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Abstract

Index form equations play an important role in algebraic number the-
ory especialy in computing all elements with given discriminant. Using
geometric ideas Gaál, Pethő and Pohst [4] gave a practical method for
the solution of index form equations over quartic number fields. Contin-
uing their investigations we introduce the notion of index form surfaces
associated to quartic polynomials and show, that they are either empty
or elliptic surfaces.
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1 Introduction

Let K be an algebraic number field of degree n, denote by ZK its ring of
integers and by DK its discriminant. Let 1, ω1, . . . , ωn−1 be an integral basis
of ZK , X = (X1, . . . , Xn−1),

L(i)(X) = L(i)(X0, X) = X0 + ω
(i)
1 X1 + . . . + ω

(i)
n−1Xn−1, i = 1, . . . , n.

The discriminant form of K /Q with respect to the basis 1, ω1, . . . , ωn−1 or
simply the discriminant form of K /Q is then defined by

DK /Q(L(X)) =
∏

1≤i<j≤n

(
L(i)(X)− L(j)(X)

)2

.

It is easy to see that

DK /Q(L(X)) = DK
(
IK /Q(X)

)2

,

where IK /Q(X) is a homogenous polynomial of degree n(n−1)/2 in Z[X]. The
polynomial IK /Q(X) is called the index form of K /Q with respect to the basis
1, ω1, . . . , ωn−1 or simply the index form of K /Q.

To find elements with given discriminant in algebraic number fields the index
forms are playing an important role. Indeed, the element α = x0 +x1ω1 + . . .+
xn−1ωn−1 ∈ ZK has discriminant d if and only if

IK /Q(x1, . . . , xn−1) = ±
√

d/DK . (1)

T. Nagell proved that if K is a quartic number field, then (1) has only finitely
many solutions. His result was extended to arbitrary number fields by K. Győry
[5]. It is important that Győry’s result is effectiv, i.e. it implies an algorithm for
the solution of (1). He generalized this result for relative extensions and even
for finitely generated integral domains [6].

The solutions of index form equations for small degree fields are also tab-
ulated. This is not too hard for n = 3, because then IK /Q(x1, x2) is a cubic
form, thus (1) becomes a Thue equation of degree 3. Gaál and Schulte [3] devel-
oped an algorithm in this case and computed all power integral bases in cubic
number fields with |DK | < 50000.

Forgetting the arithmetical meaning of equation (1) one can study the geo-
metrical properties of the curve defined by that equation over an extension of
Q or over a finite field. It is well known that this curve is of genus one, hence it
is empty or an elliptic curve. (See e.g. [15], Section I.2.)
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Already for quartic number fields becomes the computation of integer so-
lutions of (1) much harder. Although Győry’s result imply an algorithm for
the resolution of (1), but it is not practical. This is because he transforms (1)
to finitely many S-unit equations in two unknowns over the normal closure of
K , and from the solutions of these unit equations derive the solutions of (1).
In the worst, but most frequent, case the Galois group of K is isomorphic to
S4, the symmetric group of degree 4, and the normal closure of K has degree
24. Generaly even a system of fundamental units of such a large degree field is
very hard to compute. Therefore we must understand better the structure of
the index form if we will find the solutions of index form equations. If K has
a qudratic subfield, then IK /Q(X) splits in Q[X] and we have to do with a
system of equations. Based on this fact Gaál, Pethő and Pohst worked out
methods for solving quartic index form equations if the Galois group of K /Q is
isomorphic to C4, V4 or D8. Finally they succeeded to prove, that one can get
all integer points lying on IK /Q(X) by a simple transformation of the integer
solutions of finitely many quartic Thue equations (see [4] and the references
therein). You find a collection of recent computational results on index form
equations of higher degree number fields in Gaál [1, 2].

We shall show in this note, that if K is a quartic extension of Q than the
surface defined by the equation

IK /Q(X) = m 6= 0

has a nice geometric structure: it is either empty or an elliptic surface, i.e.
can be uniquely covered by elliptic curves. Exactly this structure makes relativ
simple the computation of integer points on such a surface. This observation
is behinde of the result of Gaál, Pethő and Pohst. We present the geometrical
structure theorem in more general context.

The classification of index form surfaces associated to higher degree number
fields should be the topics of further research.

The results of sections 2 and 3 were proved several years ago and circulated
in a manuscript. In section 4 we summarize results of F. Leprévost et al. [7]. In
those sections the index form surface is studied over a finitely generated integral
domain over Q. In the last section we collect some observation of P. Nagy [12],
who performed computations concerning index form surfaces over finite fields.

2 Parametrization of the index forms

To formulate our results we generalize the notion of index form and introduce
some notation.
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Let k be a field (of arbitrary characteristic), a1, a2, a3, a4 be indeterminates
over k and K = k(a1, a2, a3, a4). Let p(X) = X4 + a1X

3 + a2X
2 + a3X + a4 ∈

K[X] of non-zero discriminant. Let α = α1, . . . , α4 denote the zeros of p(X) in
some algebraic closure of K. Let L = K(α) and denote by Ip(X) the index form
associated to the basis 1, α, α2, α3 of L. Then

Ip(X) =
∏

1≤i<j≤4

Li,j(X),

where

Li,j(X) = X1 + (α(i) + α(j))X2 + (α(i)2 + α(i)α(j) + α(j)2)X3.

for 1 ≤ i < j ≤ 4.

By the fundamental theorem on symmetric polynomials, Ip(X) is a form of
degree 6 in K[X]. We are given a parametrization of Ip(X) in Theorem 1 below.
But befor it we note, that if one specialises K to Q and a1, a2, a3, a4 to fixed
integers, then L becomes a number field. If it is quartic and 1, α, α2, α3 is a
power integral basis of the ring of integers of L, then Ip(X) specialises to the
classical notion of index forms.

Note, that one can define analogously the index form of higher degree poly-
nomials.

Theorem 1 Let

Q1(X) = X2
1 − a1X1X2 + a2X

2
2 + (a2

1 − 2a2)X1X3 + (a3 − a1a2)X2X3

+(−a1a3 + a2
2 + a4)X2

3 = XQ1X
T ,

Q2(X) = X2
2 −X1X3 − a1X2X3 + a2X

2
3 = XQ2X

T , (2)

where Q1 and Q2 denote the matrix of the quadratic form with the same name
and XT denotes the transpose of the vector X. Let further

f3(X, Y ) = X3 − a2X
2Y + (a1a3 − 4a4)XY 2 + (4a2a4 − a2

3 − a2
1a4)Y 3. (3)

Then we have
Ip(X) = f3(Q1(X), Q2(X)). (4)

Note that f3(X, 1) is the cubic resolvent of p(X).

Proof. Collect the factors in the definition of Ip(X) as follows:

Ip(X) = (L1,2(X)L3,4(X)) (L1,3(X)L2,4(X)) (L1,4(X)L2,3(X)) .
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Putting ξ1 = α(1)α(2) + α(3)α(4), ξ2 = α(1)α(3) + α(2)α(4) and ξ3 = α(1)α(4) +
α(2)α(3) we obtain

Ip(X) = (Q1(X)− ξ1Q2(X))(Q1(X)− ξ2Q2(X))(Q1(X)− ξ3Q2(X))

after a simple, but length computation. A similar simple and similar length
computation proves (4). We use in both part of the proof only the well known
Vieta’s formulae. 2

3 Structure of the index form surfaces

Let M be an extension of K and let 0 6= µ ∈ M. We shall now study the
structure of the set

F(M,µ) = {P = (x1, x2, x3) ∈ M3 : Ip(P ) = µ},

i.e. the set of M -rational points on the index form surface Ip(X)− µ.

Let call P1, P2 ∈ F(M,µ) equivalent, if

Q1(P1) = Q1(P2) and Q2(P1) = Q2(P2).

This is obviously an equivalence relation on the set F(M,µ). Moreover, there
exists by Theorem 1 a bijective correspondence between the equivalence classes
of F(M, µ) and the M -rational points on the curve f3(X, Y ) = µ. It can be
defined formally as follows: For u, v ∈ M such that f3(u, v) = µ let

F(u,v) = F(u,v)(M, µ) = {P ∈ F(M, µ) : Q1(P ) = u, Q2(P ) = v}.

Then Theorem 1 implies

F(M, µ) = ∪ u,v,∈M
f(u,v)=µ

F(u,v).

It can happen, that F(M, µ) = ∅ and even if F(M, µ) 6= ∅ the set F(u,v) can
be empty for some (u, v) ∈ M2. Indeed, consider for example the polynomial
p(x) = x4 + 4a2, with a ∈ Q. The polynomials f3, Q1, Q2 corresponding to
the index form Ip(X) by Theorem 1 are f3(X,Y ) = X3 − 16a2XY 2, Q1(X) =
X2

1 + 4a2X2
3 , Q2(X) = X2

2 −X1X3.

The rank of the elliptic curve X3 − 16a2XY 2 = 1 over Q is zero, and the
only rational points on it are (1, 0), (−1/2, 3/8a), (−1/2,−3/8a). This implies

F = F(1,0) ∪ F(−1/2,3/8a) ∪ F(−1/2,−3/8a)
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for
F = F(Q, 1) = {P ∈ Q3 : Ip(P ) = 1}.

Obviously (1, 0, 0) ∈ F(1,0), hence F is not empty. On the other hand the
sets F(−1/2,±3/8a) are empty because the equation X2

1 + 4a2X3
3 = −1/2 is not

solvable in Q.

The above example is due to Susanne Schmitt. She also proved that F
from the example is infinite if and only if a = c1c2(c1 + c2)(c1 − c2)z2, where
c1, c2 ∈ Z, gcd(c1, c2) = 1 and z ∈ Q.

If M is algebraicaly closed then F(u,v) 6= ∅ for every u, v ∈ M with f3(u, v) =
µ. Indeed, choosing x3 = 0 we obtain the system of equations x2

1 − a1x1x2 +
a2x

2
2 = u, x2

2 = v, which is always solvable in x1, x2 ∈ M, thus (x1, x2, 0) ∈
F(u,v).

As the intersection of two conics is an elliptic curve, F(u,v) is an elliptic curve
for every u, v ∈ M with f3(u, v) = µ. We will compute a model for these curve
more explicitely.

Theorem 2 Let M be an extension of K, 0 6= µ ∈ M . Let u, v ∈ M be such that
f3(u, v) = µ and P = (x1, x2, x3) ∈ F(u,v). Put Q3 = vQ1 − uQ2. Then there
exists for every R ∈ F(u,v) a vector S ∈ M3 such that one of the coordinates of
S is 0,

`(S)R = S`(S)− PSQ3S
T , with `(S) = 2PQ3S

T

and S satisfies the equation

v`(S)2 = (S`(S)− PSQ3S
T )Q2(ST `(S)− SQ3S

T PT ), (5)

if v 6= 0 and

4u(PQ3S
T )2 = ((SQ2S

T )P − 2(PQ2S
T )S)Q1((SQ2S

T )PT − 2(PQ2S
T )ST ),

if v = 0.

Proof Assume that v 6= 0 and let P = (x1, x2, x3) ∈ F(u,v). Then one of the
coordinates of P is non-zero. Assume that this is x3. Let R ∈ F(u,v). Then there
exist r, s1, s2 ∈ M such that

R = rP + S,

with S = (s1, s2, 0). Using that R, P ∈ F(u,v) we obtain the following chain of
identities:

0 = vQ1(R)− uQ2(R) = vRQ1R
T − uRQ2R

T

= v(rP + S)Q1(rPT + ST )− u(rP + S)Q2(rPT + ST )
= r2(vPQ1P

T − uPQ2P
T ) + r(P (vQ1 − uQ2)ST + S(vQ1 − uQ2)PT )

+vSQ1S
T − uSQ2S

T
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We have vPQ1P
T − uPQ2P

T = vQ1(P ) − uQ2(P ) = 0. As Q1 and Q2 are
symmetric matrices, Q3 is symmetric too. Thus (PQ3S

T )T = SQ3P
T . Further,

as PQ3S
T is a constant, we obtain PQ3S

T + SQ3P
T = 2PQ3S

T = `(S) and

r`(S) = −SQ3S
T .

This implies the assertion on R at once.

We have further Q2(R) = v. If v 6= 0 then by multiplying this equation by
`(S)2 and inserting the formula for `(S)R we obtain (5) immediately.

Finally, if v = 0, then as f3(u, 0) = u3 = µ 6= 0 we have u 6= 0. Working now
with the relation Q1(R) = u we obtain the asserted equation for S. 2

One of the coordinates of S is zero by Theorem 2. Denote by s1 and s2 the
other two coordinates of S. Then the expression staying on the right hand side
of (5) is a quartic form in s1 and s2. We denote it by f4(s1, s2). The coefficients
of f4(s1, s2) belong obviously to M. Redoing the computation of sections 3.2
and 3.3 of [4] one can prove the following theorem.

Theorem 3 Beside the notations of Theorem 2 let αi, i = 1, . . . , 4 denote the
zeros of p(X) and f4(s1, s2) the quartic form staying on the right hand side of
(5). Then we have

f4(s1, s2) = v2
4∏

i=1

(
(x3αi − x2 + a1x3)s1 − (x3α

2
i + x3a1αi + x3a2 − x1)s2

)
.

4 Elliptic surfaces associated to cubic and quar-
tic polynomials

We are given in this section an overview on results of the paper of F. Leprévost
et al [7].

We proved in the last section that in the parametrization of index form
surfaces associated to quartic polynomials the curve

C : f3(X, Y ) = 1, (6)

where f3(X, Y ) is defined by (3), is playing an important role. Observe that the
coefficients of f3 are depending only on the coefficients of the quartic polynomial
p(x) = x4 + a1x

3 + a2x
2 + a3x + a4. The point P = (1, 0) is lying obviously on

the curve (6). In the sequel we assume that char(k) 6= 2, 3.
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Let

H(X, Y ) = −1
4

(
∂2f3

∂X2

∂2f3

∂Y 2
−

(
∂2f3

∂X∂Y

)2
)

denote the quadratic and

G(X, Y ) =
∂f3

∂X

∂H

∂Y
− ∂f3

∂Y

∂H

∂X

the cubic covariants of f3. They satisfy the classical identity

4H3 = G2 + 27Df3f
2
3 , (7)

where Df3 denotes the discriminant of f3(X, 1). Remark that Df3 is equal to
the discriminant of p(x).

We have f3(1, 0) = 1. Defining

A(4) := H(1, 0) = 12a4 + a2
2 − 3a1a3 and

B(4) := G(1, 0) = 27a2
1a4 − 9a1a2a3 + 2a3

2 − 72a2a4 + 27a2
3

the point P ′ = (A(4), B(4)) is lying on the curve

E : y2 = 4x3 − 27Df3 .

The curve E is 3-isogenous to the curve

Et : X2 = 4X3 − 27Df3 ,

where the 3-isogeny is given by the map

ϕ : (x, y) −→ (X,Y ) =
(

4(x3 − 27Df3)
9x2

,
4y(x3 + 54Df3)

27x3

)
.

Hence the point

P0 := ϕ(P ′) =
(

4(A3(4)− 27Df3)
9A2(4)

,
4B(4)(A3(4) + 54Df3)

27A3(4)

)

is lying on the elliptic curve Et.

The main results of F. Leprévost et al [7] are the following.

Theorem 4 Let k = Q and assume that the transcendence degree of K =
Q(a1, a2, a3, a4) is 4. Then the rank of Et(K) is at least one, P0 is of infinite
order and the group of torsion points of Et(K(

√
Df3)) is isomorphic to Z/3Z.

Using the specialization (a1, a2, a3, a4) = (−1,−6, 2, 14) and the point P =
(1, 0) they also proved:

Theorem 5 The surface Ip(X1, X2, X3) = 1 is an elliptic surface. Its Kodaira
dimension and the dimension of its Albanése variety is one.
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5 Index form surfaces over finite fields

Let q > 3 be a rational prime and k = Fq be the finite field of q elements.
If a1, a2, a3, a4 denote indeterminates over k and K = k(a1, a2, a3, a4) then the
point P0, defined in the last section, belongs to Et(K). Specialyzing a1, a2, a3, a4

to ã1, ã2, ã3, ã4 ∈ Fq, such that Df̃3
Ã(4) 6= 0 the curve Ẽt(Fq) becomes an elliptic

curve and the image P̃0 of P0 is a rational point of Ẽt(Fq).

If q ≡ 2 (mod 3), then |Ẽt(Fq)| = q + 1, i.e. the curve is supersingular.
(c.f. A. Menezes [8] pp 26,27.) The situation is much more interesting if q ≡ 1
(mod 3), which we shall assume in the sequel.

In his diploma work P. Nagy [12] studied for randomly chosen primes q ≡ 1
(mod 3) and p(x) ∈ Fq[x] how offen generates P̃0 a subgroup of Ẽt(Fq) of small
index. He used the following algorithm:

1. q ← random odd prime with q ≡ 1 (mod 3),
p(x) ← x4 + a1x

3 + a2x
2 + a3x + a4 ∈ Fq[x] random polynomial,

t ← discriminant of p(x),

2. if t = 0 or A(4) = 12a4 + a2
2 − 3a1a3 = 0 in Fq then goto 1,

3. N ← the order of Ẽt(Fq),

4. if N = q + 1 then goto 1,

5. factorize N . If failed goto 1,

6. compute P̃0 and its order M ,

7. output q, P̃0, N, N/M.

Remarks 1. The algorithm was tested for 80,100,120 and 200 decimal digit
primes.

2. To compute N = |Ẽt(Fq)| Cornacchia’s algorithm was used, which com-
plexity is O(log2 q). (c.f. R. Schoof [14])

3. To factorize N only trial division with the first 100 000 primes was
performed. If N or one of its divisors passed this test and the Miller-Rabin
test [10, 13] then it was declared to be prime. We did not used deterministic
primality tests.

4. Assume that the prime factorization of N is N = pα1
1 · . . . · pαr

r with
p1 < . . . < pr, αi ≥ 1 is computed. Then the order of P̃0 is the smallest integer
M such that M divides N and MP̃0 = O.
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The algorithm was implemented in SIMATH 4.3 [16]. The computation were
done on a PC with 166 MHz PENTIUM-MMX processor. Our experiences are
the following:

• For 100 decimal digit primes the algorithm was performed 4000 times. We
were able to compute the order of P̃0 440 times. The largest index was
1350. Curves with a point of small index were found in 1.3 minutes.

• For 120 decimal digit primes the algorithm was performed 2200 times. We
were able to compute the order of P̃0 186 times. The largest index was
1158. Curves with a point of small index were found in 3.2 minutes.

• For 200 decimal digit primes the algorithm was performed 1632 times. We
were able to compute the order of P̃0 89 times. The largest index was 223.
Curves with a point of small index were found in about 30 minutes.
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donné, III., Publ. Math. (Debrecen), 23(1976), 141–165.
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