a. This shows

that (iv) holds too, i.e. µγ(X + t + 1) ∈ C.
Case(2) γ = α + tα2 − α3. We have

µγ(X + t + 3) = X4 + (12 + t)X3 + (53 + 9t)X2 + (102 + 26t)X + 73 + 24t,

which is a CNS polynomial by Corollary 5.5, provided t ≥ 10. For t < 10 we prove the same
directly. Further we have

µγ(X + t + 2) = X4 + (t + 8)X3 + (6t + 23)X2 + (6t + 23)X2 + (28 + 11t)X + 13 + 6t,

which belongs to C by Lemma 5.9.
Case (3) γ = tα + (t− 1)α2 − α3 is obvious by Proposition 2.11.
Case (4) γ = tα− (t + 1)α2 + α3. We have

µγ(X + 1) = X4 + (2t + 6)X3 + (9t + 17)X2 + (13t + 24)X + 6t + 13,

which is not a CNS polynomial by Lemma 5.8. The minimal polynomial of γ − 2 is

µγ(X + 2) = X4 + (2t + 10)X3 + (15t + 41)X2 + (37t + 80)X + 61 + 30t

which is a CNS polynomial. We can prove it with Theorem 2.3 and entry vectors: r1 = [−1
20 , 1

60 , 9
20 , 71

60 ], r2 =
[ 1
60 , 1

60 , 9
20 , 71

60 ], r3 = [−1
20 , 1

12 , 9
20 , 71

60 ], r4 = [−1
20 , 1

60 , 31
60 , 71

60 ], r5 = [−1
20 , 1

60 , 9
20 , 5

4 ].
Case(5) γ = α− α3. We have

µγ(X + 1) = X4 + (t3 − t + 4)X3 + (3t3 + 3t2 − 3t + 5)X2 + (3t3 + 6t2 + 2)X + t3 + 3t2 + 2t + 1,

which is not a CNS polynomial by Lemma 5.8. The minimal polynomial of γ − 2 is

µγ(X+2) = X4+(t3−t+8)X3+(6t3+3t2−6t+23)X2+(12t3+12t2−9t+28)X+8t3+12t2−2t+13,

for which we can apply Theorem 2.3 with entry vectors:r1 = [−1
48 , 5

48 , 35
48 , 71

48 ], r2 = [ 1
16 , 5

48 , 35
48 , 71

48 ], r3 =
[−1
48 , 3

16 , 35
48 , 71

48 ], r4 = [−1
48 , 5

48 , 13
16 , 71

48 ], r5 = [−1
48 , 5

48 , 35
48 , 25

16 ]. Hence the polynomial is a CNS poly-
nomial.

Case(6) γ = α− t(t2 +1)α2 + t2α3. As kγ = M(γ)+2, thus the proof is obvious by Proposition
2.11.

Cases (7) and (8) can be verified by direct computation. ¤

Proof of Lemma 5.9.
Let

E = (E11 \ E12) ∪ (E21 \ E22) ∪ E33

where

E11 = {(−2, 0, 2), (2, 0,−2)} ∪ {(−2, 2, ε3), (2,−2, ε3), (−2, 1, ε3), (2,−1, ε3) | ε3 ∈ {−3, ..., 3}}∪
{(a,−a+ε1, a−ε1+ε2,−a+ε1−ε2+ε3) ∈ Z4 | |a| ≤ 4t+10, ε1 ∈ {−1, 0, 1}, ε2 ∈ {−2, ..., 2}, ε3 ∈ {−3, ..., 3}},

E12 = {(−4t− 10, 4t + 9,−4t− 10 + ε2, 4t + 10− ε2 + ε3) | ε2 ∈ {−1, 0, 1}, ε3 ∈ {−3, ..., 3}}∪
{(−4t− 10, 4t + 9,−4t− 8, 4t + 8 + ε4) | − 3 ≤ ε4 < −1},

E21 = {(3,−2, ε3), (−3, 2, ε3), (3,−3, ε3), (−3, 3, ε3), (−2, 3, ε3), (2,−3, ε3), (−1, 3, ε3), (1,−3, ε3)

| ε3 ∈ {−3, ..., 3}, |a| ≤ 4t + 10}

E22 = {(4t+10,−4t−8, 4t+8,−4t−10), (−4t−9, 4t+7,−4t−7, 4t+9), (−4t−10, 4t+8,−4t−8, 4t+10),

(−4t−10, 4t+8,−4t−7, 4t+7+ε3), (4t+10,−4t−7, 4t+5,−4t−5+ε3), (−4t−9, 4t+6,−4t−4, 4t+4+ε3),
(−4t−10, 4t+7,−4t−5, 4t+5+ε3), (−4t−9, 4t+6,−4t−3, 4t+3+ε3), (−4t−10, 4t+7,−4t−4, 4t+4+ε3),
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(4t + 10,−4t− 7, 4t + 4,−4t− 4 + ε3), (−4t− 10, 4t + 8,−4t− 5, 4t + 5 + ε3) | ε3 ∈ {−3, ..., 3}},

E33 = {(4t+11,−4t−10, 4t+8,−4t−6), (−4t−11, 4t+10,−4t−8, 4t+6), (4t+11,−4t−11, 4t+10,−4t−8),

(−4t−11, 4t+11,−4t−10, 4t+8), (4t+11,−4t−11, 4t+11,−4t−10), (4t+11,−4t−11, 4t+11,−4t−11),

(−4t− 11, 4t + 11,−4t− 11, 4t + 11), (−4t− 11, 4t + 11,−4t− 11, 4t + 10)}.
We shall show that the set E satisfies the prerequisites of Theorem 2.1 which implies that

P (X) ∈ C.

Let us suppose a = 1, ε1 = 1, ε2 = ε3 = 0, then (1, 0, 0, 0) is an element of E. It is clear that
−E ⊆ E.

Notice that for
e = (a,−a + ε1, a− ε1 + ε2,−a + ε1 − ε2 + ε3)

we have

τ(e)1 = −a− ε1 −
⌊

s

p0

⌋
,

where
s = t(ε2 − ε1) + 3ε1 + 7ε2 + ε3 − a.

Considering, that |ε2 − ε1| ≤ 6 and |a| ≤ 4t + 10 we can see that applying τ to e ∈ E we get the
following cases for the first component of τ(e):

a) −a− ε1 − 1 if 6t + 13 ≤ s < 12t + 26,
b) −a− ε1 if 0 ≤ s < 6t + 13,
c) −a− ε1 + 1 if −6t− 13 ≤ s < 0,
d) −a− ε1 + 2 if −12t− 26 ≤ s < −6t− 13.

From here on we prove that τ(E) ⊆ E by considering several cases.

Case 1 e ∈ E11

If ε1 = 1 and t > 16 then τ(e) ∈ E11, because s = t(ε2 − 1) + 3 + 7ε2 + ε3 − a ≤ 6t + 13, thus
only b), c), d) cases should be considered. |τ(e)1| > 4t + 10 if

(1) a = 4t + 10 and s ≥ 0
(2) a = −4t− 10 and s < −6t− 13

None of the cases occurs since if a = 4t + 10 then s ≤ −3t + 7 + ε3, and if a = −4t − 10 then
s ≥ t− 1 + ε3.

If ε1 = 0 and t > 13 and ε2 > −2 then s > −6t−13, thus a), b), c) cases are taken into account
and τ(e) ∈ E11. If ε2 = −2, then s = −2t− 14 + ε3 − a, and

τ(e) =





(−a, a,−a, a− 2) ∈ E11 a ≤ −2t− 14 + ε3,

(−a + 1, a,−a, a− 2) ∈ E11 −2t− 14 + ε3 < a ≤ 4t− 1 + ε3,

(−a + 2, a,−a, a− 2) ∈ E11 otherwise.

|τ(e)1| > 4t + 10 if
(1) a = 4t + 10 and s ≥ 6t + 13
(2) a = −4t− 10 and s < 0
(3) a ≤ −4t− 9 and s < −6t− 13
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Considering s = ε2t + 7ε2 + ε3 − a if a = 4t + 10 then s ≤ −2t + 4 + ε3, if a = −4t − 10 then
s ≥ 2t− 4 + ε3 and if a = −4t− 9 then s ≥ 2t− 5 + ε3. Hence |τ(e)1| ≤ 4t + 10.

If ε1 = −1, then s > −6t − 13 for t > 17. In case of a), b) τ(e) ∈ E11. If −6t − 13 ≤ s < 0,
then τ(e) = (−a + 2, a,−a− 1, a + 1 + ε2) ∈ E11.
|τ(e)1| > 4t + 10 if
(1) a = −4t− 10 and 0 ≤ s < 6t + 13
(2) a ≤ −4t− 9 and −6t− 13 ≤ s < 0

Considering s = t(ε2 + 1) − 3 + 7ε2 + ε3 − a, it is easy to see that the second case cannot occur
since if a ≤ −4t− 9 then s ≥ 3t− 7 + ε3. If a = −4t− 10 and ε2 = 2 or ε2 = 1 with ε3 ≥ −1 then
s ≥ 6t + 13, all the other elements are in E12.

If ε1 = −2 and ε2 = 2 and ε3 = {−3, .., 3}, then s = 4t + 8 + ε3 − a and

τ(e) =





(−a + 3, a,−a− 2, a + 4) ∈ E21 a > 4t + 8 + ε3,

(−a + 2, a,−a− 2, a + 4) ∈ E11 −2t− 5 + ε3 < a ≤ 4t + 8 + ε3,

(−a + 1, a,−a− 2, a + 4) ∈ E11 otherwise.

|τ(e)1| > 4t + 10 if
(1) a = −4t− 10 and 6t + 13 ≤ s
(2) a ≤ −4t− 9 and 0 ≤ s
(3) a ≤ −4t− 8 and −6t− 13 ≤ s

Substituting a ≤ −4t − 8 we get s ≥ 8t + 16 + ε3, hence |τ(e)1| > 4t + 10 only if the element is
e = (−4t−10, 4t+8,−4t−6, 4t+6+ε3). Calculating with the element we get the elements of E33,
such that τ(e) = (4t+11,−4t−10, 4t+8,−4t−6), τ2(e) = (−4t−10, 4t+11,−4t−10, 4t+8) ∈ E11.
Studying −e we get τ(−e) = (−4t−10, 4t+10,−4t−8, 4t+6) ∈ E11. The negative elements of the
path above are also in E33, τ(−4t−11, 4t+10,−4t−8, 4t+6) = (4t+11,−4t−11, 4t+10,−4t−8),
τ(4t + 11,−4t− 11, 4t + 10,−4t− 8) = (−4t− 10, 4t + 11,−4t− 11, 4t + 10) ∈ E11,
τ(−4t− 11, 4t + 11,−4t− 10, 4t + 8) = (4t + 11,−4t− 11, 4t + 11,−4t− 10),
τ(4t + 11,−4t− 11, 4t + 11,−4t− 10) = (−4t− 10, 4t + 11,−4t− 11, 4t + 11) ∈ E11,
τ(−4t− 11, 4t + 11,−4t− 11, 4t + 10) = (4t + 11,−4t− 11, 4t + 11,−4t− 11),
τ(4t + 11,−4t− 11, 4t + 11,−4t− 11) = (−4t− 10, 4t + 11,−4t− 11, 4t + 11) ∈ E11,
τ(−4t− 11, 4t + 11,−4t− 11, 4t + 11) = (4t + 11,−4t− 11, 4t + 11,−4t− 11).

If ε1 = 2 and ε2 = −2 and ε3 = {−3, .., 3}, then s = −4t− 8 + ε3 − a and

τ(e) =





(−a− 2, a,−a + 2, a− 4) ∈ E11 a ≤ −4t− 8 + ε3,

(−a− 1, a,−a + 2, a− 4) ∈ E11 −4t− 8 + ε3 < a ≤ 2t + 5 + ε3,

(−a, a,−a + 2, a− 4) ∈ E11 otherwise.

|τ(e)1| > 4t + 10 if
(1) a ≥ 4t + 9 and 0 ≤ s ≤ 6t + 13
(2) a = 4t + 10 and −6t− 13 ≤ s ≤ 0

Substituting a ≥ 4t + 9 we get s ≤ −8t− 17 + ε3, hence none of the cases occurs.

If ε1 = 2 and ε2 = 0 and ε3 = −2, then s = −2t + 4− a and

τ(e) =

{
(−a− 2, a,−a + 2, a− 2) ∈ E11 a ≤ −2t + 4,

(−a− 1, a,−a + 2, a− 2) ∈ E11 otherwise.

|τ(e)1| > 4t + 10 if
(1) a ≥ 4t + 9 and 0 ≤ s
(2) a = 4t + 10 and −6t− 13 ≤ s < 0
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Substituting a ≥ 4t + 9 we get s ≤ −6t− 5, but the element (4t + 10,−4t− 8, 4t + 8,−4t− 10) is
in E22.

If ε1 = −2 and ε2 = 0 and ε3 = 2, then s = 2t− 4− a and

τ(e) =

{
(−a + 2, a,−a− 2, a + 2) ∈ E11 a ≤ 2t− 4,

(−a + 3, a,−a− 2, a + 2) ∈ E21 otherwise.

|τ(e)1| > 4t + 10 if
(1) a ≤ −4t− 9 and 0 ≤ s
(2) a ≤ −4t− 8 and −6t− 13 ≤ s < 0

Substituting a ≤ −4t−8 we get s ≥ 6t+4, but the elements (a,−a−2, a+2,−a) where a ≤ −4t−9
are in E22.

If ε1 = 2 and ε2 = −1 and ε3 = {−3, .., 3}, then s = −3t− 1 + ε3 − a and

τ(e) =





(−a− 2, a,−a + 2, a− 3) ∈ E11 a ≤ −3t− 1 + ε3,

(−a− 1, a,−a + 2, a− 3) ∈ E11 −3t− 1 + ε3 < a ≤ 3t + 12 + ε3,

(−a, a,−a + 2, a− 3) ∈ E11 otherwise.

|τ(e)1| > 4t + 10 if
(1) a ≥ 4t + 9 and 0 ≤ s
(2) a = 4t + 10 and −6t− 13 ≤ s < 0

Substituting a ≥ 4t + 9 we get s ≤ −7t− 10 + ε3.

If ε1 = −2 and ε2 = 1 and ε3 = {−3, .., 3}, then s = 3t + 1 + ε3 − a and

τ(e) =





(−a + 1, a,−a− 2, a + 3) ∈ E11 a ≤ −3t− 12 + ε3,

(−a + 2, a,−a− 2, a + 3) ∈ E11 −3t− 12 + ε3 < a ≤ 3t + 1 + ε3,

(−a + 3, a,−a− 2, a + 3) ∈ E21 otherwise.

|τ(e)1| > 4t + 10 if
(1) a = −4t− 10 and 6t + 13 ≤ s
(2) a ≤ −4t− 9 and 0 ≤ s < 6t + 13
(3) a ≤ −4t− 8 and −6t− 13 ≤ s < 0

Substituting a ≤ −4t−8 we get s ≥ 7t+9+ε3, but the element (−4t−10, 4t+8,−4t−7, 4t+7+ε3)
is in E22.

Case 2 e ∈ E21

If ε1 = −1 and ε2 = 3 and ε3 = {−3, .., 3}, then s = 4t + 18 + ε3 − a and

τ(e) =

{
(−a, a,−a− 2, a + 5) ∈ E11 a ≤ −2t + 5 + ε3,

(−a + 1, a,−a− 2, a + 5) ∈ E11 otherwise.

|τ(e)1| > 4t + 10 if a = −4t− 10 and s < 6t + 13, but s = 8t + 28 + ε3.

If ε1 = 1 and ε2 = −3 and ε3 = {−3, .., 3}, then s = −4t− 18 + ε3 − a and

τ(e) =

{
(−a, a,−a + 1, a− 4) ∈ E11 a ≤ 2t− 5 + ε3,

(−a + 1, a,−a + 1, a− 4) ∈ E11 otherwise.

|τ(e)1| > 4t + 10 if a = −4t− 10 and s < −6t− 13, but s = −8 + ε3.
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If ε1 = 3 and ε2 = −2 and ε3 = {−3, .., 3}, then s = −5t− 5 + ε3 − a and

τ(e) =

{
(−a− 2, a,−a + 3, a− 5) ∈ E21 a ≤ t + 8 + ε3,

(−a− 1, a,−a + 3, a− 5) ∈ E21 otherwise.

|τ(e)1| > 4t + 10 if

(1) a ≥ 4t + 9 and −6t− 13 ≤ s ≤ 0
(2) a = 4t + 10 and s < −6t− 13

Substituting a ≥ 4t + 9 we get s < −9t− 14 + ε3, hence we should take only the second case into
account, but then the element is (4t + 10,−4t− 7, 4t + 5,−4t− 5 + ε3) that is in E22.

If ε1 = −3 and ε2 = 2 and ε3 = {−3, .., 3}, then s = 5t + 5 + ε3 − a and

τ(e) =

{
(−a + 3, a,−a− 3, a + 5) ∈ E21 a > −t− 8 + ε3,

(−a + 2, a,−a− 3, a + 5) ∈ E21 otherwise.

|τ(e)1| > 4t + 10 if

(1) a ≤ −4t− 9 and 6t + 13 ≤ s
(2) a ≤ −4t− 8 and 0 ≤ s < 6t + 13

Substituting a ≤ −4t− 8 we get s ≥ 9t + 13 + ε3, but the elements (a,−a− 3, a + 5,−a− 5 + ε3)
where a ≤ −4t− 9 are in E22.

If ε1 = −3 and ε2 = 3 and ε3 = {−3, .., 3}, then s = 6t + 12 + ε3 − a and

τ(e) =

{
(−a + 2, a,−a− 3, a + 6) ∈ E21 a ≤ −1 + ε3,

(−a + 3, a,−a− 3, a + 6) ∈ E21 otherwise.

|τ(e)1| > 4t + 10 if

(1) a ≤ −4t− 9 and 6t + 13 ≤ s
(2) a ≤ −4t− 8 and 0 ≤ s < 6t + 13

Substituting a ≤ −4t− 8 we get s ≥ 10t + 20 + ε3, but the elements (a,−a− 3, a + 6,−a− 6 + ε3)
where a ≤ −4t− 9 are not E22.

If ε1 = 3 and ε2 = −3 and ε3 = {−3, .., 3}, then s = −6t− 12 + ε3 − a and

τ(e) =

{
(−a− 2, a,−a + 3, a− 6) ∈ E21 a ≤ 1 + ε3,

(−a− 1, a,−a + 3, a− 6) ∈ E21 otherwise.

|τ(e)1| > 4t + 10 if

(1) a ≥ 4t + 9 and −6t− 13 ≤ s ≤ 0
(2) a = 4t + 10 and s < −6t− 13

Substituting a ≥ 4t+9 we get s ≤ −10t−21+ε3, but the element (4t+10,−4t−7, 4t+4,−4t−4+ε3)
is in E22.

If ε1 = −2 and ε2 = 3 and ε3 = {−3, .., 3}, then s = 5t + 15 + ε3 − a and

τ(e) =

{
(−a + 1, a,−a− 2, a + 5) ∈ E11 a ≤ −t + 2 + ε3,

(−a + 2, a,−a− 2, a + 5) ∈ E11 otherwise.

|τ(e)1| > 4t + 10 if

(1) a = −4t− 10 and 6t + 13 ≤ s
(2) a ≤ −4t− 9 and 0 ≤ s < 6t + 13
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Substituting a ≤ −4t− 9 we get s ≥ 9t + 24 + ε3, but the (−4t− 10, 4t + 8,−4t− 5, 4t + 5 + ε3)
element is in E22.

If ε1 = 2 and ε2 = −3 and ε3 = {−3, .., 3}, then s = −5t− 15 + ε3 − a and

τ(e) =

{
(−a− 1, a,−a + 2, a− 5) ∈ E11 a ≤ t− 2 + ε3,

(−a, a,−a + 2, a− 5) ∈ E11 otherwise.

|τ(e)1| > 4t + 10 only if a = 4t + 10 and s ≥ −6t − 13. Substituting a = 4t + 10 we get
s ≤ −9t− 25 + ε3.

Case 3 There are no images of elements of E in E12

(a,−a− 1, a + ε2,−a− ε2 + ε3) where ε2 ∈ {−1, 0, 1} and ε3 ∈ {−3, ..., 3} and a = −4t− 10.

(a,−a− 1, a + ε2,−a− ε2 + ε3) =

{
τ(−a− 1, a + ε2,−a− ε2 + ε3, a + ε2 − ε3 + ε4)
−(−a, a + 1,−a− ε2, a + ε2 − ε3).

In the first case s = t(ε3 − ε2) + 3ε2 + 7ε3 + ε4 − 3t− 12

τ(−a− 1, a + ε2,−a− ε2 + ε3, a + ε2 − ε3 + ε4)1 =





a + 2− ε2 0 ≤ s,

a + 3− ε2 −6t− 13 ≤ s < 0,

a + 4− ε2 s < −6t− 13.

Since ε2 < 3 the only case we can get a as a first coordinate, if ε2 = 2, but then s ≤ 0.
In the second case s = t(ε2 − ε3)− 3ε2 − 7ε3 − ε4 + 3t + 12

τ(a + 1,−a− ε2, a + ε2 − ε3,−a− ε2 + ε3 − ε4)1 =





−a− 3 + ε2 6t + 13 ≤ s,

−a− 2 + ε2 0 ≤ s < 6t + 13,

−a− 1 + ε2 s < 0.

Since ε2 < 3 we can get −a as a first coordinate, if ε2 = 1, but then s > 0 or ε2 = 2 and if ε3 ≥ 0.

Case 4 There are no images of elements of E in E22:
(a,−a + 3, a− 3 + ε2,−a + 3− ε2 + ε3) where ε2 ∈ {−2,−3} and ε3 ∈ {−3, ..., 3} and a = 4t + 10.

(a,−a+3, a−3+ε2,−a+3−ε2+ε3) =

{
τ(−a + 3, a− 3 + ε2,−a + 3− ε2 + ε3, a− 3 + ε2 − ε3 + ε4)
−(−a, a− 3,−a + 3− ε2, a− 3 + ε2 − ε3).

Hence s = t(ε3 − ε2) + 3ε2 + 7ε3 + ε4 + 4t + 7 and 3t− 20 + ε4 ≤ s ≤ 10t + 19 + ε4

τ(−a+3, a−3+ε2,−a+3−ε2+ε3, a−3+ε2−ε3+ε4)1 =

{
a− 3− ε2 − 1 6t + 13 ≤ s ≤ 12t + 26,

a− 3− ε2 0 ≤ s < 6t + 13.

Since ε2 6= 4, and even if ε2 = −3, then ε3 ∈ {−1,−2,−3} should happen, but there are no
elements with these properties in E.

In the second case s = t(−ε3 + ε2)− 3ε2 − 7ε3 − ε4 − 4t− 7,

τ(a−3,−a+3−ε2, a−3+ε2−ε3,−a+3−ε2+ε3−ε4)1 =

{
−a + 3 + ε2 + 1 −6t− 13 ≤ s ≤ 0,

−a + 3 + ε2 + 2 −12t− 26 ≤ s < −6t− 13.

Since ε2 > −4, none of the cases can occur.

(a,−a− 3, a + 3 + ε2,−a + 3− ε2 + ε3) where ε2 ∈ {2, 3} and ε3 ∈ {−3, ..., 3} and a ≤ −4t− 9.

(a,−a−3, a+3+ε2,−a−3−ε2+ε3) =

{
τ(−a− 3, a + 3 + ε2,−a− 3− ε2 + ε3, a + 3 + ε2 − ε3 + ε4)
−(−a, a + 3,−a− 3− ε2, a + 3 + ε2 − ε3).
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Since s = t(ε3 − ε2) + 3ε2 + 7ε3 + ε4 + a + 3 and −10t− 19 + ε4 ≤ s ≤ −3t + 21 + ε4

τ(−a−3, a+3+ε2,−a−3−ε2+ε3, a+3+ε2−ε3+ε4)1 =

{
a + 3− ε2 + 1 −6t− 13 ≤ s < 0,

a + 3− ε2 + 2 −12t− 26 ≤ s < −6t− 13.

Since ε2 < 4, none of the cases can occur.
In the second case s = t(−ε3 + ε2)− 3ε2 − 7ε3 + ε4 − a− 3,

τ(a+3,−a−3−ε2, a+3+ε2−ε3,−a−3−ε2+ε3−ε4)1 =

{
−a− 3 + ε2 − 1 6t + 13 ≤ s ≤ 12t + 26,

−a− 3 + ε2 0 ≤ s < 6t + 13.

Since ε2 6= 4, and even if ε2 = 3, then ε3 ∈ {1, 2, 3} should happen, but there are no elements with
these properties in E.

(a,−a−2, a+2+ε2,−a−2−ε2 +ε3) where ε2 ∈ {0, 1, 3} and ε3 ∈ {−3, ..., 3} and a ≤ −4t−9.

(a,−a−2, a+2+ε2,−a−2−ε2+ε3) =

{
τ(−a− 2, a + 2 + ε2,−a− 2− ε2 + ε3, a + 2 + ε2 − ε3 + ε4)
−(−a, a + 2,−a− 2− ε2, a + 2 + ε2 − ε3).

Since s = t(ε3 − ε2) + 3ε2 + 7ε3 + ε4 + a + 2 and −10t− 20 + ε4 ≤ s ≤ −t + 14 + ε4

τ(−a−2, a+2+ε2,−a−2−ε2+ε3, a+2+ε2−ε3+ε)1 =





a + 2− ε2, t = 17 0 ≤ s < 6t + 13,

a + 2− ε2 + 1 −6t− 13 ≤ s < 0,

a + 2− ε2 + 2 −12t− 26 ≤ s < −6t− 13.

Since ε2 6= 4 and ε2 6= 2, and if ε2 = 3, then ε3 ∈ {1, 2, 3} should be true, but there are no elements
with these properties in E.

In the second case s = t(−ε3 + ε2)− 3ε2 − 7ε3 + ε4 − a− 2,

τ(a+2,−a−2−ε2, a+2+ε2−ε3,−a−2−ε2+ε3−ε4)1 =

{
−a− 2 + ε2 − 1 6t + 13 ≤ s ≤ 12t + 26,

−a− 2 + ε2 0 ≤ s < 6t + 13.

Since ε2 6= 2, and even if ε2 = 3, then ε3 ∈ {0,−1,−2,−3} should happen, but there are no
elements with these properties in E.

(a,−a + 2, a− 2,−a) where a = 4t + 10.

(a,−a + 2, a− 2,−a) =

{
τ(−a + 2, a− 2,−a, a + ε3)
−(−a, a− 2,−a + 2, a).

In the first case s = 2t − 6 + ε3 and τ(−a + 2, a − 2,−a, a + ε3)1 = a − 2, in the second case
s = −2t + 6 + ε3 and τ(a− 2,−a + 2, a,−a + ε3)1 = −a + 3.

To prove that for every e ∈ E there exists some l > 0 with τ l(e) = 0 we show that applying the
mapping τ to any element e = (a,−a + ε1, a− ε1 + ε2,−a + ε1 − ε2 + ε3), where |a| ≤ 4t + 10 we
get a spiral. A spiral is a τ sequence of elements where the εi, i = 1, 2, 3 of the first and the last
elements are the same and the first coordinate of the last element is smaller in absolute value then
the one of first one. There is a spiral for any a ∈ [−4t− 10, 4t + 10] and εi. It means that once a
sequence arrives at a spiral then it will follow it and it will be decreasing in the first coordinate in
absolute value until it arrives at zero or it turns into another spiral.

There are 14 spirals:
• (a,−a−2, a+4,−a−5), (−a+3, a,−a−2, a+4), (a−5,−a+3, a,−a−2), (−a+7, a−5,−a+

3, a), (a−8,−a+7, a−5,−a+3), (−a+10, a−8,−a+7, a−5), (a−12,−a+10, a−8,−a+7)
• (a,−a + 2, a− 4,−a + 6), (−a− 1, a,−a + 2, a− 4), (a + 3,−a− 1, a,−a + 2), (−a− 5, a +

3,−a− 1, a), (a + 7,−a− 5, a + 3,−a− 1)
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• (a,−a+2, a−4,−a+6), (−a−1, a,−a+2, a−4), (a+2,−a−1, a,−a+2), (−a−3, a+2,−a−
1, a), (a+5,−a−3, a+2,−a−1), (−a−7, a+5,−a−3, a+2), (a+9,−a−7, a+5,−a−3)

• (a,−a + 1, a− 2,−a + 4), (−a− 1, a,−a + 1, a− 2), (a + 3,−a− 1, a,−a + 1), (−a− 4, a +
3,−a− 1, a), (a + 5,−a− 4, a + 3,−a− 1)

• (a,−a+1, a−2,−a+3), (−a, a,−a+1, a−2), (a+1,−a, a,−a+1), (−a−2, a+1,−a, a), (a+
3,−a− 2, a + 1,−a)

• (a,−a, a,−a), (−a+1, a,−a, a), (a−2,−a+1, a,−a), (−a+2, a−2,−a+1, a), (a−2,−a+
2, a− 2,−a + 1), (−a + 2, a− 2,−a + 2, a− 2)

• (a,−a, a,−a), (−a + 1, a,−a, a), (a− 1,−a + 1, a,−a), (−a + 1, a− 1,−a + 1, a), (a− 1−
a + 1, a− 1,−a + 1)

• (a,−a + 1, a− 2,−a + 3), (−a− 1, a,−a + 1, a− 2), (a + 2,−a− 1, a,−a + 1), where a < 0
• (a,−a, a+1,−a−2), (−a, a,−a, a+1), (a+1,−a, a,−a), (−a−2, a+1,−a, a), (a+3,−a−

2, a + 1,−a), (−a− 3, a + 3,−a− 2, a + 1)
• (a,−a, a,−a + 1), (−a + 1, a,−a, a), (a− 1,−a + 1, a,−a), (−a + 1, a− 1,−a + 1, a)
• (a,−a− 1, a + 2,−a− 2), (−a + 2, a,−a− 1, a + 2), (a− 3,−a + 2, a,−a− 1), (−a + 3, a−

3,−a + 2, a), (a− 2,−a + 3, a− 3,−a + 2), (−a + 1, a− 2,−a + 3, a− 3)
• (a,−a, a+1,−a−2), (−a, a,−a, a+1), (a,−a, a,−a), (−a+1, a,−a, a), (a−2,−a+1, a,−a), (−a+

3, a− 2,−a + 1, a), (a− 3,−a + 3, a− 2,−a + 1)
• (a,−a + 1, a− 2,−a + 3), (−a− 1, a,−a + 1, a− 2), (a + 3,−a− 1, a,−a + 1), (−a− 4, a +

3,−a− 1, a), (a + 5,−a− 4, a + 3,−a− 1), (−a− 5, a + 5,−a− 4, a + 3), (a + 6,−a− 5, a +
5,−a− 4), (−a− 7, a + 6,−a− 5, a + 5), (a + 8,−a− 7, a + 6,−a− 5)

• (a,−a+1, a−2,−a+4), (−a, a,−a+1, a−2), (a,−a, a,−a+1), (−a+1, a,−a, a), (a−2,−a+
1, a,−a), (−a+4, a−2,−a+1, a), (a−5,−a+4, a−2,−a+1), (−a+6, a−5,−a+4, a−2)

If ε1 = 1, then e = (a,−a + 1, a− 1 + ε2,−a + 1− ε2 + ε3).

τ(e) =





(−a− 1, a,−a + 1, a− 1 + ε2), 0 ≤ s < 6t + 13,

(−a, a,−a + 1, a− 1 + ε2), −6t− 13 ≤ s < 0
(−a + 1, a,−a + 1, a− 1 + ε2), −12t− 26 ≤ s < −6t− 13

In the first case a ≤ t(ε2 − 1) + 3 + 7ε2 + ε3, so a ≤ t + 17 + ε3.

τ2(e) =

{
(a + 2,−a− 1, a,−a + 1), 0 ≤ 2t + 5 + ε2 + a < 6t + 13,

(a + 3,−a− 1, a,−a + 1), −6t− 13 ≤ 2t + 5 + ε2 + a < 0

Considering the first case again, since −2t− 5− ε2 ≤ a ≤ t + 17 + ε3

τ3(e) =

{
(−a− 3, a + 2,−a− 1, a), 0 ≤ −2t− 5− a < 6t + 13,

(−a− 2, a + 2,−a− 1, a), −6t− 13 ≤ −2t− 5− a < 0

In the first case s = 2t + 6 + a, so −1 ≤ s ≤ 3t + 23 + ε3. If a = −2t − 7, then τ4(e) =
(a + 5,−a− 3, a + 2,−a− 1), otherwise (a + 4,−a− 3, a + 2,−a− 1), εi = (1,−1, 1). There is a
spiral starting with (a + 2,−a− 1, a,−a + 1), where εi = (1,−1, 1).

In a similar way we can find spirals for all other cases. ¤

References
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