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the last step being achieved through the use of Plancherel's Theorem for the Mellin
transform in the form

+ +

B P
|K(2+u)|dt jo
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Computational Methods For the Resolution of
Diophantine Equations

Attila Petho 1

1. Introduction

Recently, considerable progress was made in the practical resolution of large classes of
diophantine equations. Several authors worked out methods based on combinations of
results in the following fields.

1. Applications of lower bounds for linear forms in the logarithms of
algebraic numbers to establish effective upper bounds for the solutions of
large classes of diophantine equations.

2. New algorithms for the solution of diophantine approximation problems.

3. New algorithms in algebraic number theory.

The most important tool of the methods are the lower bounds for linear forms in the
logarithms as well as p—adic logarithms of algebraic numbers. Gelfond [21] proved a
bound in the complex case for two algebraic numbers. This was completely generalized
by Baker [1]. He himself [3] and [4], Waldschmidt [41] and recently Blass, Glass,
Munski, Meronk and Steiner [8], [9] gave improvements and refinements. From a
‘amputational point of view, the last three papers are the most important because the
i curring absolute constants are not too large.

Similarly to the complex case lower bounds for linear forms of p—adic logarithms of

aliebraic numbers were found. Schinzel [35] proved such a result for two numbers,

;Nuwnrch supported by Hungarian National Foundation for Scientific Research grant no.
ATLTS




478 A. Peths

Kaufman [24] obtained the general case. Van der Poorten [34] and Yu [40] gave the best

lower bounds, so far.

Using these results several authors found effective upper bounds for solutions of large
classes of diophantine problems. For references we refer to the books of Baker [5],
Gydry [22] and Shorey and Tijdeman [36]. These types of results make it theoretically
possible to find all solutions because one has to check only finitely many possibilitics,
But finitely many may be so many that a direct search is hopeless. As we shall see later
a typical upper bound is 1030 even in the most modest cases.

Baker and Davenport [6], Ellison [14] and Ellison ef al. [15] used continued fraction
expansion of suitable real numbers to reduce Baker's upper bound to a much smaller
one, and finally to solve some diophantine problems. Although Ellison [14] pointad
out that his method is applicable in higher dimensions too, and a lot of interesting
applications of Baker's method were found, only a little progress was made in (he

numerical resolution of diophantine problems.

The lattice basis reduction algorithm of Lenstra, Lenstra Jr. and Lovész [25] solves
multidimensional diophantine approximation problems. Several mathematiciuis
realized independently that this algorithm is applicable combined with Baker—type uppwi

bounds for the complete resolution of diophantine equations.

Baker and Davenport [6] determined all common terms in two second order e
recurrence sequences and so solved a system of Pell's equations. Pethd (27], [ 1]
computed all third and fifth powers in the Fibonacci sequence. These are the only Ciises
when forward searches were used to exclude large solutions. Ellison [14], Elligon of !
(15] and Steiner [37] solved third degree; Blass et al [7], Pethd and Schulenbery [ 111
Tzanakis and de Weger [39] and Zagier [46] solved fourth degree Thue equations 1
many of the above papers the results were used to find all integer points on el
curves. Gadl [18] described a method to solve third degree inhomogencous Thin
cquations. Gadl and Schulte [19] and Gail et al [20] computed all power biuses i

several third and fourth degree number fields by solving completely the correnpondiing

index form equations. Cherubini and Walliser [11] used the reduction method {0y (1l 4l
imaginary quadratic fields with class number one.
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P —adic linear form estimates and computer search were applied by Pethd (293, and
Petht and de Weger {33] and by de Weger (42] to find prime powers as well as products
of prime powers in second order linear recurrences. De Weger [43] solved § —unit
equations over £ and tested numerically the Oesterlé-Masser conjecture. Finally de
Weger [45] used the combination of complex and p—adic arguments to solve third

degree Thue-Mahler equations.

In this paper we describe the common ideas in the methods of the above papers. In
section 2 we give the outline of the method. Sections 3 and 4 deal with the general
components of the method; we cite the best known lower bound for lnear forms in the
logarithms of algebraic numbers, as well as the application of the lattice basis reduction
algorithm of Lenstra, Lenstra Jr, and Lovdsz [25] w the reduction of a large upper bound
for the solution of diophantine inequalities. The method of section 2 has two problem-
specific components, we illustrate them in section 5 on Thue equations. Finally, in

section 6, we report on a conjecture on the representation of one by cubic forms.

2. General Description of the Method

In the séquel we shall deal only with the classical complex case, for p—adic variants we
refer to the thesis of de Weger [44].

Let K be an algebraic number field of degree & over Q—the field of rational
numbers—and let G be the normal closure of K. Let 7. denote the ring of tegers
of K and a(l),...,a(k) denote the conjugates of ¢ e Kj’r{ Finally, let €...08 be
a system of independent units of ZK . With this notation the methods used in the

papers mentioned above can be divided into four steps.

1. Transformation of the original problem to finitely many unit equations of

Ly¥pc
o Y N 1
iyyt r ! f T
8(1 a(:) Scl,r) (r,r)
O I I 0 e L ] e | =1, o))
1 2
8(14') ; ey 9
1 r

where 154, f, ¢ <k, n,,m, € Zh=1,.,r)and 0y, &, are fixed elements from

i
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2. If NySN =max {|n,|,....In,]} <M =max{|m|,...Im,|}, then
taking the logarithm we get finitely many inequalities
8(li') e(ri)
nllog ——= |t B, 108~ [+ logal < clcxp(—czN % (2)

(q) q)
£, e,

c, are constants. If N > M, then we have to exchange the role of N and

where €1sCy

M.

Using a suitable effective lower bound for linear forms in the logarithms of algebraic

numbers compute an upper bound N 1 for N from (2).

3. Reduce N i iteratively until either the new bound will be smaller than N 0
or the iteration does not give a better bound. For the reduction, one can use numerical

diophantine approximation techniques.

4. Search for the actual solutions either solving (2) in the remaining range or

using specific properties of the original problem.

We remark that steps 1 and 4 depend strongly on the original problem, while the other
two steps can be done automatically.,

3. A Lower Bound For Linear Forms in the Logarithms of
Algebraic Numbers

The first general, non—trivial component in the method is the lower bound for linear
forms in the logarithms of algebraic numbers. In this section we cite the best known
general bound due to Blass et al [8]. We shall mention that until today most of the
applications used a weaker theorem of Waldschmidt [41].

Let o,...,0,, B, ..., B, be algebraic numbers with ,...,0, non-zero. Let

A=p,+ Blogo +..+ B,loga,

and D = [K: @], where K = Q(o, ..., By:++»Bu). Let A(er) be the absolute
logarithmic height of the algebraic number o. Define




480 A. Pethd

2. If NysN =max(ln,...[n,1}) <M =max(Im],....Im,1), then
taking the logarithm we get finitely many inequalities

8(i) (i)

Toog| = e - Tl | o e (<N ) 2
n, log @ |t n o T oga,|< ¢ exp(—c N ), )
€ €
1 r
where ¢,, ¢, are constants. If N2 M, then we have to exchange the role of N and
M.

Using a suitable effective lower bound for linear forms in the logarithms of algebraic
numbers compute an upper bound N , for N from (2).

3. Reduce N 1 iteratively until either the new bound will be smaller than N 0
or the iteration does not give a better bound. For the reduction, one can use numerical

diophantine approximation techniques.

4. Search for the actual solutions either solving (2) in the remaining range or
using specific properties of the original problem.

We remark that steps 1 and 4 depend strongly on the original problem, while the other
two steps can be done automatically,

3. A Lower Bound For Linear Forms in the Logarithms of
Algebraic Numbers

The first general, non—trivial component in the method is the lower bound for linear
forms in the logarithms of algebraic numbers. In this section we cite the best known
general bound due to Blass e al [8]. We shall mention that until today most of the
applications used a weaker theorem of Waldschmidt [41].

Let o,...,a,, B, ..., B, be algebraic numbers with Q,,...,0, non-zero. Let

A= [30-!- Bllog o +..+ B, loga,

and D = [K:Q], where K = @(ozl Lo BO, ...»B, ). Let h(e) be the absolute
logarithmic height of the algebraic number o.. Define
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prime number. Let E, =min{e 2qa) and M =22 q°nDV, _; E,) .

Finally, let

13— _
103(2 Vl)a ifn=D=1
%=1 n2m + Dlog| ~_ 1+ ntn + Dlogpt)+ log n, if D 22
"; log D i !
n2(n + 1)log On)+ n(n + 1)log (n!)+log n, ifD=1<n.

Theorem 1. (Blass et al [8]) If A#0, then

n+2 V]'“Vn —_
|Al> exp} ~C, (0D ————57(log M )W + C,(n))
(log £,)
where
20
&t n2* W24y 27, it n23
= 21
! 12 l2aely" 2" it n< 3
and

*

3— X,
Cz(n)= nin + 1}log@ V, )+ —-.

4. Reduction of the Large Upper Bound

Now let us turn our attention to step 3 of the algorithm of section 2. In the sequel we
assume that the left hand side of (2) does not vanish, o, # 1 and r 2 2. Dividing (2)
by log(e(;)/e(:lr )) we get



.8

Lyt td < e exp(c N ),

log|

where Sh =

The following lemma is the generalization of a lemma of Baker and Davenport [6]. For
the proof see Petho and Schulenberg [32].

Lemma 1. Let Ql,QzandQ3 be real numbers such that Q2,>_-1,
-1
0,>2 (¢ - 1)Q,+ 1). If there exists an integer g with

1$9< 0,0, @

H‘IS:HSQz(Qle)_”(r_D’ =1L 5)

—~1/(r=1)
HQQ +1| 2 - DE, +1)Q,

then (3) has no solutions n,...,n, € Z with

1
r/(r-1) .

log @, Q4¢5) =

<N £ Q3 , @)

log ¢y

where N = max{|n |,...,|n and ||x || denotes the distance of the real number x
1 r

1o the nearest integer.

If » =2 then the ¢—th denominator g, with ¢, < Q1Q3 <4, of the continued
fraction expansion of 8] solves (4) and (5) with Q, =1. In the general case one can
use the LLL lattice basis reduction algorithm of Lenstra, Lenstra Jr. and Lovész [25] or
its modified version by de Weger [43]. The following theorem is a reformulation of
Proposition (1.39) of Lenstra, Lenstra Jr. and Lovész [25].
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Theorem 2. Let b, =pe +.+p e+ qd, b,,....b, be an LLL-reduced
basis of the lattice spanned by the column vectors e, i=1,...,r - 1 whose i-th

coordinate is 1 all others 0 and by

r/4 I(r-1.T
-,_6 112 (QIQ3)_r ’ ) g

1" (e
r/4
Then q solves (4) and (5) with Q, = 2
The reduction procedure works in practice in the following way. Assume that we want
to solve (1) with N <M and N0 <N £ Nl’ where N1 is much larger than NO.

(i) Compute 81, eend 1,8 with the required (high) accuracy, see Pethd

r—=1""r+1

4 -1
and Schulenberg [32] Lemma 3. Put Q, = 2" and Q, = (0 Q;)r .

-1
(i) Put Q3 = Nlr and solve the diophantine approximation problem (4),
(5) using the LLL~reduction.

(iii) If (6) holds, then let S be the smallest value of Q1 with (4) and (5) and

ri(r=1
log (S Q,¢5)

t N, &
B e log ¢,

, otherwise let N 5 N i and terminate.

If the algorithm terminates at (iii) then, as Baker and Davenport [6] pointed out, the
solutions of (3) can be found by solving a linear diophantine equation. The occurrence

of this case was never reported in the literature.

De Weger [43] discussed the cases, when r =1 or o = 1 or when 81, “"5:— 7 ,Sr +
are linearly dependent over @. Tzanakis and de Weger [39] used another reduction
technique, which was also based on the LLL basis reduction algorithm. The key idea of

their reduction technique is, that small values of the linear form

n 8 4.4 n8 + 8 .1

correspond to short vectors of an appropriately defined lattice.
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5. Thue Equations

So far we focussed our attention on the general elements of the method from section 2.
In this section we shall describe, using the example of Thue equations, how to
transform them into finitely many unit equations, and how to find their “small”
solutions. Here, small means the magnitude of 10190, because the reduction procedure

of section 4 cannot give a better upper bound in this case.

Let F(x,y)= aox"c + alxk_ly +ot akyk € Z[x ,y ] be irreducible over
Q[x,y ), k=3 and 0# m e Z. The diophantine equation

Fx,y)=m @

is called a Thue equation. Thue [38] proved that (8) has finitely many solutions
x,y € Z. Baker [2] has given an effectively computable upper bound for
max{|x |,|y [}. In the transformation of (8) into finitely many unit equations we use
Baker's method, which was refined by Gyory and Papp [23].

5.1 Transformation of (8) to finitely many unit equations

Let B be aroot of F(x,1)and K = Q(B), then [K :Q]= k. To avoid technical
difficulties, we assume in the sequel that X is totally real. Letr =k - 1, and € be the
group generated by the multiplicatively independent units EloennEy of norm 1 of
ZK. Let |T ‘: max{'t(‘)|, 1<i < k}. Take

c4=max{log|él. s 15 Sr},

cg= gmax{logléj), 1},

_m
M—?.

The following lemma is easy to prove using the geometrical representation of X (sce
Gydtry and Papp [23]).

Lemma 2. There exists a finite set A < K with the following properties
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(D If x,y € Z is asolution of (8) then there exist Y € A and
byvoinb, & L with

b b
x— By =% 11...8r’, 9)
Uk Ty,
(i) Forall Y& -& Norm @(1)=M and O log| M <=
() (F)]
Let f =(L,..,k}andfixaue/!. Let Tujz B ~p ‘ for all j e/,

0< 1, < min{Tu.j,j el,j#uland?, =T, =max{'1‘u‘j,j el ) With

this notation it is casy to prove the following lemma.

Lemn(aa) | 3. Let)x’,y e d, y#0 be a solution of( )(8) with
“y | ) u
x-B yi<x-B yF for all j e I\u) and with ’x -B y!S'I‘u y!.
Then
E ! k
() |
k-8 || I (10)
j=1
Jru
1j(k=1) 1k
, 2 8¢
Further, if |y | > Y, = max T o , T, | also holds, then
1 1Y
; () ‘ P .
[x -B y§5(1+Tu,j)|yf, for all j et (11
canel
@ | 7,ly .
!x“ﬁ ¥ > Wué ‘ (12)

In the sequel denote by R the regulator of £, (9) and (11) imply
b

J! Gy ' gy !
|

LI -, 5(1+Tu)1y1

forall j € I'. Taking the logarithm we get

logJy 1 2 wrn%;B - log J;YMII(I +T ), (13)

f j ! )
where B = max {jblg,...,gb,j}‘ Nowfixa j € J\{u,q}, then
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@) (J) @) () @)
-B HYx-B ¥y)=B -B Yx-B y)

)

(@ () () (u)
@ -B dx-B y»)+@

(u (J)
holds. (Iqlging the conjugates of (9) and dividing the last equation by @ -B Ix
(c =B ) we get the required unit equation. This implies, from (10) and (12), that

r

b b
(u)_B(rn S0 €<11) ' e dey -k
@ @) @ | @ “ISTM ‘
B -B Y {51 Er
Now let
e(vj)
D ,ifl1€v<r

Ey@,9.7,=8, =1 ) @) )
B -B ¥ ifv =r +1

8c6 =
c7=log == +klog(}y |(1+Tu))

%= =
ric,
r!65 —
B~ =% (logY0+log(,'y }(1+ TN,

Then we have the following:

Theorem 2. Let x,y € Z be a solution of (8) and let Y€ A, bl,...,br el
defined by (9). If B = max{ibll,..., B, } = BO’ then there exist pairwise distinct

indices 1< u, q, j £k suchthat

0< < exp(c8 - cgﬂ ). (14)

bllog‘Sl‘ +..+ b, log\ﬁ, |+ logi 8 .1

The example of Thue equations shows that the method of section 2 is applicable for
polynomial diophantine equations, too. Furthermore, this is the only known general
method for the complete resolution of Thue equations. Although we must remark that




() @)
-BJ Mx Hqu)

(=) ()
onby @ -8 )x
' (10) and (12), that

r+1

A, bl,...,br e 7

Xist pairwise distinet

- cyB ). (14)

n 2 is applicable for
only known gencral

we must remark that
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the transformation is very redundant, Namely, Bombieri and Schmidt [10] proved that
the number of solutions of (8) is O (& ). Further, Everste and Gytry {17] proved that if
K andm arc fixed then there exist only finitely many inequivalent forms

Fx,y)e Z with splitting field X such that the number of solutions of (9) is larger
than 2.

2
In spite of this, the above described transformation yields O (k ) essentially different
unit equations because we have 10 choose two parameters k. and ¢ independently,
Hence most of the solutions of the lincar form inequalities (14) correspond, by (9),

either to the same solutions or do not give solutions of ().

To find the solutions of (8) with some hundred or thousand decimal digits there is a
much more economical method. Using it we have 10 solve only O {k) diophantine

approximation problems. We shatl describe it in the next section,

5.2 Continued fraction method for the computation of small
‘solutions of (8)

It is clear form the preceding section that (8) implies (14) only if max{|x |, ly I}, and
consequently B, is farge enough. Furthermore, the reduced upper bound for B implies
by (9} an upper bound for max{|x LIy} which is of magnitude from 10100 14
101000 To find the solutions of (8) up to such an upper bound one can use another
reduction technique based on the continued fraction expansion of the real roats of
Fix, 1

() '
Let we I befixedsuchthat B isreal and for 4 > 0 define the polynomial

. = Rl
Tl m
; = 1) i
1,¢) Q(yw 0= TR
J R
) . ) _
B =i o bl »«-.] will denole the simple continued fraction expansion of the irrational

number B, while ?'i the a—1h convergent to B. With this notation we have:
n

2
Theorem 3 [30]. Let Yo be a given real number, and (x .,y e 2 a solution of
the inequaliry

Fx,y)igm
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(u) (i)
with \x—B y S'x -B yl G =1,...,k), such that y# 0, x,y)=1and

Iyls Yor Let B(u) =[b0;b1,...,bv,...], where v is chosen so that q,_1> Yo
> = = it
Let w=z1, B O, bj., and let T =T ) be the smallest positive root of

(t). Then either
iV k}

1/(k -2)
1”‘[3 % 2)
3 )

We remark that in the reduction based on Theorem 3 we do not compute the exact value

H
m
&)

ly' Smin{yo,—]—}—
X

or v is a convergent to O.with

1

o2

4

of the denominators of the convergents, only the partial quotients. This observation

speeds up the method essentially.
5.3 Results

Using variants of the method described in the preceding sections Ellison et al [15],
Steiner [37] and Pethd and Schulenberg [32] solved several third degree Thue equations.
Gadl and Schulte [19] computed all power bases in totally real cubic fields with

discriminant at most 3137 solving also third degree Thue equations.

Petho and Schulenberg [32] and Tzanakis and de Weger [39] solved the following fourth
degree Thue equations:

Fx,y) m solutions (x ,y ) I
P 3y + 4x 2y 2 Sxy3 -y ! 1 (£1,0); (£2,+1)
1 | (041)
xt —ax 3y + Sxy3 - y4 1 (1,0
-1 (*2,£1); (0,+41)
x.4 + x3y - 3x 2y P ch3 - y4 1 (£1,0); (0,£1)
=l (#2,41); (#1.£2); (F1.£1);
(*1,+1)
2t oaxdy 1%t ayt 1 @10
o122y —gy eyt | 1 | @10y (L) @E1A3)
(#3,+1)
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6. Representation of One by Cubic Forms

Numerical methods are useful not only 10 solve completely diophantine equations but
also for finding solutions up 1o a prescribed large upper bound. Using the continued
fraction reduction of section 5.2 we computed (gf. Pethd {31]) the solutions with

41
ly|< 10 of approximately 3000 cquations of type

fa,y)=1,

where the discriminant Df of fx,y)= a’ + bxzy -+ cxy2+ a‘y3 e Z{x ,v]is

positive. A form with ¢ = d = 1 will be called reversible.

Two cubic forms f] x,y) fz(x .y)e Zix ,vy ] are called equivalent if there exist

integers 4,a,,8,,4, with aa, - azasé = 1 such that

fx,y)=flax +ay, ax +ay).

Summarizing the observations we conjecture the following connection between cubic

> 0 and the number of solutions N, of (1)

forms f (x ,y ) with Df ;

’ 0,1,20r 3, if / isnot equivalent to a reversible form
2,3, 4or 5, iff is equivalent to a reversible form
6, if D, =81,229,257,361, 7
N, =S !
f 7, none
8, none
if D =49,
.9, i . 49

Analogous results for cubic forms with negative discriminant were proved by Delone
i{12] and Nagell {26], see also Delone and Faddeev [131.
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