Integer points on a family of elliptic curves

Andrej Dujella (Zagreb) and Attila Pethő*(Debrecen)

Dedicated to Professor Kálmán Györy on the occasion of his 60 th birthday.

Abstract Let the sequence $\left(c_{k}\right)$ be given by the recursion

$$
c_{0}=0, \quad c_{1}=8, \quad c_{k+2}=14 c_{k+1}-c_{k}+8, \quad k \geq 0
$$

Let the elliptic curve E_{k} be defined by the equation $y^{2}=(x+1)(3 x+1)\left(c_{k} x+1\right)$. We prove in this paper that if the rank of $E_{k}(\mathbb{Q})$ is equal to two, or $k \leq 40$, with the possible exceptions $k=23$ and $k=37$, then all integer points on E_{k} are given by

$$
(x, y) \in\left\{(-1,0),(0, \pm 1),\left(c_{k-1}, \pm s_{k-1} t_{k-1}\left(2 c_{k}-s_{k} t_{k}\right)\right),\left(c_{k+1}, \pm s_{k+1} t_{k+1}\left(2 c_{k}+s_{k} t_{k}\right)\right)\right\}
$$

1 Introduction

A set D of m positive integers is called a Diophantine m-tuple if the product of any two distinct elements of D increased by 1 is a perfect square. The first example of a Diophantine quadruple - $\{1,3,8,120\}$ - was found by Fermat (see [6, p. 517]). In 1969, Baker and Davenport [2] proved that if d is a positive integer such that $\{1,3,8, d\}$ is a Diophantine quadruple, then d has to be 120 .

Recently, in [9], we generalized this result to all Diophantine triples of the form $\{1,3, c\}$. The fact that $\{1,3, c\}$ is a Diophantine triple implies that $c=c_{k}$ for some positive integer k, where the sequence $\left(c_{k}\right)$ is given by

$$
c_{0}=0, \quad c_{1}=8, \quad c_{k+2}=14 c_{k+1}-c_{k}+8, \quad k \geq 0
$$

Let $c_{k}+1=s_{k}^{2}, 3 c_{k}+1=t_{k}^{2}$ with positive integers s_{k}, t_{k}. It is easy to check that

$$
c_{k \pm 1} c_{k}+1=\left(2 c_{k} \pm s_{k} t_{k}\right)^{2}
$$

The main result of [9] is the following theorem.

[^0]Theorem 1 Let k be a positive integer. If d is an integer which satisfies the system of equations

$$
\begin{equation*}
d+1=x_{1}^{2}, \quad 3 d+1=x_{2}^{2}, \quad c_{k} d+1=x_{3}^{2}, \tag{1}
\end{equation*}
$$

then $d \in\left\{0, c_{k-1}, c_{k+1}\right\}$.
Eliminating d from the system (1) we obtain the following system of Pellian equations

$$
\begin{align*}
x_{3}^{2}-c_{k} x_{1}^{2} & =1-c_{k} \tag{2}\\
3 x_{3}^{2}-c_{k} x_{2}^{2} & =3-c_{k} . \tag{3}
\end{align*}
$$

We used the theory of Pellian equations and some congruence relations to reformulate the system (2) and (3) to four equations of the form $v_{m}=w_{n}$, where $\left(v_{m}\right)$ and $\left(w_{n}\right)$ are binary recursive sequences. After that, a comparison of the upper bound for the solutions obtained from the theorem of Baker and Wüstholz [3] with the lower bound obtained from the congruence condition modulo c_{k}^{2} finished the proof for $k \geq 76$. The statement for $1 \leq k \leq 75$ was proved by a variant of the reduction procedure due to Baker and Davenport [2].

Similar results are proved in [7] and [8] for Diophantine triples of the form $\{k-$ $1, k+1,4 k\}$ and $\left\{F_{2 k}, F_{2 k+2}, F_{2 k+4}\right\}$. In the second triple F_{n} denotes the n-th Fibonacci number.

It is clear that every solution $\left(d, x_{1}, x_{2}, x_{3}\right) \in \mathbb{Z}^{4}$ of (1) induce an integer point on the elliptic curve

$$
\begin{equation*}
E_{k}: \quad y^{2}=(x+1)(3 x+1)\left(c_{k} x+1\right), \tag{4}
\end{equation*}
$$

with $y=x_{1} x_{2} x_{3}$ and $x=d$. The purpose of the present paper is to prove that the converse of this statement is true, provided the rank of $E_{k}(\mathbb{Q})$ is equal to 2 . As we will see in Proposition 2, for all $k \geq 2$ the rank of $E_{k}(\mathbb{Q})$ is always ≥ 2. Our main result is

Theorem 2 Let k be a positive integer. If $\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)=2$ or $k \leq 40$, with the possible exceptions $k=23$ and $k=37$, then all integer points on E_{k} are given by
$(x, y) \in\left\{(-1,0),(0, \pm 1),\left(c_{k-1}, \pm s_{k-1} t_{k-1}\left(2 c_{k}-s_{k} t_{k}\right)\right),\left(c_{k+1}, \pm s_{k+1} t_{k+1}\left(2 c_{k}+s_{k} t_{k}\right)\right)\right\}$.

2 Torsion group

Under the substitution $x \leftrightarrow 3 c_{k} x, y \leftrightarrow 3 c_{k} y$ the curve E_{k} is transformed into the following Weierstraß form

$$
\begin{aligned}
E_{k}^{\prime}: \quad y^{2} & =x^{3}+\left(4 c_{k}+3\right) x^{2}+\left(3 c_{k}^{2}+12 c_{k}\right) x+9 c_{k}^{2} \\
& =\left(x+3 c_{k}\right)\left(x+c_{k}\right)(x+3) .
\end{aligned}
$$

There are three rational points on E_{k}^{\prime} of order 2, namely

$$
A_{k}=\left(-3 c_{k}, 0\right), \quad B_{k}=\left(-c_{k}, 0\right), \quad C_{k}=(-3,0)
$$

and also other two, more or less obvious, rational points on E_{k}^{\prime}, namely

$$
P_{k}=\left(0,3 c_{k}\right), \quad R_{k}=\left(s_{k} t_{k}+2 s_{k}+2 t_{k}+1,\left(s_{k}+t_{k}\right)\left(s_{k}+2\right)\left(t_{k}+2\right)\right)
$$

Note that if $k=1$, then $R_{1}=C_{1}-P_{1}$.
LEMMA $1 E_{k}^{\prime}(\mathbb{Q})_{\mathrm{tors}} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
Proof. From [17, Main Theorem 1] it follows immediately that $E_{k}^{\prime}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \times$ $\mathbb{Z} / 2 \mathbb{Z}$ or $E_{k}^{\prime}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$, and the later is possible iff there exist integers α and β such that $\frac{\alpha}{\beta} \notin\left\{-2,-1,-\frac{1}{2}, 0,1\right\}$ and

$$
c_{k}-3=\alpha^{4}+2 \alpha^{3} \beta, \quad 3 c_{k}-3=2 \alpha \beta^{3}+\beta^{4} .
$$

Now, we have

$$
\begin{equation*}
4 c_{k}-6=\left(\alpha^{2}+\alpha \beta+\beta^{2}\right)^{2}-3 \alpha^{2} \beta^{2} \tag{5}
\end{equation*}
$$

Since c_{k} is even, the left hand side of (5) is $\equiv 2(\bmod 8)$. If α and β are both even then the right hand side of (5) is is divisible by 8 , and if α and β are both odd then the right hand side of (5) is $\equiv 6(\bmod 8)$, a contradiction. Hence, $E_{k}^{\prime}(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

3 The independence of P_{k} and R_{k}

In this section we will often use the following 2-descent Proposition (see [12, 4.1, p.37]).
Proposition 1 Let $P=\left(x^{\prime}, y^{\prime}\right)$ be a \mathbb{Q}-rational point on E, an elliptic curve over \mathbb{Q} given by the equation

$$
y^{2}=(x-\alpha)(x-\beta)(x-\gamma)
$$

where $\alpha, \beta, \gamma \in \mathbb{Q}$. Then there exists a \mathbb{Q}-rational point $Q=(x, y)$ on E such that $2 Q=P$ iff $x^{\prime}-\alpha, x^{\prime}-\beta, x^{\prime}-\gamma$ are all \mathbb{Q}-rational squares.

Lemma $2 P_{k}, P_{k}+A_{k}, P_{k}+B_{k}, P_{k}+C_{k} \notin 2 E_{k}^{\prime}(\mathbb{Q})$.
Proof. We have:

$$
\begin{aligned}
P_{k}+A_{k} & =\left(-c_{k}-2,-2 c_{k}+2\right) \\
P_{k}+B_{k} & =\left(-3 c_{k}+6,6 c_{k}-18\right) \\
P_{k}+C_{k} & =\left(c_{k}^{2}-4 c_{k},-c_{k}^{3}+4 c_{k}^{2}-3 c_{k}\right)
\end{aligned}
$$

It follows immediately from Proposition 1 that $P_{k}, P_{k}+A_{k}, P_{k}+B_{k} \notin 2 E_{k}^{\prime}(\mathbb{Q})$. If $P_{k}+C_{k} \in$ $2 E_{k}^{\prime}(\mathbb{Q})$, then $c_{k}^{2}-c_{k}=\square$, which is impossible.

Lemma $3 \quad R_{k}, R_{k}+A_{k}, R_{k}+B_{k}, R_{k}+C_{k} \notin 2 E_{k}^{\prime}(\mathbb{Q})$.
Proof. We have:

$$
\begin{aligned}
R_{k} & =\left(s_{k} t_{k}+2 s_{k}+2 t_{k}+1,\left(t_{k}+s_{k}\right)\left(s_{k}+2\right)\left(t_{k}+2\right)\right), \\
R_{k}+A_{k} & =\left(2 s_{k}-2 t_{k}-s_{k} t_{k}+1,\left(s_{k}-t_{k}\right)\left(s_{k}+2\right)\left(t_{k}-2\right)\right), \\
R_{k}+B_{k} & =\left(2 t_{k}-2 s_{k}-s_{k} t_{k}+1,\left(t_{k}-s_{k}\right)\left(s_{k}-2\right)\left(t_{k}+2\right)\right), \\
R_{k}+C_{k} & =\left(s_{k} t_{k}-2 s_{k}-2 t_{k}+1,\left(t_{k}+s_{k}\right)\left(2-s_{k}\right)\left(t_{k}-2\right)\right) .
\end{aligned}
$$

Since $2 s_{k}-2 t_{k}-s_{k} t_{k}+4=\left(s_{k}+2\right)\left(2-t_{k}\right)<0$ and $2 t_{k}-2 s_{k}-s_{k} t_{k}+4=\left(t_{k}+2\right)\left(2-s_{k}\right)<0$, we have $R_{k}+A_{k}, R_{k}+B_{k} \notin 2 E_{k}^{\prime}(\mathbb{Q})$.

If $R_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$, then $\left(t_{k}+s_{k}\right)\left(t_{k}+2\right)=\square$ and $\left(t_{k}+s_{k}\right)\left(s_{k}+2\right)=\square$. Let $d=$ $\operatorname{gcd}\left(t_{k}+s_{k}, t_{k}+2, s_{k}+2\right)$. Then d divides $\left(t_{k}+2\right)+\left(s_{k}+2\right)-\left(t_{k}+s_{k}\right)=4$, and since s_{k} and t_{k} are odd, we conclude that $d=1$. Hence, we have

$$
\begin{equation*}
t_{k}+s_{k}=\square, \quad t_{k}+2=\square, \quad s_{k}+2=\square . \tag{6}
\end{equation*}
$$

Consider the sequence $\left(t_{k}+s_{k}\right)_{k \in \mathbb{N}}$. It follows easily by induction that $t_{k}+s_{k}=2 a_{k+1}$, where

$$
\begin{equation*}
a_{0}=0, \quad a_{1}=1, \quad a_{k+2}=4 a_{k+1}-a_{k}, \quad k \geq 0 \tag{7}
\end{equation*}
$$

Thus, (6) implies $a_{k+1}=2 \square$, and this is impossible by a theorem of Mignotte and Pethő [14] (see also [16]) which says that $a_{k}=\square, 2 \square, 3 \square$ or $6 \square$ implies $k \leq 3$.

If $R_{k}+C_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$, then $\left(t_{k}+s_{k}\right)\left(t_{k}-2\right)=\square$ and $\left(t_{k}+s_{k}\right)\left(s_{k}-2\right)=\square$. This implies $t_{k}+s_{k}=\square$ and we obtain a contradiction as above.

Lemma 4 If $k \geq 2$, then $R_{k}+P_{k}, R_{k}+P_{k}+A_{k}, R_{k}+P_{k}+B_{k}, R_{k}+P_{k}+C_{k} \notin 2 E_{k}^{\prime}(\mathbb{Q})$.
Proof. As in the proof of Lemmas 2 and 3, we use Proposition 1.
If $R_{k}+P_{k}+A_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$ then $0>c_{k}\left(s_{k}+2\right)\left(s_{k}-t_{k}\right)=\square$, and if $R_{k}+P_{k}+B_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$ then $0>c_{k}\left(s_{k}-2\right)\left(s_{k}-t_{k}\right)=\square$. Hence, $R_{k}+P_{k}+A_{k}, R_{k}+P_{k}+B_{k} \notin 2 E_{k}^{\prime}(\mathbb{Q})$.

If $R_{k}+P_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$ then

$$
\begin{equation*}
3 c_{k}\left(t_{k}+s_{k}\right)\left(t_{k}+2\right)=\square, \quad c_{k}\left(t_{k}+s_{k}\right)\left(s_{k}+2\right)=\square, \quad 3\left(s_{k}+2\right)\left(t_{k}+2\right)=\square . \tag{8}
\end{equation*}
$$

Substituing $2 c_{k}=\left(t_{k}+s_{k}\right)\left(t_{k}-s_{k}\right)$ in (8) we obtain

$$
\left(t_{k}-s_{k}\right)\left(t_{k}+2\right)=6 \square, \quad\left(t_{k}-s_{k}\right)\left(s_{k}+2\right)=2 \square, \quad\left(s_{k}+2\right)\left(t_{k}+2\right)=3 \square .
$$

Let $d=\operatorname{gcd}\left(s_{k}+2, t_{k}+2\right)$. Then the relation $t_{k}^{2}-3 s_{k}^{2}=-2$ implies $d \mid 6$. Since $t_{k}+2$ is odd, we have $d \in\{1,3\}$. Hence we obtain

$$
\begin{equation*}
t_{k}-s_{k}=6 \square \quad \text { or } \quad t_{k}-s_{k}=2 \square . \tag{9}
\end{equation*}
$$

But $t_{k}-s_{k}=2 a_{k}$, where (a_{k}) is defined by (7). Thus (9) implies $a_{k}=\square$ or $3 \square$. According to $[14]$, this is possible only if $k=2$. But $\left(s_{2}, t_{2}\right)=(11,19)$ and $\left(s_{2}+2\right)\left(t_{2}+2\right) \neq 3 \square$.

If $R_{k}+P_{k}+C_{k} \in 2 E_{k}^{\prime}(\mathbb{Q})$ then

$$
3 c_{k}\left(t_{k}+s_{k}\right)\left(t_{k}-2\right)=\square, \quad c_{k}\left(t_{k}+s_{k}\right)\left(s_{k}-2\right)=\square, \quad 3\left(s_{k}-2\right)\left(t_{k}-2\right)=\square
$$

Arguing as before, we obtain

$$
\left(t_{k}-s_{k}\right)\left(t_{k}-2\right)=6 \square, \quad\left(t_{k}-s_{k}\right)\left(s_{k}-2\right)=2 \square, \quad\left(s_{k}-2\right)\left(t_{k}-2\right)=3 \square
$$

and conclude that

$$
\begin{equation*}
t_{k}-s_{k}=6 \square \quad \text { or } \quad t_{k}-s_{k}=2 \square \tag{10}
\end{equation*}
$$

As we have already seen, it is possible only for $\left(s_{2}, t_{2}\right)=(11,19)$, but then $\left(s_{2}-2\right)\left(t_{2}-2\right) \neq$ $3 \square$.

Proposition 2 If $k \geq 2$, then the points P_{k} and R_{k} generate a subgroup of rank 2 in $E_{k}^{\prime}(\mathbb{Q}) / E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}$.

Proof. We have to prove that $m P_{k}+n R_{k} \in E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}, m, n \in \mathbb{Z}$, implies $m=n=0$.
Assume $m P_{k}+n R_{k}=T \in E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}=\left\{\mathcal{O}, A_{k}, B_{k}, C_{k}\right\}$ with $(m, n) \neq(0,0)$. If m and n are not both even, then $T \equiv P_{k}, R_{k}$ or $P_{k}+R_{k}\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right)$, which is impossible by Lemmas 2,3 and 4 . Hence, m and n are even, say $m=2 m_{1}, n=2 n_{1}$, and since by Lemma $1 A_{k}, B_{k}, C_{k} \notin 2 E_{k}^{\prime}(\mathbb{Q})$,

$$
2 m_{1} P_{k}+2 n_{1} P_{k}=\mathcal{O}
$$

Thus we obtain $m_{1} P_{k}+n_{1} R_{k} \in E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}$. Arguing as above, we obtain that m_{1} and n_{1} are even, and continuing this process we finally conclude that $m=n=0$.

4 Proof of Theorem $2\left(\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)=2\right)$

Let $E_{k}^{\prime}(\mathbb{Q}) / E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}=<U, V>$ and $X \in E_{k}^{\prime}(\mathbb{Q})$. Then there exist integers m, n and a torsion point T such that $X=m U+n V+T$. Also $P_{k}=m_{P} U+n_{P} V+T_{P}, R_{k}=$ $m_{R} U+n_{R} V+T_{R}$ with integers $m_{P}, n_{P}, m_{R}, n_{R}$ and with $T_{P}, T_{R} \in E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}$. Let $\mathcal{U}=\{\mathcal{O}, U, V, U+V\}$. There exist $U_{1}, U_{2} \in \mathcal{U}, T_{1}, T_{2} \in E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}$ such that $P_{k} \equiv U_{1}+T_{1}$ $\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right), R_{k} \equiv U_{2}+T_{2}\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right)$. Let $U_{3} \in \mathcal{U}$ such that $U_{3} \equiv U_{1}+U_{2}$ $\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right)$. Then $P_{k}+R_{k} \equiv U_{3}+\left(T_{1}+T_{2}\right)\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right)$. Now Lemmas 2,3 and 4 imply that $U_{1}, U_{2}, U_{3} \neq \mathcal{O}$ and accordingly $\left\{U_{1}, U_{2}, U_{3}\right\}=\{U, V, U+V\}$. Therefore $X \equiv X_{1}\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right)$, where

$$
\begin{gathered}
X_{1} \in \mathcal{S}=\left\{\mathcal{O}, A_{k}, B_{k}, C_{k}, P_{k}, P_{k}+A_{k}, P_{k}+B_{k}, P_{k}+C_{k}, R_{k}, R_{k}+A_{k}, R_{k}+B_{k}\right. \\
\left.R_{k}+C_{k}, R_{k}+P_{k}, R_{k}+P_{k}+A_{k}, R_{k}+P_{k}+B_{k}, R_{k}+P_{k}+C_{k}\right\}
\end{gathered}
$$

Let $\{a, b, c\}=\left\{3, c_{k}, 3 c_{k}\right\}$. By [13, 4.6, p.89], the function $\varphi: E_{k}^{\prime}(\mathbb{Q}) \rightarrow \mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ defined by

$$
\varphi(X)= \begin{cases}(x+a) \mathbb{Q}^{* 2}, & \text { if } X=(x, y) \neq \mathcal{O},(-a, 0), \\ (b-a)(c-a) \mathbb{Q}^{* 2}, & \text { if } X=(-a, 0), \\ \mathbb{Q}^{* 2}, & \text { if } X=\mathcal{O}\end{cases}
$$

is a group homomorphism.
This fact and Theorem 1 imply that it is sufficient to prove that for all $X_{1} \in \mathcal{S} \backslash P_{k}$, $X_{1}=\left(3 c_{k} u, 3 c_{k} v\right)$, the system

$$
\begin{equation*}
x+1=\alpha \square, \quad 3 x+1=\beta \square, \quad c_{k} x+1=\gamma \square \tag{11}
\end{equation*}
$$

has no integer solution, where \square denotes a square of a rational number, and α, β, γ are defined by $u+1=\alpha, 3 u+1=\beta, c_{k} u+1=\gamma$ if all those numbers are $\neq 0$, and if e.g. $u+1=0$ then we choose $\alpha=\beta \gamma$ (so that $\alpha \beta \gamma=\square$). Note that for $X_{1}=P_{k}$ we obtain the system $x+1=\square, 3 x+1=\square, c_{k} x+1=\square$, which is completely solved in Theorem 1.

For $X_{1} \in\left\{A_{k}, B_{k}, P_{k}+A_{k}, P_{k}+B_{k}, R_{k}+A_{k}, R_{k}+B_{k}, R_{k}+P_{k}+A_{k}, R_{k}+P_{k}+B_{k}\right\}$ exactly two of the numbers α, β, γ are negative and thus the system (11) has no integer solution.

The rest of the proof falls naturally into 7 parts. By a^{\prime} we will denote the square free part of an integer a.

1) $X_{1}=\mathcal{O}$:

We have

$$
\begin{equation*}
x+1=3 c_{k} \square, \quad 3 x+1=c_{k} \square, \quad c_{k} x+1=3 \square . \tag{12}
\end{equation*}
$$

From the second equation in (12) we see that $3 \backslash c_{k}^{\prime}$ and thus the first and second equations imply that c_{k}^{\prime} divides $3 x+1$ and $x+1$. Accordingly, $c_{k}^{\prime} \mid 3(x+1)-(3 x+1)=2$ and we conclude that $c_{k}^{\prime}=1$ or 2 . Hence,

$$
c_{k}=\square, \quad \text { or } \quad c_{k}=2 \square .
$$

However, $c_{k}=s_{k}^{2}-1=\square$ is obviously impossible, while $c_{k}=2 w^{2}$ leads to the system of Pellian equations

$$
s_{k}^{2}-2 w^{2}=1, \quad t_{k}^{2}-6 w^{2}=1 .
$$

This system is solved by Anglin [1], and the only positive solution is $\left(s_{k}, t_{k}, w\right)=(3,5,2)$ which corresponds to $c_{k}=c_{1}=8$, contradicting our assumption that $k \geq 2$. (Note that for $c_{1}=8$ there is also no solution because in this case the first and the third equations in (12) imply $3 \mid 7$.)
2) $X_{1}=C_{k}$:

We have
$x+1=c_{k}\left(c_{k}-1\right) \square, \quad 3 x+1=c_{k}\left(c_{k}-3\right) \square, \quad c_{k} x+1=\left(c_{k}-1\right)\left(c_{k}-3\right) \square$.
If $3 \nless c_{k}$ then, as in 1), we obtain $c_{k}^{\prime}=1$ or 2 , and $c_{k}=\square$ or $2 \square$, which is impossible.
If $c_{k}=3 e_{k}$ then e_{k}^{\prime} divides $3 x+1$ and $3 x+3$ and thus $e_{k}^{\prime}=1$ or 2 . Hence,

$$
c_{k}=3 \square, \quad \text { or } \quad c_{k}=6 \square .
$$

The relation $c_{k}=3 \square$ is impossible since it implies $t_{k}^{2}-1=9 \square$, while $c_{k}=6 w^{2}$ leads to the system of Pellian equations

$$
s_{k}^{2}-6 w^{2}=1, \quad t_{k}^{2}-18 w^{2}=1
$$

which has no positive solution according to [1].
3) $X_{1}=P_{k}+C_{k}$:

We have

$$
x+1=3\left(c_{k}-1\right) \square, \quad 3 x+1=\left(c_{k}-3\right) \square, \quad c_{k} x+1=3\left(c_{k}-1\right)\left(c_{k}-3\right) \square .
$$

Since $c_{k}=s_{k}^{2}-1$, we see that $c_{k} \not \equiv 1(\bmod 3)$, and thus $x \equiv-1(\bmod 3)$. From the second equation we have that $\left(c_{k}-3\right)^{\prime}$ is not divisible by 3 , and then the third equation gives $c_{k} x+1 \equiv 0(\bmod 3)$. This implies $c_{k} \equiv 1(\bmod 3)$, a contradiction.

4) $X_{1}=R_{k}$:

We have

$$
\begin{gathered}
x+1=6\left(t_{k}-s_{k}\right)\left(t_{k}+2\right) \square, \quad 3 x+1=2\left(t_{k}-s_{k}\right)\left(s_{k}+2\right) \square \\
c_{k} x+1=3\left(s_{k}+2\right)\left(t_{k}+2\right) \square .
\end{gathered}
$$

From the relation $t_{k}^{2}-3 s_{k}^{2}=-2$ it follows that $\operatorname{gcd}\left(t_{k}-s_{k}, s_{k}+2\right)=\operatorname{gcd}\left(t_{k}-s_{k}, t_{k}+2\right)=1$ or 3 .

If $3 \not{ }^{\prime} t_{k}-s_{k}$ then $\left[2\left(t_{k}-s_{k}\right)\right]^{\prime}$ divides $x+1$ and $3 x+1$, and thus $\left[2\left(t_{k}-s_{k}\right)\right]^{\prime}=1$ or 2. Accordingly,

$$
t_{k}-s_{k}=2 \square \quad \text { or } \quad t_{k}-s_{k}=\square
$$

As we have already seen in the proof of Lemma 4, this implies

$$
a_{k}=\square \quad \text { or } \quad a_{k}=2 \square,
$$

and [14] implies again that $k=2$. Now we obtain $120 x+1=91 \square$, which is impossible modulo 4.

If $t_{k}-s_{k}=3 z_{k}$ then $\left(2 z_{k}\right)^{\prime}$ divides $x+1$ and $9 x+3$. Hence $\left(2 z_{k}\right)^{\prime}$ divides 6 , which implies $a_{k}=\square, 2 \square, 3 \square$ or $6 \square$, and this is possible only if $k=2$. But for $k=2$, $t_{k}-s_{k}=8 \not \equiv 0(\bmod 3)$.
5) $X_{1}=R_{k}+C_{k}$:

We have

$$
\begin{gathered}
x+1=6\left(t_{k}-s_{k}\right)\left(t_{k}-2\right) \square, \quad 3 x+1=2\left(t_{k}-s_{k}\right)\left(s_{k}-2\right) \square, \\
c_{k} x+1=3\left(s_{k}-2\right)\left(t_{k}-2\right) \square .
\end{gathered}
$$

This case is completely analogous to the case 4).
6) $X_{1}=R_{k}+P_{k}$:

We have

$$
\begin{gathered}
x+1=\left(t_{k}+s_{k}\right)\left(t_{k}+2\right) \square, \quad 3 x+1=\left(t_{k}+s_{k}\right)\left(s_{k}+2\right) \square, \\
c_{k} x+1=\left(s_{k}+2\right)\left(t_{k}+2\right) \square .
\end{gathered}
$$

As in 4), we obtain that if $3 \chi_{t_{k}}+s_{k}$ then $\left(t_{k}+s_{k}\right)^{\prime}$ divides 2 , and if $t_{k}+s_{k}=3 z_{k}$ then z_{k}^{\prime} divides 6 . Hence, we have $a_{k+1}=\square, 2 \square, 3 \square$ or $6 \square$, which is impossible for $k \geq 2$.
7) $X_{1}=R_{k}+P_{k}+C_{k}$:

We have

$$
\begin{gathered}
x+1=\left(t_{k}+s_{k}\right)\left(t_{k}-2\right) \square, \quad 3 x+1=\left(t_{k}+s_{k}\right)\left(s_{k}-2\right) \square, \\
c_{k} x+1=\left(s_{k}-2\right)\left(t_{k}-2\right) \square .
\end{gathered}
$$

This case is completely analogous to the case 6).
Remark 1 It is easy to check that $\operatorname{rank}\left(E_{1}(\mathbb{Q})\right)=1$, and from the proof of the first statement of Theorem $2($ parts 1), 2) and $\mathbf{3})$) it is clear that all integer points on E_{1} are given by $(x, y) \in\{(-1,0),(0, \pm 1),(120, \pm 6479)\}$. Hence Theorem 2 is true for $k=1$.

Remark 2 As the coefficients of E_{k} grow exponentially, the computation of the rank of E_{k} for large k is difficult. The following values of $\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)$ were computed using the programs SIMATH ([18]) and mwrank ([5]):

$$
\begin{array}{cccccccccc}
k & 1 & 2 & 3 & 4 & 5 & 7 & 8^{*} & 9 & 10^{*} \\
\operatorname{rank}\left(E_{k}(\mathbb{Q})\right) & 1 & 2 & 3 & 3 & 2 & 4 & 4 & 3 & 3
\end{array}
$$

In the cases $k=8,10$, the rank is computed assuming the Parity Conjecture. For $k=6,11,12$, under the same conjecture, we obtained that $\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)$ is equal to 2 or 4. We also verified by SIMATH that for $k=3$ and $k=4\left(\right.$ when $\left.\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)>2\right)$ all integer points on E_{k} are given by the values from Theorem 2.

Remark 3 Let us mention that Bremner, Stroeker and Tzanakis [4] proved recently a similar result as the first statement of our Theorem 2 for the family of elliptic curves

$$
C_{k}: \quad y^{2}=\frac{1}{3} x^{3}+\left(k-\frac{1}{2}\right) x^{2}+\left(k^{2}-k+\frac{1}{6}\right) x,
$$

under the assumptions $\operatorname{rank}\left(C_{k}(\mathbb{Q})\right)=1$ and $C_{k}(\mathbb{Q}) / C_{k}(\mathbb{Q})_{\text {tors }}=\langle(1, k)\rangle$.

5 Proof of Theorem $2(3 \leq k \leq 40)$

We pointed out in Remark 2 that the coefficients of E_{k} are growing very fast. Therefore, using SIMATH ${ }^{2}$ we were able to compute the integer points of $E_{k}(\mathbb{Q})$ only for $k \leq 4$. However, the following elementary argument gives us the proof of the second statement of Theorem 2.

Notice the following relations

$$
\begin{array}{rlrl}
c_{0}=0, & c_{1}=8, & c_{k+2} & =14 c_{k+1}-c_{k}+8, \quad \text { if } k \geq 0, \\
t_{0}=1, & t_{1} & =5, \quad t_{k+2} & =4 t_{k+1}-t_{k}, \quad \text { if } k \geq 0, \\
s_{0}=1, & s_{1}=3, & s_{k+2} & =4 s_{k+1}-s_{k}, \quad \text { if } k \geq 0, \\
c_{k}+1=s_{k}^{2} & \Longrightarrow \quad c_{k} & =\left(s_{k}+1\right)\left(s_{k}-1\right), \\
3 c_{k}+1=t_{k}^{2} \Longrightarrow \quad 3 c_{k} & =\left(t_{k}+1\right)\left(t_{k}-1\right), \\
3\left(c_{k}-1\right) & =\left(t_{k}+2\right)\left(t_{k}-2\right), \\
c_{k}-3 & =\left(s_{k}+2\right)\left(s_{k}-2\right) . \tag{19}
\end{array}
$$

We have $8 \mid c_{k}$ for any $k \geq 0$ by (13). Hence s_{k} and t_{k} are odd. We have further $3 X c_{k}-1$ by (16).

Assume that $(x, y) \in \mathbf{Z}^{2}$ is a solution of (4). Put $D_{1}=\operatorname{gcd}(x+1,3 x+1), D_{2}=$ $\operatorname{gcd}\left(x+1, c_{k} x+1\right)$ and $D_{3}=\operatorname{gcd}\left(3 x+1, c_{k} x+1\right)$. As $D_{1}=\operatorname{gcd}(x+1,3 x+1)=\operatorname{gcd}(x+1,2)$, we have $D_{1}=1$ if $x+1$ is odd, and $D_{1}=2$ if $x+1$ is even. We have further $D_{2}=$ $\operatorname{gcd}\left(x+1, c_{k} x+1\right)=\operatorname{gcd}\left(x+1, c_{k}-1\right)$ and $D_{3}=\operatorname{gcd}\left(3 x+1, c_{k} x+1\right)=\operatorname{gcd}\left(3 x+1, c_{k}-3\right)$. Hence D_{1}, D_{2} and D_{3} are pairwise relatively prime.

Assume first $D_{1}=1$. Then there exist $x_{1}, x_{2}, x_{3} \in \mathbf{Z}$ such that

$$
\begin{aligned}
x+1 & =D_{2} x_{1}^{2} \\
3 x+1 & =D_{3} x_{2}^{2} \\
c_{k} x+1 & =D_{2} D_{3} x_{3}^{2} .
\end{aligned}
$$

[^1]Eliminating x we obtain the following system of equations

$$
\begin{aligned}
3 D_{2} x_{1}^{2}-D_{3} x_{2}^{2} & =2 \\
c_{k} x_{1}^{2}-D_{3} x_{3}^{2} & =\frac{c_{k}-1}{D_{2}}
\end{aligned}
$$

Similarly, if $D_{1}=2$, then (4) implies

$$
\begin{aligned}
x+1 & =2 D_{2} x_{1}^{2} \\
3 x+1 & =2 D_{3} x_{2}^{2} \\
c_{k} x+1 & =D_{2} D_{3} x_{3}^{2},
\end{aligned}
$$

from which we obtain

$$
\begin{aligned}
3 D_{2} x_{1}^{2}-D_{3} x_{2}^{2} & =1 \\
2 c_{k} x_{1}^{2}-D_{3} x_{3}^{2} & =\frac{c_{k}-1}{D_{2}} .
\end{aligned}
$$

Hence, to find all integer solutions of (4), it is enough to find all integer solutions of the systems of equations

$$
\begin{align*}
& d_{1} x_{1}^{2}-d_{2} x_{2}^{2}=j_{1}, \tag{20}\\
& d_{3} x_{1}^{2}-d_{2} x_{3}^{2}=j_{2}, \tag{21}
\end{align*}
$$

where

- $d_{1}=3 D_{2}, D_{2}$ is a square-free divisor of $c_{k}-1=\left(t_{k}+2\right)\left(t_{k}-2\right) / 3$,
- $d_{2}=D_{3}, D_{3}$ is a square-free divisor of $c_{k}-3=\left(s_{k}+2\right)\left(s_{k}-2\right)$, which is not divisible by 3 ,
- $\left(d_{3}, j_{1}, j_{2}\right)=\left(c_{k}, 2, \frac{c_{k}-1}{D_{2}}\right)$ or $\left(d_{3}, j_{1}, j_{2}\right)=\left(2 c_{k}, 1, \frac{c_{k}-1}{D_{2}}\right)$.

We expect that most of the systems (20)-(21) are not solvable. To exclude as early as possible the unsolvable systems we considered the equations (20) and (21) separately modulo appropriate prime powers.

As $8 \mid c_{k}$ and $c_{k} \mid d_{3}$, and d_{2} and j_{2} are odd, the equation (21) is solvable modulo 8 only if $-d_{2} j_{2} \equiv 1(\bmod 8)$.

Assume that equation (20) is solvable. Let p be an odd prime divisor of d_{2}. Then (20) implies

$$
d_{1} x_{1}^{2} \equiv j_{1} \quad(\bmod p)
$$

hence

$$
\left(d_{1} x_{1}\right)^{2} \equiv j_{1} d_{1} \quad(\bmod p)
$$

i.e. $\left(\frac{j_{1} d_{1}}{p}\right)=1$, where $(\dot{\dot{p}})$ denotes the Legendre symbol. Similarly, (21) implies $\left(\frac{j_{2} d_{3}}{p}\right)=$ 1. If q and r are odd prime divisors of d_{1} and d_{3} respectively, then we obtain the following conditions for the solvability of (20) and (21): $\left(\frac{-j_{1} d_{2}}{q}\right)=1$ and $\left(\frac{-j_{2} d_{2}}{r}\right)=1$.

Let finally p_{1} be an odd prime divisor of j_{2}, such that $\operatorname{ord}_{p_{1}}\left(j_{2}\right)$ is odd. Then a necessary condition for solvability of equation (21) is: $\left(\frac{d_{2} d_{3}}{p_{1}}\right)=1$.

We performed this test for $3 \leq k \leq 40$ and we found that, apart from the systems listed in the following table, all are unsolvable except those of the form

$$
\begin{aligned}
3 x_{1}^{2}-x_{2}^{2} & =2, \\
c_{k} x_{1}^{2}-x_{3}^{2} & =c_{k}-1,
\end{aligned}
$$

and this system is equivalent to the system (2) and (3) which is completely solved by Theorem 1.

k	$d_{1}, d_{2}, d_{3}, j_{1}, j_{2}$
19	$251210975091,44809,3371344269872647091408,2,40261110431$
$23 / 1$	380631510488414383527682077,11263976658479,
	$253754340325609589018454720,1,1$
$23 / 2$	$19509779867757,11263976658479,25375430325609589018454720$,
	1,19509779867761
$23 / 3$	$58529339603283,1,126877170162804794509227360,2$,
	6503259955919
35	20288310329233162249058888791445649852717,
	2254256703248129138784320976827294428079,
	$13525540219488774832705925860963766568480,1,1$
37	187060083,1489467623820555129,
	1311942540724389723505929002667880175005208,2,
	21040446251556347115048521645334887

We considered in the case $k=19$ equations (20) and (21), with the values of
$d_{1}, d_{2}, d_{3}, j_{1}, j_{2}$ given in the table, modulo 5 . We obtained

$$
\begin{aligned}
x_{1}^{2}-4 x_{2}^{2} & \equiv 2 \quad(\bmod 5) \\
3 x_{1}^{2}-4 x_{3}^{2} & \equiv 1 \quad(\bmod 5) .
\end{aligned}
$$

The first congruence implies $x_{1}^{2} \equiv 1,2$ or $3(\bmod 5)$, and the second congrunce implies $x_{1}^{2} \equiv 0,2$ or $4(\bmod 5)$. Hence, $x_{1}^{2} \equiv 2(\bmod 5)$, which is a contradiction.

In the cases $k=23 / 3$ and $k=35$ we used arithmetical properties of some real quadratic number fields.

In the case $k=23 / 3$ we have $d_{3}=126877170162804794509227360$. The fundamental unit of the order $\mathbb{Z}\left[\sqrt{d_{3}}\right]=\mathbb{Z}\left[\sqrt{d_{2} d_{3}}\right]$ is $\varepsilon=11263976658481+\sqrt{d_{3}}$. By a theorem of Nagell [15, Theorem 108a] the base solution of the equation

$$
x_{3}^{2}-1268771701262804794509227360 x_{1}^{2}=-6503259955919
$$

satisfies $0<x_{1}^{(0)}<1$, which is impossible.
In the case $k=35$ the fundamental unit of the order $\mathbb{Z}\left[\sqrt{d_{1} d_{2}}\right]$ is $u+\sqrt{d_{1} d_{2}}$, where $u=$ 6762770109744387416352962930481883284238 . A necessary condition for the solvability of the equation $d_{1} x_{1}^{2}-d_{2} x_{2}^{2}=1$ is that $2 d_{1} \mid(u+1)$ (see [11]). But $\frac{u+1}{2 d_{1}}=\frac{1}{6}$, and hence the last equation has no solution.

In the remaining three cases $k=23 / 1,23 / 2$ and 37 all our methods fail to work.

References

[1] W. A. Anglin, 'Simultaneous Pell equations', Math. Comp. 65 (1996), 355-359.
[2] A. Baker and H. Davenport, 'The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[3] A. Baker and G. Wüstholz, 'Logarithmic forms and group varieties', J. Reine Angew. Math. 442 (1993), 19-62.
[4] A. Bremner, R. J. Stroeker and N. Tzanakis, 'On sums of consecutive squares', J. Number Theory 62 (1997), 39-70.
[5] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1997.
[6] L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1992.
[7] A. Dujella, 'The problem of the extension of a parametric family of Diophantine triples', Publ. Math. Debrecen 51 (1997), 311-322.
[8] A. Dujella, 'A proof of the Hoggatt-Bergum conjecture', Proc. Amer. Math. Soc., 127 (1999), 1999-2005.
[9] A. Dujella and A. Pethő, 'A generalization of a theorem of Baker and Davenport', Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
[10] J. Gebel, A. Pethő and H. G. Zimmer, 'Computing integral points on elliptic curve', Acta Arith. 68 (1994), 171-192.
[11] A. Grelak, A. Grytczuk, 'On the diophantine equation $a x^{2}-b y^{2}=c^{\prime}$, Publ. Math. Debrecen 44 (1994), 291-299.
[12] D. Husemöller, Elliptic Curves, Springer-Verlag, New York, 1987.
[13] A. Knapp, Elliptic Curves, Princeton Univ. Press, 1992.
[14] M. Mignotte and A. Pethő, 'Sur les carres dans certaines suites de Lucas', J. Théor. Nombres Bordeaux 5 (1993), 333-341.
[15] T. Nagell, Introduction to Number Theory, Almqvist, Stockholm; Wiley, New York, 1951.
[16] K. Nakamula, A. Pethő, 'Squares in binary recurrence sequences', in: Number Theory, Diophantine, Computational and Algebraic Aspects (K. Győry, A. Pethő, V. T. Sós, eds.), Walter de Gruyter, Berlin, 1998, pp. 409-421.
[17] K. Ono, 'Euler's concordant forms', Acta Arith. 78 (1996), 101-123.
[18] SIMATH manual, Saarbrücken, 1997.

Department of Mathematics
University of Zagreb
Bijenička cesta 30
10000 Zagreb
Croatia
E-mail: duje@math.hr

Institute of Mathematics and Computer Science
Lajos Kossuth University H-4010 Debrecen P.O. Box 12

Hungary
E-mail: pethoe@math.klte.hu

[^0]: ${ }^{1}$ Research partially supported by Hungarian National Foundation for Scientific Research Grants No. 25157 and 29330.

[^1]: ${ }^{2}$ SIMATH is presently the only available computer algebra system which is capable to compute all integer points of elliptic curves. There is implemented the algorithm of Gebel, Pethő and Zimmer [10].

