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Abstract
For a fixed λ ∈ (−2, 2), we study a family of discretized rotation on Z

2

defined by
(x, y) �→ (y, −�x + λy�).

We prove that this reversible dynamics has infinitely many periodic orbits.

Mathematics Subject Classification: 37E99, 37A45, 37P35

(Some figures may appear in colour only in the online journal)

1. Introduction

Space discretization of dynamical systems has attracted considerable interest from researchers
[6, 9, 18, 24, 27]. One motivation is to understand the distance between the original dynamics
and its computer simulation through a discretized model. In this paper, we are interested in
discretized planar rotation. It is a very simple system, but yet we know surprisingly little about
this discretized system. We start with a conjecture studied by many authors, for example,
in [11, 20, 25] and from the point of view of a shift radix system in [1].

Conjecture . For all fixed −2 < λ < 2, all integer sequences (an) defined by

0 � an+2 + λan+1 + an < 1 (1)

with the initial value (a0, a1) ∈ Z
2 are periodic.

For (x, y) = (an, an+1), we have

(an+1, an+2) = (y, −�x + λy�),
0951-7715/13/030871+10$33.00 © 2013 IOP Publishing Ltd & London Mathematical Society Printed in the UK & the USA 871
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and it defines a map F : (x, y) �→ (y, −�x + λy�) on Z
2. In other words, we are interested in

the dynamics F on Z
2:(

x

y

)
�→

(
0 1

−1 −λ

) (
x

y

)
+

(
0

〈λy〉
)

, (2)

where 〈x〉 = x −�x�. Since the eigenvalues of the matrix are two conjugate complex numbers
of modulus one, this dynamics can be regarded as a rotation with invariant confocal ellipses,
acting on the lattice Z

2. After the rotation of angle θ with λ = −2 cos θ , we translate by a
small vector to make the image lie in Z

2. An affine equivalent formulation using Euclidean
rotation is found in the next section. From the shape of the inequality in (1), the dynamics (2)
is reversible, i.e. F(x, y) = (y, z) implies F(z, y) = (y, x). Thus we have φF−1 = Fφ with
φ(x, y) = (y, x) and F is a bijection on Z

2. In other words, F is a composition of the two
involutions Fφ and φ.

The conjecture is supported by numerical experiments [1, 24]. It is also expected
from a heuristic perspective: the cumulation of errors of Fn from the exact nθ rotation
is expected to be small and it is seemingly impossible to avoid hitting the same lattice
points. The cumulative error bound is discussed in [18, 26]. However this problem is
notorious, and our knowledge is limited. We only know that conjecture 1 holds for 11 values
λ = 0, ±1, (±1 ± √

5)/2, ±√
2, ±√

3, see [1, 2, 20]. Apart from three trivial cases 0, ±1,
the proof is highly non-trivial and uses the self-inducing structure found in the associated
planar piecewise isometry when θ/π is rational and λ is quadratic. If θ/π is rational, then
we can embed the problem into piecewise isometry acting on a certain higher dimensional
torus (see [17, 20], and also [4, 5] for a connection to digital filters). Piecewise isometries have
zero entropy [12], but we know little about their periodic orbits [14]. It is noteworthy that
a certain piecewise isometry generated by 7-fold rotation in the plane is governed by several
self-inducing structures [3, 15, 19], but it is irrelevant to the map F . If λ is a rational number
whose denominator is the power of a prime, then the dynamics is understood as the composition
of p-adic rotation and symbolic shift in [10], but it seems difficult to extract information on
periodic orbits through this embedding. At this stage, we are interested in giving a non-trivial
general statement for this dynamics. In this paper, we will show

Theorem 1. For all fixed λ ∈ (−2, 2) there are infinitely many periodic orbits of the dynamics
(2) on Z

2.

More precisely, we prove that there are infinitely many symmetric periodic orbits (see
section 3 for the definition). See corollary 3 in section 6, for a qualitative statement.
Theorem 1 is new for all λ except the above 11 values, and gives another support of the
conjecture. Note that the idea of observing symmetric periodic orbits dates back to Birkhoff,
who showed the existence of infinitely many symmetric periodic orbits for the restricted three
body problem [7, 8], whose dynamics is composed of two involutions.

Adding a counting technique of lattice points in number theory, we can generalize theorem
1 to the sequences generated by

−η � an+2 + λan+1 + an < 1 − η

for a fixed η ∈ R, as in section 6, theorem 2. It covers a significant class of discretized
rotations, but we do not know how large this two parameter family is within the set of all
invertible discretized rotations in Z

2, up to conjugacy.
We say that p = p(x, y) > 0 is the period of (F n(x, y))n∈Z, if it is the smallest positive

integer p with Fp(x, y) = (x, y). If there is no such p, then p(x, y) is not defined. It is
remarkable that the distribution of periodic orbits drastically changes if θ/π is irrational or
rational. We have:
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Lemma 1. Let θ/π be irrational and p be a positive integer. Then there are only finitely many
periodic orbits of period p.

This fact follows from theorem 2.1 of [24] but we give a quick proof in section 5. On
the other hand, if θ/π is rational, in view of the above torus embedding, it is natural to obtain
infinitely many periodic orbits of period p, which fall into the same period cell. Theorem 4.3
in [1] gives a concrete example of infinite periodic orbits of period p for θ = (1 − 1/p)π with
an odd prime p.

By theorem 1 and lemma 1, we know that there exist arbitrary large periods if θ/π is
irrational. We expect the same to hold for all λ 	= 0, ±1, but there are proofs only for the
above eight quadratic cases.

2. Setting and strategy

Let λ = −2 cos θ where θ is a real number in (0, π) and let Q =
(− sin θ cos θ

0 1

)
. Our

transformation on Z
2 : (x, y) �→ (X, Y ) is written as(

X

Y

)
=

(
0 1

−1 −λ

) (
x

y

)
+

(
0
µ

)
with µ ∈ [0, 1). Since

Q

(
cos θ − sin θ

sin θ cos θ

)
Q−1 =

(
0 1

−1 −λ

)
,

we view this algorithm as

Q−1

(
X

Y

)
=

(
cos θ − sin θ

sin θ cos θ

)
Q−1

(
x

y

)
+ Q−1

(
0
µ

)
. (3)

Thus, it is the dynamics acting on the lattice L =
(− csc θ

0

)
Z +

(
cot θ

1

)
Z written as the

composition of the Euclidean rotation of angle θ followed by a small translation

v �→ v + µ

(
cot θ

1

)
with µ ∈ [0, 1). Let R be a positive real number and B(R) be a ball of radius R centred at the
origin. Define a trap region T (R) by

T (R) =
{

x + y

(
cot θ

1

) ∣∣∣∣ x ∈ B(R), y ∈ [0, 1)

}
\ B(R).

The situation is demonstrated in figure 1.
Now we explain the strategy of the proof. It is clear from the description of the dynamics

that every unbounded orbit starting from a point in L ∩ B(R) must visit at least once the trap
region T (R). Assume that there are only finitely many periodic orbits of (3). Since we are
dealing with dynamics on the lattice L, periodicity of an orbit is equivalent to its boundedness.
We argue by contradiction: the assumption that there are just a finite number of periodic orbits
would imply that, for R � 1, the number of lattice points in T (R) are strictly less than the
number of symmetric unbounded orbits starting from B(R), which is impossible.

3. Lower bound of unbounded orbits

Symmetric periodic orbits of time-reversal dynamics have been studied for a long time. We
shall make use of a well-known property. Let (an) be a bi-infinite integer sequence and b be
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q

T (R) 

B (R) 

Figure 1. Trap region.

an integer. We say that (an) is periodic, if an+b = an holds for all n. The sequence (an) is
symmetric at b/2, if ab−n = an holds for all n, and it is doubly symmetric if it is symmetric at
b1/2 and b2/2 with b1 	= b2.

Lemma 2. If a sequence is doubly symmetric then it is periodic. Moreover symmetric and
periodic sequences are doubly symmetric.

Proof. Assume that (an) is symmetric at b1 and b2 with b1 	= b2. Then an+b2−b1 = ab1−n = an.
Let (an) be periodic of period b and symmetric at c. Then ac−b−n = an+b = an. �

In fact, this lemma is a restatement of theorems 1 and 2 in [13], where symmetric periodic
orbits of time reversal dynamics composed of two involutions are studied. The reader can find
precise description on such periodic orbits there.

Let (x, y) ∈ Z
2. To the bi-infinite orbit (F n(x, y))n∈Z we can associate uniquely the

bi-infinite sequence (an) consisting of the 1st coordinates of the elements of the orbit. It is
clear that (F n(x, y)) is periodic if and only if (an) is periodic. Hereafter we identify the orbit
(F n(x, y)) and the bi-infinite sequence (an) and say that an orbit (F n(x, y)) is symmetric if
(an) is so. Assume that (an) is symmetric at b/2. If b is odd, then a(b−1)/2 = a(b+1)/2 and the
orbit is of the form:

. . . , c3, c2, c1, X, X, c1, c2, c3, . . .

with some X ∈ Z and a sequence (cn) ⊂ Z. Clearly (cn) is determined by X. Such orbits are
in Fix(φ), the set of orbits fixed by the involution φ. If b is even, then ab/2−1 = ab/2+1 and the
orbit is of the form

. . . , c3, c2, c1, X, Y, X, c1, c2, c3, . . .
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for some X, Y ∈ Z and (cn) ⊂ Z. Of course (cn) is determined by X and Y . These orbits
belong to Fix(Fφ), the set fixed by the other involution Fφ. By lemma 2, each periodic orbit
of (F n(x, y)) is doubly symmetric. It belongs to the same fix point set if the period is even,
and to a different fix point sets if the period is odd.

Remark 1. Not all orbits are symmetric. For example, if λ = (1 +
√

5)/2 then we have

(−1, 4) → (4, −6) → (−6, 5) → (5, −3) → (−3, −1) → (−1, 4).

We do not know a way to estimate the number of asymmetric orbits from below.

By our assumption of reductio ad absurdum, there exist only a finite number, say C1, of
periodic orbits. For any R, the number of points in L ∩ B(R) whose orbits are periodic is less
than C1.

3.1. Unbounded orbits in Fix(φ)

Let (an) be an unbounded orbit in Fix(φ). By lemma 2, (an) cannot be doubly symmetric,
which implies that two orbits starting from different fixed points in L never intersect. Apart
from a finite number of exceptions, points of the form

X

(− csc θ

0

)
+ X

(
cot θ

1

)
∈ L ∩ B(R)

generate distinct unbounded orbits. From

X2 (− csc θ + cot θ)2 + X2 � R2,

we conclude that there are at least 2R cos(θ/2)−C1 unbounded orbits in Fix(φ) starting from
L ∩ B(R).

3.2. Unbounded orbits in Fix(Fφ)

Similarly, by lemma 2, (an) cannot be doubly symmetric. So, by (1), our task is to count the
number of the pairs (X, Y ) which satisfy

0 � X + λY + X < 1 (4)

and

X

(− csc θ

0

)
+ Y

(
cot θ

1

)
∈ B(R). (5)

For this computation, we substitute the inequality (4) by

− 1 � X + λY + X < 1 (6)

and count the number of pairs (X, Y ) satisfying (6) and (5). It is clear that for a fixed Y , there
is a unique X which satisfies (6). Since X = Y cos θ + ε with |ε| � 1/2, we have

(Y cot θ − X csc θ)2 + Y 2 = Y 2 +
ε2

sin2 θ
� R2 (7)

from (5), and we have at least 2R − C2 such points with a non-negative constant C2.
If λ is irrational, then there is no (X, Y ) 	= (0, 0) which satisfies either

−1 = 2X + λY or 0 = 2X + λY.

Using the symmetry (X, Y ) ↔ (−X, −Y ), we see that the number of (X, Y ) with (5) and

−1 � X + λY + X < 0
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is exactly one less than the number of (X, Y ) with (4) and (5), which counts the origin. Thus
the number of (X, Y ) having (4) and (5) is at least R − C2/2.

If λ is rational, then we additionally have to take care of the points (X, Y ) on the line
−1 = 2X + λY and 0 = 2X + λY . However we can easily show that the number of (X, Y )

with (5) on the line −1 = 2X + λY and the one on the line 0 = 2X + λY differ only by some
constant. Thus in any case, there are at least R − C3 unbounded orbits in Fix(Fφ) starting
from L ∩ B(R) with a non-negative constant C3.

4. Lattice points in the trap region

By construction, if the trap region T (R) and the line x = y cot θ + c have a non-empty
intersection, then it is a half-open interval of length csc θ . Thus if the line x = y cot θ + c

intersects L ∩ T (R) then it is a single point. The lattice L is covered by a family of parallel
lines:

� = {x = y cot θ − k csc θ | k ∈ Z}.
We easily see that the distance between adjacent lines of � is 1. Thus there are exactly 2�R�+1
points in L ∩ T (R).

Remark 2. If θ < 2π/3, then 2R cos(θ/2) − C1 + R − C3 > 2R + 1 holds for sufficiently
large R and we immediately obtain the desired contradiction.

Let us take into account the reversibility of F . Since we are dealing with unbounded
symmetric orbits starting from L ∩B(R), if (an, an+1) = (C, D) then there is an index m such
that (am, am+1) = (D, C). Let � : L �→ L be defined as follows:

� : x

(− csc θ

0

)
+ y

(
cot θ

1

)
�→ y

(− csc θ

0

)
+ x

(
cot θ

1

)
.

If an orbit visits �(T (R)) ∩ T (R) then the number of visits is at least two. In other words, we
only have to count the number of lattice points up to this symmetry by � in T (R).

The mapping � is the reflection with respect to the vector

(− csc θ + cot θ
1

)
, because the

two vectors

(− csc θ

0

)
and

(
cot θ

1

)
have the same length. Thus the reflection � leaves the

vector

(− sin(θ/2)

cos(θ/2)

)
=

(− csc θ + cot θ
1

)
cos(θ/2) invariant.

To make computation easy, we rotate T (R) and L by −θ and present the situation in
figure 2. T (R)′, L′ are the images by this rotation and 	 is the corresponding reflection. Then
every line y = k with k ∈ Z∩ [−R, R] contains a single point in L′ ∩T (R)′ and the reflection
	 leaves the vector(

cos θ sin θ

− sin θ cos θ

) (− sin(θ/2)

cos(θ/2)

)
=

(
sin(θ/2)

cos(θ/2)

)

invariant.
So our task is to estimate from above the number of lattice points in L′ ∩ T (R)′ which are

below the line y = x cot(θ/2). The intersection of the line and the boundary of T (R)′ with
the largest y-coordinate is(√

R2 sin2

(
θ

2

)
− 1

4
+

1

2
tan

θ

2
, cot

θ

2

√
R2 sin2

(
θ

2

)
− 1

4
+

1

2

)
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   (π–θ)/2

T (R) '

Ψ(T(R)')

Figure 2. Symmetry of the trap region.

and we have

cot
θ

2

√
R2 sin2

(
θ

2

)
− 1

4
+

1

2
= R cos

(
θ

2

)
+

1

2
+ O

(
1

R

)
.

We count the number of points whose y-coordinate does not exceed this value, i.e. the points
in the shaded part in figure 2. Thus the number of lattice points up to symmetry in L ∩ T (R)

is bounded from above by R + R cos(θ/2) + C4 with a non-negative constant C4.

5. Proof of theorem 1 and lemma 1

From the assumption that there are only finitely many periodic orbits, we derived several
estimates in the previous sections. By lemma 2, unbounded orbits in Fix(φ) and those in
Fix(Fφ) have no intersection. Thus

2R cos(θ/2) − C1 + R − C3

distinct unbounded orbits must visit T (R) and there are only

R + R cos(θ/2) + C4

lattice points in L ∩ T (R) up to symmetry. However

2R cos(θ/2) − C1 + R − C3 � R + R cos(θ/2) + C4

does not hold for sufficiently large R. The proof of theorem 1 is finished.
Let us show lemma 1. Assume that there are infinitely many (x, y) so that Fp(x, y) =

(x, y) with p > 2. By induction using (3), we have(
u

v

)
=

(
cos pθ − sin pθ

sin pθ cos pθ

) (
u

v

)
+

p∑
i=1

vi
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where

(
u

v

)
∈ L and ‖vi‖ � csc θ . Here ‖ · ‖ is the Euclidean norm. However if

(
u

v

)
is

sufficiently large, then∥∥∥∥
(

u

v

)
−

(
cos pθ − sin pθ

sin pθ cos pθ

) (
u

v

)∥∥∥∥ � c

∥∥∥∥
(

u

v

)∥∥∥∥ > p csc θ.

Here c is computed as the operator norm:

c = 1∥∥∥∥∥
(

1 − cos pθ sin pθ

− sin pθ 1 − cos pθ

)−1
∥∥∥∥∥

= 2

∣∣∣∣sin

(
pθ

2

)∣∣∣∣

which is positive since θ/π is irrational. This gives a contradiction.

6. Generalization

One can generalize the result to the sequences defined by:

−η � an+2 + λan+1 + an < 1 − η,

with η ∈ R. These kind of interval shifts are studied, for example, in [17, 21]. In complete
analogy to our main result, we have

Theorem 2. For a fixed λ ∈ (−2, 2) and η ∈ R, there are infinitely many periodic orbits of
the dynamics

(x, y) → (y, −�λy + x + η�) (8)

on Z
2.

We can deduce a qualitative statement:

Corollary 3. There is a positive constant C depending on λ and η such that within B(R), there
are at least CR periodic orbits of (8).

Hereafter we sketch the proof of theorem 2 and corollary 3. Writing κ = η/(2 + λ), the
inequality becomes

0 � (an+2 + κ) + λ(an+1 + κ) + (an + κ) < 1.

Therefore by substituting L with L′ = L+Q−1

(
κ

κ

)
, our algorithm has exactly the same shape

as (3). Although the error term becomes worse than the one in section 4, we can show that the
number of lattice points of L′ up to symmetry within the trap region is

R + R cos(θ/2) + O(R2/3+ε)

for any positive constant ε. Here we used the method of Vinogradov to count the number of
lattice points in the cylindrical region bounded by curves of positive curvature, for example,
see [23, pp 8–22] or [16, 22].

Similarly to section 3, there are 2R cos(θ/2) − C1 unbounded orbits in Fix(φ). We count
unbounded orbits in Fix(Fφ), i.e. the number of (X, Y ), which satisfy

λY/2 mod 1 ∩ [−η/2, (1 − η)/2) 	= ∅ (9)

and (7).
If λ is irrational, then (λ/2)Y mod 1 is uniformly distributed and the number of such Y

is R + o(R). When λ is rational, put λ/2 = p/q with (p, q) = 1. Then (λ/2)Y ≡ i/q mod 1
for i ∈ {0, 1, . . . , q − 1} with the same frequency 1/q.
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Let us study the case that q is even. Since

{i/q mod 1} ∩ [−η/2, (1 − η)/2)

has cardinality q/2, the number of points with (9) and (7) is again R + o(R). Once we have
this estimate R + o(R) then

2R cos(θ/2) − C1 + R + o(R) � R + R cos(θ/2) + o(R2/3+ε)

does not hold for sufficiently large R. Here C1 appears only once in the left side, because it is
the number of periodic orbits of the system. We obtain the contradiction for R � 1.

It remains to show the case when q is odd. Then

{i/q mod 1} ∩ [−η/2, (1 − η)/2)

has cardinality either (q − 1)/2 or (q + 1)/2 depending on η. Thus the number of unbounded
orbits in Fix(Fφ) is bounded from below by R − R/q + o(R). Thus we have to show that

2R cos(θ/2) − C1 + R − R/q + o(R) > R + R cos(θ/2) + o(R2/3+ε)

for large R. This is valid because

cos(θ/2) > 1/q

holds for q > 2, since cos(θ/2) = √
(1 + cos(θ))/2 = √

(1 − p/q)/2.
The validity of the statement of corollary 3 is invariant under affine transformations fixing

the origin, up to appropriate changes the constant C. To prove corollary 3, note that we
may take

C1 = (1 − ε)R (cos(θ/2) − 1/q)

with a small ε > 0 in the above proof to get the same contradiction. Here the term −1/q is
necessary only in the last case of the proof.
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