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1 Introduction

Buchmann and Pethő [5] observed that following algebraic integer

10 + 9α + 8α2 + 7α3 + 6α4 + 5α5 + 4α6,

with α7 = 3 is a unit. Since the coefficients form an arithmetic progressions
they have found a solution to the Diophantine equation

NK/Q(x0 + αx1 + · · ·+ x6α
6) = ±1, (1)

such that (x0, . . . , x6) ∈ Z7 is an arithmetic progression.

A full norm form equation is defined by

NK/Q(x0 + αx1 + · · ·+ xn−1α
n−1) = m, (2)

where α is an algebraic integer of degree n, K = Q(α), m ∈ Z and
(x0, x1, . . . , xn−1) ∈ Zn. It is well known that (2) admits infinitely many solu-
tions for infinitely many m [14]. This is already true for m = 1. On the other
hand Bérczes and Pethő [3] proved that (2) has only finitely many solutions
that form an arithmetic progression provided β := nαn

αn−1
− α

α−1
is an algebraic

number of degree at least 3. Moreover they showed that the solution found by
Buchmann and Pethő is the only solution to (1).

Bérczes and Pethő also considered arithmetic progressions arising from the
norm form equation (2), where α is a root of Xn− a, with n ≥ 3 and 2 ≤ a ≤
100 (see [2]).

Let fa ∈ Z[X], a ∈ Z be the family of simplest cubic polynomials

fa := X3 − (a− 1)X2 − (a + 2)X − 1.

Let α = αa be a root of fa and put K = Q(α). It follows from a result of
Lemmermeyer and Pethő [9] that the equation∣∣∣NK/Q(x0 + x1α + x2α

2)
∣∣∣ = |m| (3)

with |m| ≤ |2a + 1|, m ∈ Z has infinitely many solutions (x0, x1, x2) ∈ Z3

if and only if m is a cube of an integer or m = ±(2a + 1). By the above
mentioned result of Bérczes and Pethő [3] equation (3) has for every a ∈ Z
and |m| ≤ |2a+1|, m ∈ Z only finitely many solutions (x0, x1, x2) ∈ Z3, which
form an arithmetic progression.

(FWF) under project Nr. P18079-N12
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The aim of this paper is to describe completely those solutions, which form an
arithmetic progression. A solution (x0, x1, x2) ∈ Z3 of (3) is called primitive,
if gcd(x0, x1, x2) = 1. With this convention we prove the following theorem:

Theorem 1 Let α be a root of the polynomial fa, with a ∈ Z. Then the only
solutions to the norm form inequality∣∣∣NK/Q(x0 + x1α + x2α

2)
∣∣∣ ≤ |2a + 1| (4)

such that x0 < x1 < x2 is an arithmetic progression and (x1, x2, x3) is primitive
are either (x1, x2, x3) = (−2,−1, 0), (−1, 0, 1) and (0, 1, 2), or they are sporadic
solutions that are listed in table 1.

Table 1
Sporadic solutions to (4) with a ≥ 0.

a m x0 x1 x2 a m x0 x1 x2

1 3 −7 −2 3 1 3 −3 −1 1

1 −3 −7 −3 1 2 5 −97 −35 27

2 5 −36 −13 10 2 5 −27 −10 7

2 5 −19 −7 5 2 −5 −97 −36 25

2 −5 −35 −13 9 2 −5 −25 −9 7

2 −5 −14 −5 4 2 −5 −5 −2 1

2 1 −11 −4 3 2 −1 −8 −3 2

2 −1 −3 −1 1 3 1 −5 −2 1

3 1 −3 −1 1 4 9 −7 −2 3

4 9 −3 −1 1 4 −9 −7 −3 1

5 −1 −4 −1 2 7 −15 −5 −1 3

16 −33 −28 −3 22

In table 1 we only list solutions, where the parameter is non-negative. Fur-
thermore m denotes the value of the norm, i.e. NK/Q(x0 + x1α + x2α

2) = m.
Lemma 1 will show that it suffices to study the norm inequality (4) only for
a ≥ 0 ∈ Z. Moreover, Lemma 1 gives a correspondence between solutions for
a and −a− 1.

To prove the main Theorem 1 we transform (4) to a parametrized family
of Thue inequalities (5). From here on we follow essentially the line of [12].
Although there are a lot of parametrized families of Thue equations and in-
equalities, which were solved completely, our example (5) admits additional
difficulty, because the coefficient of both unknowns depend on α. Therefore we
need more precise information on the arithmetic of Z[α], especially we need
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a basis of its unit group. Fortunately this is known by the result of Thomas
[17].

The plan of the proof is as follows. First (Section 2) we show how our problem
is connected with a family of Thue inequalities. In order to solve this family
we have to do a lot of symbolic computations and we therefore need good
approximations to the roots of the relevant polynomial (7) (see Section 3).

The proof of the main Theorem 1 is split into four steps. The first step is to
find an upper bound a0 for the parameter a such that there are no further
solutions if a ≥ a0. This bound is found by an application of a variant of
Baker’s method combined with technical computations (see Sections 4 and
5). In particular we use linear forms in two logarithms and apply a powerful
theorem due to Laurent, Mignotte and Nesterenko [8].

The bound which is found in the previous step is too big to solve all remaining
Thue inequalities. We have to consider essentially two different cases (occur-
ring from the linear forms of logarithms used in Section 5). The first case is
treated in Section 6 by a method due to Mignotte [11]. For an application of
this method we have to reconsider the linear forms treated in Section 5.

The method of Baker and Davenport (see [1]) is used to take care of the other
case (see Section 7). In order to apply this method we have to use once again
Bakers method. This time we are faced with linear forms in three logarithms.
This linear forms will be estimated from below by a theorem due to Matveev
[10].

After the application of the methods of Baker, Davenport and Mignotte we
are left to solve 1000 Thue inequalities. This is done by PARI. For details see
Section 8.

2 Notations and Thue Equations

Let us prove first that we may assume a ≥ 0.

Lemma 1 Let α(a) denote a zero of fa(x) and put K(a) = Q(α(a)). Then

NK(a)/Q(x0 + x1α(a) + x2α(a)2) = m

holds if and only if

NK(−a−1)/Q(−x2 − x1α(−a− 1)− x0α(−a− 1)2) = −m.

In particular each solution to (4) for a yields a solution for −a− 1.
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Proof: It is easy to see that α(a) is a root of fa(x) if and only if 1
α(a)

is a root

of f−a−1(x). As NK(a)/Q(−α(a)) = −1 the assertion follows immediately.

�

Next, we want to transform the norm form inequality (4) into a Thue in-
equality. Since x0, x1, x2 form an arithmetic progression we may write x0 =
X − Y, x1 = X and x2 = X + Y . Using this notation in (4) we obtain∣∣∣NK/Q(X(1 + α + α2)− Y (1− α2))

∣∣∣ ≤ |2a + 1|.

Expanding the norm on the left side to a polynomial in X and Y we obtain
the Thue inequality∣∣∣(a2 + a + 7)X3 − (a2 + a + 7)XY 2 − (2a + 1)Y 3

∣∣∣ ≤ |2a + 1|. (5)

Since we have the restrictions x0 < x1 < x2 and (x0, x1, x2) is primitive, we
are only interested in solutions with Y ≥ 1 and (X, Y ) is primitive.

For the rest of this paper we will use the following notations: We denote by
fa ∈ Z[X] the Thomas polynomial, which is defined as follows:

fa(X) := X3 − (a− 1)X2 − (a + 2)X − 1.

Let α := α1 > α3 > α2 be the three distinct real roots of fa. Furthermore we
define γ := 1 + α + α2, δ := 1−α2 and ε := δ/γ and denote by γ1 := γ, γ2, γ3,
δ1 := δ, δ2, δ3 and ε1 := ε, ε2, ε3 their conjugates respectively. Moreover we
define Ga ∈ Z[X,Y ] and ga ∈ Z[X] by

Ga(X, Y ) :=(a2 + a + 7)X3 − (a2 + a + 7)XY 2 − (2a + 1)Y 3, (6)

ga(X) :=Ga(X, 1) = (a2 + a + 7)X3 − (a2 + a + 7)X − (2a + 1). (7)

Let us remark that ε1, ε2 and ε3 are exactly the roots of ga.

If (X, Y ) is a solution to (5) then we define β := Xγ − Y δ and we denote by
β1 := β, β2, β3 the conjugates of β. As one can easily see βi is an element of
the order Z[αi] for all i = 1, . . . , 3. In fact the orders Z[αi] are all the same
(see [15, 17, 18] or Section 4).

There are a lot of well known facts about the number fields K := Q(α), which
we will state in Section 4.

We will use the following variant of the usual O-notation: For two functions
g(t) and h(t) and a positive number t0 we will write g(t) = Lt0 (h(t)) if |g(t)| ≤
h(t) for all t with absolute value at least t0. We will use this notation in the
middle of an expression in the same way as it is usually done with the O-
notation. Sometimes we omit the index t0. This will happen only in theoretical
results, and it means that there exists a (computable) t0 with the desired
property.
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This L-notation will help us to state asymptotic results in a comfortable way.

3 Asymptotic expansions

Due to Thomas [17] we know that

α1 ∼ a, α2 ∼ −1, α3 ∼ −1/a.

We apply Newton‘s method to the polynomial fa with starting points a,−1
and 0. After 4 steps of Newton‘s method and an asymptotic expansion of the
resulting expressions we get

α̃1 :=a +
2

a
− 1

a2
− 3

a3
+

5

a4
' α1,

α̃2 :=− 1− 1

a
+

2

a3
− 1

a4
' α2,

α̃3 :=− 1

a
+

1

a2
+

1

a3
− 4

a4
' α3.

(8)

We consider the quantities −fa(α̃i + ei/a
5)fa(α̃i − ei/a

5) with e1 = 10, e2 = 8
and e3 = 18. These quantities are all positive provided that a ≥ 8, a ≥ 7 and
a ≥ 10 respectively, hence

α1 =a +
2

a
− 1

a2
− 3

a3
+

5

a4
+ L8

(
10

a5

)
,

α2 =− 1− 1

a
+

2

a3
− 1

a4
+ L7

(
8

a5

)
,

α3 =− 1

a
+

1

a2
+

1

a3
− 4

a4
+ L10

(
18

a5

)
.

(9)

Since α1 + α2 + α3 = a− 1 is an integer we also obtain

α3 = −1

a
+

1

a2
+

1

a3
− 4

a4
+ L8

(
18

a5

)
.

In order to keep the error terms low from now on we assume that a ≥ 1000.
Using these asymptotic expansions we obtain for the γ‘s

γ1 =a2 + a + 5− 3

a2
− 3

a3
+ L1000

(
36.037

a4

)
,

γ2 =1 +
1

a
+

1

a2
− 2

a3
− 3

a4
+ L1000

(
26.021

a5

)
,

γ3 =1− 1

a
+

2

a2
− 1

a3
− 5

a4
+ L1000

(
28.044

a5

)
,

(10)
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and similarly for the δ‘s

δ1 =− a2 − 3 +
2

t
+

2

a2
− 6

a3
+ L1000

(
31.027

a4

)
,

δ2 =− 2

a
− 1

a2
+

4

a3
+

2

a4
+ L1000

(
18.021

a5

)
,

δ3 =1− 1

a2
+

2

a3
+

1

a4
− 10

a5
+ L1000

(
43.045

a6

)
,

(11)

and for the ε‘s

ε1 =− 1 +
1

a
+

1

a2
− 4

a3
− 2

a4
+

22

a5
+ L1000

(
108.886

a6

)
,

ε2 =− 2

a
+

1

a2
+

5

a3
− 8

a4
+ L1000

(
67.81

a5

)
,

ε3 =1 +
1

a
− 2

a2
− 1

a3
+ L1000

(
36.385

a4

)
.

(12)

We will also use the asymptotic expansions of the logarithms of the α‘s. There-
fore we recall a simple fact from analysis: If |t| > |r| then

log |t + r| = log |t| −
N∑

i=1

(−r/t)i

i
+ L

(∣∣∣∣rt
∣∣∣∣N+1 1

N + 1
·
∣∣∣∣ t

t− r

∣∣∣∣
)

.

We have omitted the index t0 since this index depends on the L-Term of the
quantity r. Let us write

α =
=:t︷︸︸︷
a +

=:r︷ ︸︸ ︷
2

a
− 1

a2
− 3

a3
+

5

a4
+ L1000

(
10

a5

)
.

We can write similar expressions for α2 and α3, too. Using the above formula
we get

log |α1| = log a− 2

a2
+

1

a3
+

5

a4
− 7

a5
+ L1000

(
18.184

a6

)
,

log |α2| =− 1

a
+

1

2a2
+

5

3a3
− 11

4a4
+ L1000

(
11.035

a5

)
,

log |α3| =− log a +
1

a
− 3

2a2
+ L1000

(
3.514

a3

)
.

(13)

4 Auxiliary results

Let us recall first some well known facts about the number field K = Q(α),
where α is a root of the Thomas polynomial fa (these results can be found in
[9, 15, 17, 18]).
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Lemma 2 Let α be a root of the polynomial fa. Then we have the following
facts:

(1) The polynomials fa are irreducible for all a ∈ Z. Moreover all roots of fa

are real.
(2) The number fields K = Q(α) are cyclic Galois extensions of degree three

of Q for all a ∈ Z.
(3) The roots of fa are permuted by the map α 7→ −1− 1

α
.

(4) Any two of α1, α2, α3 form a fundamental system of units of the order
Z[α], where α1, α2, α3 denote the conjugates of α.

(5) Let a ≥ 0. If |NK/Q(γ)| ≤ 2a + 1 then γ is either associated to a rational
integer or associated to a conjugate of α− 1.

Proof: Proofs of these statements can be found in [15, 17, 18, 9] except state-
ment (5) in the case of a = 0 and a = 1. The case a = 0 is trivial. So let us
consider the case a = 1.

If γ fulfills |NK/Q(γ)| ≤ 3 and if γ is not a unit of Z[α] then (γ)|(2) or (γ)|(3).
According to [7, Chapter I, Proposition 25] we have (3) = p3

1 with p1 =
(α1 − 1) + (3) = (α1 − 1) and (2) = p2, where p1 and p2 are prime ideals.
Therefore γ is a multiple of α1− 1 or 2. Computing the norms yields that γ is
associated to α1−1 or is 0. Therefore we have proved the statement for a = 1.

�

Part (5) of Lemma 2 shows that we only have to consider algebraic integers,
that are associated to a rational integer or associated to a conjugate of α− 1.
Let us exclude the case that γ = nε with n 6= ±1 ∈ Z and ε ∈ Z[α]∗ and γ
yields a solution to (4). Since γ = x0 + x1α + x2α

2 with unique x0, x1, x2 ∈ Z,
also ε = x0

n
+ x1

n
α + x2

n
α2 yields a solution to (4) . Therefore n|x0, x1, x2.

However, (x0, x1, x2) is primitive, thus γ cannot be associated to a rational
integer 6= ±1.

We have to solve the Diophantine inequality (5), therefore we start to exclude
all small values of Y .

Lemma 3 Let (X,Y) be a solution to (5) such that Y = 1, then (X, Y ) only
yields solutions stated in Theorem 1.

Proof: We insert Y = 1 into (5) and obtain

|(a2 + a + 7)(X2 − 1)X − (2a + 1)| ≤ 2a + 1.

If we assume X ≥ 2, respectively X ≤ −2, then

6(a2 + a + 7)− (2a + 1) ≤ |(a2 + a + 7)(X2 − 1)X − (2a + 1)| ≤ 2a + 1
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yields a contradiction. Therefore |X| ≤ 1 and we only obtain solutions stated
in Theorem 1.

�

Now we investigate approximation properties of solutions (X, Y ) to (5). We
distinguish three types of solutions. We say that (X, Y ) is of type j, if∣∣∣∣XY − εj

∣∣∣∣ = min
i=1,2,3

(∣∣∣∣XY − εi

∣∣∣∣) .

A specific case j will be called by its roman number. Let us assume that (X, Y )
is a solution of type j. Then we have (remember βi = Xγi − Y δi)

2

∣∣∣∣∣βi

γi

∣∣∣∣∣ ≥
∣∣∣∣∣βi

γi

∣∣∣∣∣+
∣∣∣∣∣βj

γj

∣∣∣∣∣ = |X − Y εi|+ |X − Y εj| ≥ |Y ||εi − εj|.

Since |β1β2β3| ≤ 2a + 1 by the above inequality we obtain

|βj| ≤
2a + 1∏
i6=j |βi|

≤ 8a + 4

|Y |2∏i6=j |γi||εj − εi|

or equivalently ∣∣∣∣∣βj

γj

∣∣∣∣∣ ≤ 8a + 4

|Y |2|NK/Qγ|∏i6=j |εj − εi|
=:

c1

|Y |2
(14)

and we also get

sign(y)εj −
c1

|Y |3
≤ X

|Y |
≤ sign(y)εj +

c1

|Y |3
,

hence ∣∣∣∣∣βi

γi

∣∣∣∣∣ = |Y ||εj − εi|+ L

(
c1

Y 2
0

)
= |Y |

(
|εj − εi|+ L

(
c1

Y 3
0

))
, (15)

where Y0 is some lower bound for |Y |. Because of Lemma 3 we may assume
Y0 ≥ 2. Using the asymptotic expansions (9), (10), (11) and (12) we find

• c1 = 4
a

+ L1000

(
10.011

a2

)
if j = 1;

• c1 = 8
a

+ L1000

(
4.044

a2

)
if j = 2;

• c1 = 4
a

+ L1000

(
14.035

a2

)
if j = 3;

Now we can prove a new lower bound Y0 for |Y |.

Lemma 4 If a ≥ 1000 and (X, Y ) is a primitive solution to (5) such that
Y > 1 then Y ≥ a

3.01
.
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Proof: We have to distinguish between three cases j = 1, j = 2 and j = 3.
We find from (14) and (12):∣∣∣∣X − Y

(
−1 + L1000

(
1.002

a

))∣∣∣∣ ≤ 4.011

Y 2a
,∣∣∣∣X − Y L1000

(
2.002

a

)∣∣∣∣ ≤ 8.005

Y 2a
,∣∣∣∣X − Y

(
1 + L1000

(
1.003

a

))∣∣∣∣ ≤ 4.015

Y 2a
.

Some straightforward calculations yield

|X + Y | ≤ 4.011

Y 2a
+

Y 1.002

a
<

1.51Y

a
,

|X| ≤ 8.005

Y 2a
+

Y 2.002

a
<

3.01Y

a
,

|X − Y | ≤ 4.015

Y 2a
+

Y 1.003

a
<

1.51Y

a
.

We conclude that X + Y = 0, X − Y = 0 or X = 0 if Y < a
3.01

. But if
X + Y = 0, X − Y = 0 or X = 0 we get a contradiction, hence Y ≥ a

3.01
.

�

Let σ be the automorphism of K = Q(α) that is induced by α 7→ −1 − 1
α
.

Then we have αi = σi−1α. From part (5) of Lemma 2 we know that β is
either a unit, associated to a rational integer or associated to a conjugate of
α1 − 1. By the discussion after Lemma 2 we know that β is not associated to
a rational integer 6= 1. Furthermore α1 and α2 form a fundamental system of
units of the relevant order Z[α], hence the linear system

log |βi| = b1 log |σi−1α1|+ b2 log |σi−1α2|+ log |σi−1µ| i 6= j (16)

with µ associated to one of 1, α1 − 1, α2 − 1 or α3 − 1, has a unique integral
solution (b1, b2). Solving (16) by Cramer‘s rule we find

B := max{|b1|, |b2|} ≤ 2
maxi6=j |log |βi| − log |σi−1µ||maxi=1,2,3 |log |αi||

Reg(α1, α2)

:= max
i6=j

∣∣∣log |βi| − log |σi−1µ|
∣∣∣ c2

≤ log |Y |c2

1 +

∣∣∣∣∣∣∣
log

∣∣∣maxi6=j
|γi|

|σi−1µ|

(
|εj − εi|+ c1

Y 3
0

)∣∣∣
log Y0

∣∣∣∣∣∣∣


:= log |Y |c3

(17)

We will compute the quantity c3 in Section 5, when we have a better lower
bound Y0 ≤ Y .
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Now we will investigate Siegel‘s identity. Therefore choose i, k ∈ {1, 2, 3} such
that i, j, k are all pairwise distinct. We consider the quantity

βi

γi

(εj − εk) +
βj

γj

(εk − εi) +
βk

γk

(εi − εj) = 0.

Taking into account (14) and (15) we find after some manipulations that

∣∣∣∣∣∣
βj

γj

βi

γi

· εk − εi

εk − εj

∣∣∣∣∣∣ =
∣∣∣∣∣∣1−

βk

γk

βi

γi

· εj − εi

εj − εk

∣∣∣∣∣∣
≤ c1

|Y |2
·
∣∣∣∣∣ εk − εi

εk − εj

∣∣∣∣∣ · 1

|Y |(|εj − εi| − c1
Y 3
0
)

:=
c4

|Y |3
.

(18)

By the asymptotic expansions (9), (10), (11) and (12) together with the bounds
for c1 and Lemma 4, we see that for any choice of i, j, k except (i, j, k) =
(3, 2, 1) we have c4 ≤ 4.035a provided that a ≥ 1000. In the exceptional case
we get c4 ≤ 4.055a. Note that this exceptional case, will not occur in this
paper.

5 A first bound for the parameter

In this section we will derive a first upper bound for a such that (5) has no
primitive solution (X, Y ) with Y > 1. First we consider

Λi,j,k := log

∣∣∣∣∣∣
βk

γk

βi

γi

· εj − εi

εj − εk

∣∣∣∣∣∣
= log

∣∣∣∣∣ γi

γk

· εj − εi

εj − εk

∣∣∣∣∣+ b1 log

∣∣∣∣∣σk−1α

σi−1α

∣∣∣∣∣+ b2 log

∣∣∣∣∣σkα

σiα

∣∣∣∣∣+ log

∣∣∣∣∣σk−1µ

σi−1µ

∣∣∣∣∣ .
From Siegel‘s identity (18) and the fact that log |x| < 2|1 − x| provided that
|1− x| < 1/3 we obtain

|Λi,j,k| < 2

∣∣∣∣∣∣1−
βk

γk

βi

γi

· εj − εi

εj − εk

∣∣∣∣∣∣ ≤ 2c4

|Y |3
. (19)

Let θi,j,k := γi

γk
· εj−εi

εj−εk
. We want to write Λi,j,k as a linear combination of the

logarithms of θi,j,k
σk−1µ
σi−1µ

, α1 and α2. Therefore we have to distinguish between

11



several cases. In particular, we consider the three linear forms:

Λ1 :=B1 log |α1|+ B2 log |α2|+ log

∣∣∣∣∣θ3,1,2
σµ

σ2µ

∣∣∣∣∣ (i, j, k) = (3, 1, 2), (20)

Λ2 :=B1 log |α1|+ B2 log |α2|+ log

∣∣∣∣∣θ1,2,3
σ2µ

µ

∣∣∣∣∣ (i, j, k) = (1, 2, 3), (21)

Λ3 :=B1 log |α1|+ B2 log |α2|+ log

∣∣∣∣∣θ1,3,2
σµ

µ

∣∣∣∣∣ (i, j, k) = (1, 3, 2), (22)

where

B1 :=b1 − 2b2 B2 :=2b1 − b2 in case of Λ1,

B1 :=− 2b1 + b2 B2 :=− b1 − b2 in case of Λ2,

B1 :=b1 + b2 B2 :=− b1 + 2b2 in case of Λ3.

Let us find relations between B2 and B. These will be used in view of (17).
Below we will distinguish between the case of B1 = 0 and B1 6= 0. Let us
consider case I: Since B = max{|b1|, |b2|} we have trivially |B2| ≤ 3B. If we
assume B1 = 0 then we have b1 = 2b2 and therefore B = |b1|. Inserting this
relation in the equation for B2 we get B2 = 3

2
b1, hence |B2| = 3

2
B. The two

other cases are similar and the relations are given in table 2.

Table 2
Relations between B and |B2|.

Case I Case II Case III

B1 6= 0 |B2| ≤ 3B |B2| ≤ 2B |B2| ≤ 3B

B1 = 0 |B2| = 3
2B |B2| = 3

2B |B2| = B

We have to distinguish between 12 cases (three linear forms and for each linear
form four possible choices for µ). Since all 12 cases can be treated similarly, we
only consider the case of Λ1 and µ being associated to α2 − 1. We choose this
case because it is representative for most of the other cases. The computed
quantities for the other cases are presented in tables. To say that µ is associated
to some quantity α we use the notation µ ∼ α.

By (19) and (20) we find

|Λ1| =B1

(
log a− 2

a2
+

1

a3
+

5

a4
− 7

a5
+ L

(
18.18370123

a6

))
+ B2

(
−1

a
+

1

2a2
+

5

3a3
− 11

4a4
+ L

(
11.035

a5

))
+ log

∣∣∣∣∣θ3,1,2
σµ

σ2µ

∣∣∣∣∣
≤ c4

Y 3
≤ 220.1

a2
.

By this inequality we see that B2 has to be large with respect to B1, except
the main terms of B1 log |α1| and log |θ3,1,2σµ/σ2µ| cancel. We want to choose

12



µ such that a cancelation may only occur if B1 = 0. Since θ3,1,2 = log 2 + · · ·
we have to choose µ such that µ ∼ α2 − 1 and σµ/σ2µ = O(1). With this
constraints we choose µ = (α2 − 1)α1. The other choices for µ are given in
table 3.

Table 3
Choices for µ.

µ ∼ 1 µ ∼ α1 − 1 µ ∼ α2 − 1 µ ∼ α3 − 1

Case I 1 α1 − 1 (α2 − 1)α1
α3−1

α1

Case II α1
α1−1

α2

(α2−1)α1

α3
(α3 − 1)α1

Case III 1
α3

(α1 − 1)α1
α2−1

α3

(α3−1)α2

α3

Now we distinguish between two further cases: B1 = 0 and B1 6= 0. In the
case of B1 = 0 we have

|Λ1| = B2

(
−1

a
+

1

2a2
+

5

3a3
− 11

4a4
+ L

(
11.035

a5

))
+

log 2− 5

a
− 2

a2
+ L

(
162.8341694

a3

)
= L

(
220.1

a2

)
.

Solving this equation for B2, we obtain

B2 = a log 2 +
log 2

2
− 5 + L

(
233.7804338

a

)
. (23)

In the case of B1 6= 0 we similarly determine the quantity

B2

B1

= a log a +
log a

2
+

a log 2 + log 2
2
− 5

B1

+ L

(
46.920379 · log a

a

)
. (24)

The results obtained in the other cases are listed in table 4.

Looking at table 4 we see that in the case of B1 = 0 two different phenomena
occur. In the cases I (µ ∼ α3 − 1), II (µ ∼ 1), II (µ ∼ α1 − 1), II (µ ∼ α2 − 1)
and III (µ ∼ α2 − 1) the quantity B2 is of the form constant plus some error
term, while in the other cases B2 is constant times log a plus lower terms. We
are interested in the former cases. In case I (µ ∼ α3−1), II (µ ∼ α2−1) and III
(µ ∼ α2 − 1) B2 cannot be an integer if a ≥ 500. However, by definition B2 is
an integer, so we have a contradiction. In the cases of II (µ ∼ 1) respectively II
(µ ∼ α1− 1) we have B2 = 1 respectively B2 = 5 provided a ≥ 500. Therefore
we have the following two linear systems:

−2b1 + b2 = 0,

−b1 − b2 = 1,
and

−2b1 + b2 = 0,

−b1 − b2 = 5.

13



Table 4
The quantities B2 and B2/B1.

Case I µ ∼ 1 B2 = a log 2 + log 2
2 − 1 + L

(
233.5726034

a

)
B2
B1

= a log a + log a
2 + a log 2+ log 2

2
−1

B1
+ L

(
46.89029255·log a

a

)
µ ∼ α1 − 1 B2 = a log 4 + log 2− 1

2 + L
(

243.5541701
a

)
B2
B1

= a log a + log a
2 + a log 4+log 2− 1

2
B1

+ L
(

48.33527238·log a
a

)
µ ∼ α2 − 1 B2 = a log 2 + log 2

2 − 5 + L
(

233.7804338
a

)
B2
B1

= a log a + log a
2 + a log 2+ log 2

2
−5

B1
+ L

(
46.920379·log a

a

)
µ ∼ α3 − 1 B2 = −1

2 + L
(

223.5783003
a

)
B2
B1

= a log a + log a
2 − 1

2B1
+ L

(
45.44346894·log a

a

)
Case II µ ∼ 1 B2 = 5 + L

(
225.5761744

a

)
B2
B1

= a log a + log a
2 + 5

B1
+ L

(
45.7326909·log a

a

)
µ ∼ α1 − 1 B2 = 1 + L

(
221.7360355

a

)
B2
B1

= a log a + log a
2 + 1

B1
+ L

(
45.17677378·log a

a

)
µ ∼ α2 − 1 B2 = 15

2 + L
(

231.7758252
a

)
B2
B1

= a log a + log a
2 + 15

2B1
+ L

(
46.63018224·log a

a

)
µ ∼ α3 − 1 B2 = a log 4 + log 2 + 9

2 + L
(

248.3704756
a

)
B2
B1

= a log a + log a
2 + a log 4+log 2+ 9

2
B1

+ L
(

49.03250394·log a
a

)
Case III µ ∼ 1 B2 = a log 2 + log 2

2 + 4 + L
(

237.8513408
a

)
B2
B1

= a log a + log a
2 + a log 2+ log 2

2
+4

B1
+ L

(
47.50970317·log a

a

)
µ ∼ α1 − 1 B2 = a log 4 + log 2 + 1

2 + L
(

244.3001410
a

)
B2
B1

= a log a + log a
2 + a log 4+log 2+ 1

2
B1

+ L
(

48.44326264·log a
a

)
µ ∼ α2 − 1 B2 = 7

2 + L
(

227.3839598
a

)
B2
B1

= a log a + log a
2 + 7

2B1
+ L

(
45.99439458·log a

a

)
µ ∼ α3 − 1 B2 = a log 2 + log 2

2 + 8 + L
(

242.3186056
a

)
B2
B1

= a log a + log a
2 + a log 2+ log 2

2
+8

B1
+ L

(
48.15640604·log a

a

)

Solving these systems we find b1 = −1/3, b2 = −2/3 and b1 = −5/3, b2 =
−10/3. By definition b1 and b2 have to be integers, hence we have again a
contradiction. Therefore we may exclude the cases I (µ ∼ α3 − 1), II (µ ∼ 1),
II (µ ∼ α1 − 1), II (µ ∼ α2 − 1) and III (µ ∼ α2 − 1), if we assume B1 = 0.

Next, we want to estimate the quantity c3 and find a lower bound for log Y .

14



From (23) and (24) we find

B2 = a log 2 +
log 2

2
− 5 + L

(
233.781

a

)
≥ 0.6883a (25)

|B2| = |B1|
(
a log a +

log a

2

)
+ a log 2 +

log 2

2
− 5+L

(
46.921 · log a

a

)
≥ 6.223a,

(26)

respectively. Let us estimate the quantity c2. From (17) and (13) we find
c2 ≤ 2.0006

log a
. Now we are ready to estimate the quantity c3. Put

c̃ := 1 +

∣∣∣∣∣∣
log

∣∣∣maxi6=j
|γi|
|σiµ|

(
|εj − εi|+ c1

|Y0|3
)∣∣∣

log |Y0|

∣∣∣∣∣∣ .
Using Lemma 3 together with the asymptotic expansions from Section 3 we
obtain

c̃ ≤ 1 +
0.5826

log a
− 0.8405

a log a
+ L

(
52.376

a3 log a

)
and from the bound for c2 we find

c3 ≤
2.006

log a
+

1.1655

(log a)2
− 1.682

a(log a)2
+ L

(
104.782

a3(log a)2

)
≤ 2.169079894

log a
.

Since we have lower bounds for B2, hence also for B, and upper bounds for
c3, using table 2 and inequality (17) we find that:

log Y ≥ 1.4612a if B1 = 0,

log Y ≥ 6.6053a if B1 6= 0.

Computing again c3 using this time instead of Lemma 3 the new bounds found
for log Y we get “better” results. Iterating this procedure four times yields:

c3 ≤
2.00148

log a
and log Y ≥ 1.5836a if B1 = 0, respectively

c3 ≤
2.0008

log a
and log Y ≥ 7.1609a if B1 6= 0.

The bounds for c3 and log Y that are obtained in the other cases are listed in
table 5 and table 6.

In the next step we use a powerful theorem on lower bounds for linear forms
in two logarithms due to Laurent, Mignotte, and Nesterenko [8].

Lemma 5 Let α1 and α2 be two multiplicatively independent elements in a
number field of degree D over Q. For i = 1 and i = 2, let log αi be any
determination of the logarithm of αi, and let Ai > 1 be a real number satisfying

log Ai ≥ max{h(αi), | log αi|/D, 1/D},

15



Table 5
Upper bounds for c3.

c3 ≤ µ ∼ 1 µ ∼ α1 − 1 µ ∼ α2 − 1 µ ∼ α3 − 1

Case I B1 = 0 2.001471859
log a

2.001035919
log a

2.001474401
log a �

B1 6= 0 2.000794053
log a

2.000818748
log a

2.000793370
log a

2.002338185
log a

Case II B1 = 0 � � � 2.009226921
log a

B1 6= 0 2.001760135
log a

2.001759126
log a

2.000705217
log a

2.001890017
log a

Case III B1 = 0 2.019731368
log a

2.001472020
log a � 2.019611578

log a

B1 6= 0 2.002728648
log a

2.000818944
log a

2.002339951
log a

2.002730579
log a

Table 6
Lower bounds for log Y .

log Y ≥ µ ∼ 1 µ ∼ α1 − 1 µ ∼ α2 − 1 µ ∼ α3 − 1

Case I B1 = 0 1.5928a 3.1902a 1.5836a �

B1 6= 0 7.1563a 6.3575a 7.1609a 7.9477a

Case II B1 = 0 � � � 1.6026a

B1 6= 0 11.915a 11.922a 13.112a 10.717a

Case III B1 = 0 0.7949a 1.5959a � 0.8a

B1 6= 0 7.1436a 6.3564a 7.9431a 7.1390a

where h(αi) denotes the absolute logarithmic Weil height of αi. Further, let b1

and b2 be two positive integers. Define

b′ =
b1

D log A2

+
b2

D log A1

and log b = max
{
log b′, 21/D,

1

2

}
.

Then

|b2 log α2 − b1 log α1| ≥ exp
(
−30.9D4(log b)2 log A1 log A2

)
.

Before we apply this result we have to compute some heights:

Lemma 6 Let h denote the absolute logarithmic Weil height, then

h(α1) = h(α2) = h(α3) ≤
log a

3
(27)

and

h

(
θ3,1,2

σµ

σ2µ

)
≤ 4 log a

3
+

log 2

3
− 1

3a
+

3

a2
+

190.047

a3
(a ≥ 1000), (28)

16



where µ = (α2 − 1)α1. The estimations for H := h
(
θi,j,k

σk−1µ
σi−1µ

)
in the other

cases are given in table 7.

Table 7
Estimations for the absolute logarithmic Weil height H := h

(
θi,j,k.

σk−1µ
σi−1µ

)
Case I µ ∼ 1 H ≤ 4 log a

3 + log 2
3 + 1

3a + 5
3a2 + 90.0595

a3

µ ∼ α1 − 1 H ≤ 4 log a
3 + log 8

3 − 1
3a + 9

4a2 + 83.3557
a3

µ ∼ α2 − 1 H ≤ 4 log a
3 + log 2

3 − 1
3a + 3

a2 + 190.0466
a3

µ ∼ α3 − 1 H ≤ 4 log a
3 + log 4

3 − 4
3a + 35

12a2 + 146.3174
a3

Case II µ ∼ 1 H ≤ log a + log 2
3 + 14.6473

a2

µ ∼ α1 − 1 H ≤ 5 log a
3 + log 8

3 − 1
a + 23

12a2 + 187.7049
a3

µ ∼ α2 − 1 H ≤ 4 log a
3 + 7

6a + 39
8a2 + 301.579

a3

µ ∼ α3 − 1 H ≤ 5 log a
3 + log 4

3 + 1
2t + 37

24a2 + 120.6103
a3

Case III µ ∼ 1 H ≤ log a + 4
3a + 10

3a2 + 92.4204
a3

µ ∼ α1 − 1 H ≤ 4 log a
3 + log 8

3 − 5
3a + 35

12a2 + 97.6092
a3

µ ∼ α2 − 1 H ≤ 5 log a
3 + 5

3a + 17
6a2 + 101.7132

a3

µ ∼ α3 − 1 H ≤ 5 log a
3 + log 4

3 + 5
3a + 25

12a2 + 232.4536
a3

Proof: We start with the proof of (27). Since α1, α2, α3 are conjugate, we only
have to check the last inequality.

h(α1) =
1

3

 ∑
i=1,2,3

max(0, log |αi|)

 =

1

3

(
log a− 1

a
− 3

2a2
+

8

3a3
+ L

(
2.27

a4

))
≤ log a

3
,

therefore we obtain the first part of the lemma.

Since θ3,1,2 and σµ
σ2µ

are not integers in general we also have to compute their
denominators, which can be estimated by

∆θ :=NK/Q (γ1(ε2 − ε1)) = a2 + 2a− 13 respectively,

∆µ :=NK/Q(α2 − 1) = 2a + 1.

With this preliminary result we obtain

h

(
θ3,1,2

σµ

σ2µ

)
≤ 1

3

log(∆θ∆µ) +
∑

j=1,2,3

max

(
0, log

∣∣∣∣∣σj

(
θ3,1,2

σµ

σ2µ

)∣∣∣∣∣
) =

4 log a

3
+

log 2

3
− 1

3a
+

3

a2
+ L

(
190.047

a3

)
�
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Now we apply Lemma 5 to the linear form (20). We distinguish between the
case of B1 = 0 and B1 6= 0. In the case of B1 = 0 we can apply Lemma 5 at
once. In the notation of Lemma 5 we have

b′ =
1

log a
+

B2

4 log a + log 2− 1
a

+ 9
a2 + 570.141

a3

≤ 1

log a
+

a log 2 + log 2
2
− 5 + 233.781

a

4 log a + log 2− 1
a

+ 9
a2 + 570.141

a3

≤ a

log a
0.16898

Inserting the various bounds we obtain

log |Λ1| >− 834.3(log a− log log a− 1.778)2 log a

×
(

4 log a

3
+

log 2

3
− 1

3a
+

3

a2
+

190.047

a3

)
.

On the other hand we have from (19)

log |Λ1| < log
2c4

Y 3
< log(8.07a)− 0.99926

×
(
a log 2 +

log 2

2
− 5− 233.781

a

)
log a.

Comparing the upper and lower bound for log |Λ1| yields a contradiction for
large a. In particular, if a ≥ 2529022.366 we have a contradiction. Since a has
to be an integer we know that we may have solutions with |Y | ≥ 2 only if
a ≤ a0 := 2529022.

Now we investigate the case B1 6= 0. In this case we do not have a linear form
in two logarithms. But we can study the linear form

Λ1 = log

(
αB1

1 θ3,1,2
σµ

σ2µ

)
+ B2 log α2.

Since h(xy) ≤ h(x)+h(y) we have h
(
αB1

1 θ3,1,2
σµ
σ2µ

)
≤ |B1|h(α1)+h

(
θ3,1,2

σµ
σ2µ

)
and because of Lemma 6 we choose

b′ =
1

log a
+

|B2|
|B1| log a + 4 log a + log 2− 1

a
+ 9

a2 + 570.141
a3

≤ 1

log a
+

|B2|
|B1| log a

≤ 1

log a
+

a log a + log a
2

+ a log 2 + log 2
2
− 5 + 46.921·log a

a

log a
≤ 1.10037a
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By Lemma 5 we find

log |Λ1| >− 834.3(log a + 0.0957)2 log a

×
(
|B1| log a

3
+

4 log a

3
+

log 2

3
− 1

3a
+

3

a2
+

190.05

a3

)

≥− 834.3(log a + 0.0957)2 log a|B2|
|B1|
|B2|

×
(

5 log a

3
+

log 2

3
− 1

3a
+

3

a2
+

190.05

a3

)

>− 834.3
(log a + 0.0957)2 log a|B2|

(
5
3
log a + log 2

3
− 1

3a
+ 3

a2 + 190.05
a3

)
a log a + log a

2
− a log 2− log 2

2
+ 5− 46.921·log a

a

On the other hand

log |Λ1| < log 2c4 − 3 log Y ≤ log 8.07 + log a− 3B

c3

≤|B2|
(

log 8.07 + log a

B2

− 1

c3

)

≤|B2|
(

log 8.07 + log a

a log a + log a
2
− a log 2− log 2

2
+ 5− 46.921·log a

a

− log a

2.000793370

)

If we compare these bounds for log |Λ1| we see that |B2| cancels, and we obtain
an inequality which cannot hold for a ≥ 521855.0066. That is, if there is a
solution not found yet for this case, then a ≤ a0 := 521855.

In table 8 one finds the other upper bounds a0 of the parameter a for the
remaining cases.

Table 8
Upper bounds a0 for the parameter a.

µ ∼ 1 µ ∼ α1 − 1 µ ∼ α2 − 1 µ ∼ α3 − 1

Case I B1 = 0 a0 = 2532736 a0 = 1226494 a0 = 2529022 �

B1 6= 0 a0 = 521904 a0 = 579982 a0 = 521855 a0 = 487789

Case II B1 = 0 � � � a0 = 3259385

B1 6= 0 a0 = 229399 a0 = 377086 a0 = 270366 a0 = 405414

Case III B1 = 0 a0 = 4655030 a0 = 3059080 � a0 = 8157825

B1 6= 0 a0 = 397229 a0 = 579994 a0 = 590044 a0 = 651927

By table 8 we have:

Proposition 1 There are no other solutions to (4) than those listed in The-
orem 1 if a > 8157825.
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6 The method of Mignotte

In this section we want to eliminate the case of B1 = 0. We have already
discussed the cases I (µ ∼ α3 − 1), II (µ ∼ 1), II (µ ∼ α1 − 1), II (µ ∼ α2 − 1)
and III (µ ∼ α2 − 1). We know that B2 has to be an integer therefore let us
compute B2 to a higher asymptotic order (in the remaining cases):

B2 =a log 2− 2− log 2

2
− 54− 23 log 2

12a
+ L

(
9.4241

a2
+ 8.075a e−4.7784a

)
case I (µ ∼ 1)

B2 =a log 4− 1− log 4

2
− 135− 46 log 2

24a
+ L

(
8.528

a2
+ 8.075a e−9.5706a

)
case I (µ ∼ α1 − 1)

B2 =a log 2− 10− log 2

2
− 54− 23 log 2

12a
+ L

(
11.4221

a2
+ 8.075a e−4.7508a

)
case I (µ ∼ α2 − 1)

B2 =a log 2 +
11 + log 2

2
− 27− 46 log 2

24a
+ L

(
24.2511

a2
+ 8.075a e−4.8078a

)
case II (µ ∼ α3 − 1)

B2 =a log 2 +
8 + log 2

2
− 54− 23 log 2

12a
+ L

(
13.9461

a2
+ 8.075a e−2.3847a

)
case III (µ ∼ 1)

B2 =a log 4 +
1 + log 4

2
− 135− 46 log 2

24a
+ L

(
14.1731

a2
+ 8.075a e−4.7877a

)
case III (µ ∼ α1 − 1)

B2 =a log 2 +
16− log 2

2
− 54− 23 log 2

12a
+ L

(
15.9481

a2
+ 8.075a e−2.4a

)
case III (µ ∼ α3 − 1)

Since B2 has to be an integer, for each case we have a criteria wether there
exists a solution such that B1 = 0 for one specific a. For example, the case I
(µ ∼ α2 − 1) yields following criteria:

Lemma 7 Let ‖ · ‖ denote the distance to the nearest integer. If (4) has a
solution, which is not found yet, that coresponds to the case I (µ ∼ α2 − 1)
such that B1 = 0, then∥∥∥∥∥a log 2− 10− log 2

2
− 54− 23 log 2

12a

∥∥∥∥∥ ≤ 11.4221

a2
+ 8.075ae−4.7508a.

The other cases yield similar criteria. Therefore, in the case of B1 = 0 and
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I (µ ∼ 1), I (µ ∼ α1 − 1), I (µ ∼ α2 − 1), II (µ ∼ α3 − 1), III (µ ∼ 1), III
(µ ∼ α1 − 1) or III (µ ∼ α3 − 1) we check for each 1000 ≤ a ≤ a0 wether
the corresponding criteria is fulfilled or not. A computation in MAGMA (see
Section 8) yields:

Proposition 2 If (X, Y ) is a solution to (5) with Y ≥ 1 which yields a
solution to (4) that is not listed in Theorem 1, then a ≤ 651957. Moreover the
solution (X, Y ) yields B1 6= 0 or a < 1000.

Remark 1 This method is called Mignotte‘s method, because Mignotte [11]
used a similar trick to solve the family of Thue equations

X3 − (n− 1)X2Y − (n + 2)XY 2 − Y 3 = 1

completely.

7 The method of Baker and Davenport

We cannot use the method described above to solve the case of B1 6= 0,
because we have found an upper bound for the quantity B2

B1
but not for B2

itself, which would be essential. So we are forced to use another method. We
choose the method of Baker and Davenport [1]. In particular we adapt a lemma
of Mignotte, Pethő and Roth [12] to our needs.

In order to use the method of Baker and Davenport, we have to find an absolute
lower bound for B2. Therefore we have to revise the linear forms Λ1, Λ2 and Λ3.
This time we do not consider them as linear combinations of two logarithms
but as three logarithms. So we cannot use the theorem of Laurent, Mignotte
and Nesterenko [8] and have to apply a result of Matveev [10]:

Lemma 8 Denote by α1, . . . , αn algebraic numbers, not 0 or 1, by
log α1, . . . , log αn determinations of their logarithms, by D the degree over Q
of the number field K = Q(α1, . . . , αn), and by b1, . . . , bn rational integers.
Furthermore let κ = 1 if K is real and κ = 2 otherwise. Define

log Ai = max{Dh(αi), | log αi|} (1 ≤ i ≤ n),

where h(α) denotes the absolute logarithmic Weil height of α and

B∗ = max{1, max{|bj|Aj/An : 1 ≤ j ≤ n}}.

Assume that bn 6= 0 and log α1, . . . , log αn are linearly independent over Z;
then

log |Λ| ≥ −C(n)C0W0D
2Ω,
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with

Ω = log(A1) · · · log(An),

C(n) = C(n, κ) =
16

n!κ
en(2n + 1 + 2κ)(n + 2)(4(n + 1))n+1

(
1

2
en
)κ

,

C0 = log
(
e4.4n+7n5.5D2 log(eD)

)
, W0 = log(1.5eB∗D log(eD)).

We already have computed all relevant heights in Lemma 6 respectively ta-
ble 7. We combine Siegel‘s identity (18) with Matveev‘s lower bound (Lemma
8) and obtain for our standard case I (µ ∼ α2 − 1):

|B2| log a

2.000793370
− log 8.07− log a <

1.691497·1011(log a)2

(
4 log a

3
+

log 2

3
− 1

3a
+

3

a2
+

190.047

a3

)
log(2.26688|B2|).

(29)

The only not straightforward step is to compute B∗. Therefore let us rearrange
the terms of Λj such that the term θi,j,k

σk−1µ
σi−1µ

is the last one. Since in any case

|B2| > |B1| and |B2| > a ≥ 1000 we have B∗ = |B2| log a
4 log a+log 2+··· ≤

|B2|
4

. The

inequality (29) yields a contradiction if |B2| is large, i.e. |B2| ≥ c5, where c5

is some quantity depending on a. In view of an absolute lower bound for |B2|
the “worst” case occurs, if a is as large as possible. Therefore we insert a0

instead of a into the inequality above and by solving this inequality we obtain
|B2| > 8.93 · 1015. The lower bounds for |B2| in the other cases can be found
in table 9.

Table 9
Absolute lower bounds for |B2|
|B2| > µ ∼ 1 µ ∼ α1 − 1 µ ∼ α2 − 1 µ ∼ α3 − 1

Case I 8.92 · 1015 9.31 · 1015 8.92 · 1015 8.95 · 1015

Case II 3.88 · 1015 7.12 · 1015 5.22 · 1015 7.13 · 1015

Case III 6.33 · 1015 9.31 · 1015 1.12 · 1016 1.16 · 1016

Now we find by the method of Baker and Davenport [1] criteria for which
there are no solutions.

Lemma 9 Suppose 1000 ≤ a ≤ a0 and put

δ1 :=
log

∣∣∣θi,j,k
σk−1µ
σi−1µ

∣∣∣
log |α2|

and δ2 :=
log |α1|
log |α2|

,

where i and k are chosen according to (20), (21) and (22). Further let δ̃1 and
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δ̃2 be rationals such that

|δ1 − δ̃1| < 10−60 and |δ2 − δ̃2| < 10−60

and assume there exists a convergent p/q in the continued fraction expansion
of δ2, with q ≤ 1030 and

q‖qδ̃1‖ > 1.0001 +
c6

a log a
,

then there is no solution for the case corresponding to j, µ and B1 6= 0. The
quantities c6 are listed in table 10.

Table 10
Absolute lower bounds for |B2|
c6 = µ ∼ 1 µ ∼ α1 − 1 µ ∼ α2 − 1 µ ∼ α3 − 1

Case I 1.9831 · 1016 2.329 · 1016 1.9818 · 1016 1.7907 · 1016

Case II 7.7806 · 1015 1.425 · 1016 9.5035 · 1015 1.5862 · 1016

Case III 1.4082 · 1016 2.2395 · 1016 2.2459 · 1016 2.5916 · 1016

Proof: We give the details for our standard case I (µ ∼ α2 − 1). The other
cases are similar.

Assume that there is a solution corresponding to case I (µ ∼ α2−1) such that
B1 6= 1. From (19) we have

|δ1 + B1δ2 + B2| ≤
2c4

|Y0|3 log |α2|
≤ 8.075a2

exp(21.4827a)
< 10−1000.

Multiplication by q yields

|qδ̃1 + q(δ1 − δ̃1) + B1(δ̃2q − p) + B1q(δ2 − δ̃2) + B1p + B2q| < 10−970

and therefore

‖qδ̃1‖ < 10−970 + q10−60 + |B1||δ̃2q − p|+ |B1|q10−60.

By another multiplication with q we get

q‖qδ̃1‖ <10−940 + q210−60 + |B1|q|δ̃2q − p|+ |B1|q210−60

<1 + 10−940 + 2|B1|.

Table 4 and table 9 together with some estimations yield

q‖qδ̃1‖ < 1.0001 +
2|B2|

0.8989002219a log a
< 1.0001 +

1.9818 · 1016

a log a
.

�
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Using Lemma 9 we find:

Proposition 3 There are no primitive solutions (X, Y ) to (5) with Y > 1,
provided a ≥ 1000.

Proof: In each case and each µ from table 3 we check by computer for each
value of a in question whether the criteria given in Lemma 9 is fulfilled or not.
Combining the result of this computer search with Proposition 2 we obtain
the statement of the proposition. For more details on the implementation see
Section 8.

�

By part (5) of Lemma 2 and Proposition 3 it is left to solve the Thue equations

X3(a2 + a + 7)−XY 2(a2 + a + 7)− Y 3(2a + 1) = ±1,

X3(a2 + a + 7)−XY 2(a2 + a + 7)− Y 3(2a + 1) = ±(2a + 1),

for 0 ≤ a ≤ 999. Solving these 3996 Thue equations with PARI yields no
further solution. Therefore we have proved our main Theorem 1.

8 Computer Search

The computations needed to prove Proposition 2 via Lemma 7 and to prove
Proposition 3 via Lemma 9 were implemented in MAGMA. The running times
on an Intel Xeon PIII 700MHz processor are collected in table 11.

Finally, we have solved the corresponding equations in the case 0 ≤ a ≤ 999
both in MAGMA and in PARI. For references concerning the computer algebra
packages used in this work see [4], [16] and [13].

Table 11
Running times in seconds.

µ ∼ 1 µ ∼ α1 − 1 µ ∼ α2 − 1 µ ∼ α3 − 1

Case I B1 = 0 4891 2363 4884 �

B1 6= 0 5372 6020 5405 4879

Case II B1 = 0 � � � 6279

B1 6= 0 2276 3764 2793 4192

Case III B1 = 0 8972 6097 � 15741

B1 6= 0 4889 6627 5908 6766
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[9] F. Lemmermeyer and A. Pethő. Simplest cubic fields. Manuscripta Math.,
88(1):53–58, 1995.

[10] E. M. Matveev. An explicit lower bound for a homogeneous rational
linear form in logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk
Ser. Mat., 64(6):125–180, 2000.

[11] M. Mignotte. Verification of a conjecture of E. Thomas. J. Number
Theory, 44(2):172–177, 1993.

[12] M. Mignotte, A. Pethő, and R. Roth. Complete solutions of a family of
quartic Thue and index form equations. Math. Comp., 65(213):341–354,
1996.

[13] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter,
and J. McCarron. Maple 6 Programming Guide. Waterloo Maple Inc.,
Waterloo, Canada, 2000.

[14] W. M. Schmidt. Diophantine approximation, volume 785 of Lecture Notes
in Mathematics. Springer, Berlin, 1980.

[15] D. Shanks. The simplest cubic fields. Math. Comp., 28:1137–1152, 1974.
[16] The PARI Group, Bordeaux. PARI/GP, version 2.1.5, 2004. available

from http://pari.math.u-bordeaux.fr/.
[17] E. Thomas. Fundamental units for orders in certain cubic number fields.

J. Reine Angew. Math., 310:33–55, 1979.
[18] E. Thomas. Complete solutions to a family of cubic Diophantine equa-

tions. J. Number Theory, 34(2):235–250, 1990.

25


