
Squares in binary recurrence sequences

K. Nakamula
Department of Mathematics

Tokyo Metropolitan University
and

A. Pethő∗
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Let a, b be integers, d = a2 + 4b

α =
a +

√
d

2
, β =

a−√d

2
and

un(a, b) = un =
αn − βn

α− β
, vn(a, b) = vn = αn + βn,

with n ≥ 0 integer.
If a = b = 1, then un and vn become the well known Fibonacci and Lucas

sequence respectively. Cohn [C1] and independently Wyler [W] proved in
this case that un is a square if and only if n = 0, 1, 2 or 12. Cohn generalized
this result, see [C2, C3].

Recently Mc Daniel and Ribenboim [McR] proved that if a and b are odd
and relatively prime and un is a square or double of a square then n ≤ 12.
In the proof of the above results congruence properties of the sequence un

were used.
∗Research supported in part by Hungarian National Foundation for Scientific Research

Grant 1641/95.
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Mignotte and Pethő [MP] applied a completely different approach to
prove that if b = −1 and n > 4 then un = w2 is impossible with w ∈
{1, 2, 3, 6}, moreover these equations have solutions for n = 4 only if a = 338
in which case u4 = (2 · 13 · 239)2.

Extending the method of Mignotte and Pethő we are intended to prove
in this paper the following theorems.

Theorem 1 Let b = 1. If

un = w2 (1)

with w ∈ {1, 2, 3, 6} then n ≤ 2 except when (a, n, w) = (1, 12, 1), (1, 3, 2), (1, 4, 3),
(1, 6, 2), (2, 4, 3), (2, 7, 1), (4, 4, 2).

Theorem 2 Let a be even or a square and b = 1. If

vn = w2 (2)

with w ∈ {1, 2, 3, 6} then n ≤ 1.

Theorem 3 Let b = −1. If

vn = w2 (3)

with w ∈ {1, 2, 3, 6} then n ≤ 1 except when (a, n, w) = (1, 2, 3), (1, 3, 1), (1, 6, 2),
(2, 2, 6), (3, 3, 36).

1 Elementary properties of un and vn.

In this section we shall prove that it is enough to solve equations (1),(2) and
(3) only for w = 1 and n odd. We shall use the same method as Mignotte
and Pethő [MP]. For a prime p and non-zero integer n let wp(n) denote the
highest power of p dividing n.

Lemma 1 Let p be a prime, a an integer and b = ±1.

1. If p ≥ 5 and p 6 |d, then any prime divisor of up and vp is larger then
p.

2. If p|d then
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(a) p|up,

(b) if p 6= 2 then p 6 |vn for all n,

(c) if p = 2 then w2(vn) = 1 for all n.

Proof: The proof of 1. is very similar to the proof of Lemma 2 of [MP],
therefore we omit it.

Assume that p|d and consider the sequence un. From p|d it follows
α ≡ β (mod p) and so β2 ≡ αβ ≡ −b (mod p). An easy induction
argument shows that un ≡ nβn−1 (mod p), which implies p|up.

If p 6= 2 and p|d then α ≡ β (mod p) implies vn ≡ 2αn (mod p), thus
p never divides vn.

Finally if 2|d, then a is even and so 4|d. Hence vn ≡ 2αn (mod 4).
The lemma is proved. 2

Lemma 2 Let n be an integer such that its largest prime divisor q is greater
then 3. If un = w2 or vn = w2 with w ∈ {1, 2, 3, 6} then uq = 2 or uq2 = 2

or vq = 2 or vq = 22 respectively. The last case can occour only if a is even.

Proof: The proof is the same as of the proof of Lemma 3. of [MP],
except that if a is even and vn = w2 then we have to work with vn

2 instead
of vn. 2

Lemma 3 Let n = 2s · 3t, where s, t ≥ 0 and s + t ≥ 2. Then there exist a
prime p ≥ 5 such that wp(un) is odd except when (a, n) = (1, 3), (1, 4), (1, 6), (1, 12), (2, 4),
(4, 4).

Proof: We consider (1) with n = 4, 6 and 9 and w ∈ {1, 2, 3, 6} separa-
tively. The letters x, y will denote unknown integers.

Let n = 4, then u4 = a(a2 + 2). Remark that (a, a2 + 2) = 1 or 2
according as a is odd or even.

The subcase u4 = 2 and a odd is impossible. Indeed, if a is even then
we get a = 2x2 and a2 +2 = 2y2, which implies y2 = 2x4 +1. This equation
has the only solution x = 0, y = 1 by Ljungreen [L], hence u4 = 2 does not
have solution.

If u4 = 22, then a must be even, say a = (2x)2 and a2 + 2 = 2y2, hence
8x4 = y2−1 = (y−1)(y+1). This implies 2u4−v4 = ±1, with uv = x. The
only solutions of this equation is u = v = 1 and u = 0, v = 1 by Ljungreen
[L]. In the first case a = 0, which is not interesting, while in the second case
we get a = 4, u4(4) = 2 · 62. One can easily check that u8(4) = 7 · 23 · 122
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and u12(4) = 17 · 19 · 107 · 63, hence u2αm(4) for α ≥ 3 and u2α3βm with
α ≥ 2, β ≥ 1 has a prime divisor in odd power.

If u4 = 32 and 3|a then a2 + 2 = 2, which is impossible. Otherwise, if
3 6 |a then a2 +2 = 3x2 and a = y2, i.e. y4−3x2 = −2 if 2 6 |a or a2 +2 = 6x2

and a = 2y2, i.e. 2y4 − 3x2 = −1 if 2|a. We have in both cases the non-
trivial solution (x, y) = (1, 1), in the first case a = 1, u4(1) = 3, while in
the second one a = 2, u4(2) = 12. It is easy to see that u8(2) = 3 · 17 · 23

and u12(2) = 5 · 7 · 11 · 62 and u8(1) = 3 · 7, u12(1) = 144 = 122 and
u9(1) = 34 = 2 · 17.

Let u4 = 62, then a is even. If 3 6 |a then as w2(a2 + 2) = 1 we get
a = (2y)2 and 8y4 + 1 = 3x2, but this equation is impossible mod 4. If 3|a
then a = 3(2y)2 and a2 + 2 = 2x2, thus x2 − 2(6y2)2 = 1. The theory of
Pell’s equation implies that

6y2 =
(3 + 2

√
2)m − (3− 2

√
2)m

2
√

2
with a non-negative integer m, or equivalently

3y2 =
(3 + 2

√
2)m − (3− 2

√
2)m

4
√

2
= um(6,−1).

By the Theorem of [MP] m ≤ 3, thus y = 0 which leads to a = 0.

Let now n = 6, then u6 = u3 · v3 = (a2 + 1)a(a2 + 3). Remark that
(u3, v3) = 2 if a is odd and 1 if a is even. It is clear that a2 + 1 = 2 has
only the solution a = 0 while a2 + 1 = 32 and a2 + 1 = 62 is impossible
modulo 3. Thus we have to consider only those cases, when a2 + 1 = 22.
This relation implies 3 6 |a, thus 3 6 |v3 and either v3 = 2 of v3 = 22. If
v3 = a(a2 + 3) = 2, then as 3 6 |a we have a = 2 and a2 + 3 = 2, which
holds only if a = 1, u6(1) = 8. If v3 = 22, then a = 2 and a2 + 3 = 22,
which is impossible mod 3.

Finally let n = 9. A simple calculation shows that u9 = u3(du2
3 − 3).

If u9 = w2 vith w ∈ {1, 2, 3, 6}, then u3 = w2, which is possible only if
w = 2 and 3 6 |a. Hence 3 does not divide du2

3 − 3 and as u3 is even only
du2

3 − 3 = 2 can eventually occur. From u3 = a2 + 1 = 22 follows a2 ≡ 1
or 4, i. e. du2

3 − 3 = (a2 + 4)(a2 + 1)2 − 3 ≡ 2 modulo 5, which contradicts
du2

3 − 3 = 2.
The lemma is completely proved 2
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2 Main preparatory lemmata.

We solve in this section completely equations (1), (2) and (3) under the as-
sumptions w = 1 and n odd. The method is the same in each cases and
consists of three steps: First we transform the equations to find appropriate
units in orders of infinite families of quartic algebraic number fields. In the
second step we establish the basis of the unit group of the orders. We are
able to do this for (2) only if a is even or a square. This is the reason of the
assumptions in Theorem 2. In the last step we are using analytical consid-
erations. For (3) this is easy, while in the other cases combinations of lower
bounds for linear form in logarithms of algebraic numbers and numerical
diophantine approximation techniques lead to the result.

Lemma 4 Equation
um(a, 1) = x2 (4)

with x ∈ ZZ,m ≥ 3 odd holds if and only if (a,m, x) = (2, 7, 13).

Proof: Put m = 2k + 1. As u3 = a2 + 1 is for a > 0 never a square we
may assume k ≥ 2. Moreover we may obviously assume x > 0. Multiplying
(4) by α

√
d we get

α2(k+1) + β2k = α
√

dx2, (5)

which implies

β2k = (αk+1 − ϑx)(αk+1 + ϑx),

with ϑ =
√

α
√

d. Hence αk+1 + ϑx = ε is a unit in ZZ[ϑ, α].

The field Q(ϑ) is a cyclic quartic number field. Putting ϑ′ =
√
−β
√

d
the homomorphism σ : Q(ϑ) → C with the property ϑσ = ϑ′ generates the
Galois group of Q(ϑ) over Q. For γ ∈ Q(ϑ) let in the sequel γ(i) = γσi

for
i = 1, . . . , 4, i.e. let γ(i) be the i-th conjugate of γ.

The group ξ =< −1, α, ϑ− 1, ϑ′− 1 > has by Theorem 1a index at most
2 in the group of units of ZZ[ϑ, α]. We can easily express the regulator R of
this system of units as

R = 2 log α

[
log2(α(ϑ′ + 1)) + log2 α

ϑ + 1

]
,

thus we have
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R > 2 log α log2 2α.

There exist u0 ∈ {0, 1}, u1, u2, u3 ∈ Q with denominator at most 2 such
that

ε = (−1)u0αu1(ϑ− 1)u2(ϑ′ − 1)u3 . (6)

The following estimates can be checked easily by inserting the given
values of the defining polynomial of the accouring algebraic numbers, as
well as by using elementary properties of the logarithm function.

a +
1

a + 1
≤ α ≤ a +

1
a

−1
a

≤ β ≤ − 1
a + 1

a +
1
a

< ϑ ≤ α +
1
α

1 +
1

4a2
< ϑ′ < 1 +

1
a2

log a +
1

a(a + 1)
< log α < log a +

3
2a2

− log(a + 1) < log |β| < − log a

log a +
1
a2

< log ϑ < log α +
3

2a2

1
4a2

< log ϑ′ <
3

2a2

From (5) we have

ϑx = αk+1
√

1 + β4k+2,

hence

1
3
|β|3k+1 ≤ ϑx− αk+1 ≤ 1

2
|β|3k+1.

Using this inequality we can easily derive the following estimates for the
conjugates of ε:
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2αk+1 +
1
3
|β|3k+1 ≤ ε(1) = ϑx + αk+1 ≤ 2αk+1 +

1
2
|β|3k+1 (7)

αk − |β|k ≤ ε(2) = ϑ′x + βk+1 ≤ αk + |β|k (8)

−1
2
|β|3k+1 ≤ ε(3) = −ϑx + αk+1 ≤ −1

3
|β|3k+1 (9)

−αk − |β|k ≤ ε(4) = −ϑ′x + βk+1 ≤ −αk + |β|k (10)

From (7) and (9) we get

(4k + 2) log α− log 1.5 < log ε(1) − log |ε(3)| < (4k + 2) log α +
1
4
|β|4k+2,

which is equivalent with

(4k+2) log α−log 1.5 < u2 log
ϑ− 1
ϑ + 1

+u3 log
ϑ′ − 1
ϑ′ + 1

< (4k+2) log α+
1
4
|β|4k+2

by (6).
Similarly, inequalities (8) and (10) imply

| log |ε(2)| − log |ε(4)|| < 3|β|2k.

Computing the conjugates of ε form (6) and inserting the result we get
∣∣∣∣u2 log

ϑ′ + 1
ϑ′ − 1

+ u3 log
ϑ− 1
ϑ + 1

∣∣∣∣ < 3|β|2k,

which can reformulate as

|Λ| =
∣∣∣∣2u2 log α(ϑ′ + 1)− 2u3 log

ϑ + 1
α

∣∣∣∣ < 3|β|2k. (11)

We just proved two, in u2 and u3, linear inequalities. They imply that
both u2 and u3 are negative, moreover

u3 > −
(

1 +
3
a3

)
(2k + 1). (12)

We prove now that |u2| is very small in comparing with |u3|. Indeed the
following chain of inequalities
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2|u3|
a

> 2|u3| log
ϑ + 1

α
> 2|u2| log α(ϑ′ + 1)− |Λ|
> 2|u2| log 2α− 3β2k

> 2|u2| log 2a

implies
|u3| > |u2|a log 2a, (13)

whenever u2 6= 0.
Consider first the case when u2 = 0. Then as log ϑ+1

α > log α+1
α > α−1

α2

inequality (12) can hold only if u3 = 0 holds too. Then ε belongs to Q(α)
and x = 0.

Hence we may assume u2 6= 0 in the sequel.
To prove an upper bound for a and afterward for |u3| we shall use The-

orem 2. from Laurent, Mignotte and Nesterenko [LMN]:

Theorem 4 Let α1, α2 be real algebraic numbers of absolute value at least
1 and b1, b2 be integers. Put

Λ̃ = b2 log α1 − b1 log α1

and

D = [Q(α1, α2) : Q]/[IR(α1, α2) : IR].

Let a1, a2 and h be positive real numbers and ρ > 1. Put λ = log ρ and
assume that

h > max
{

D

2
, 5λ, D

(
log

(
b1

a2
+

b2

a1

)
+ log λ + 1.56

)}
,

ai ≥ max{2, 2λ, ρ| log αi| − log |αi|+ 2Dh(αi)}, (i = 1, 2).

If α1 and α2 are multiplicatively independent, then

log |Λ̃| ≥ −λa1a2

9

(
4h

λ2
+

4
λ

+
1
h

)2

− 2λ

3
(a1 + a2)

(
4h

λ2
+

4
λ

+
1
h

)

−16
√

2a1a2

3

(
1 +

h

λ

)3/2

− 2(λ + h)− log

(
a1a2

(
1 +

h

λ

)2
)

+
λ

2
+ log λ− 0.15.
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To apply Theorem 2.1 we chose α1 = α(ϑ′ + 1), α2 = ϑ+1
α , b1 = 2u3 and

b2 = 2u2. Remember, that both u2 and u3 are negative.
Put ρ = 15, λ = log 15, D = 4,

a1 =
{

16 log 2a + 7
a , if a > 104

169 > 17 · log(2 · 104), if a ≤ 104,

a2 =
{

2 log 2a + 20
a , if a > 104

40 > 2 log 2a + 20, if a ≤ 104.
and

h =





4 log
(
−2u3

a2

)
+ 12.628, if a > 104

4 log
(
−2u3

a2

)
+ 13.8, if a ≤ 104 and − u3 ≥ 8.

One can easily check that our choice of h and ai satisfy the conditions
of Theorem 2.1. Let us consider first the case a > 104. Then putting
y = log

(
−2u3

a2

)
we get by Theorem 2.1.

− log |Λ| < 23a2 log 2a(y + 3.9)2 + 36a2(y + 3.9)
+ 38.5a2(y + 3.84)3/2 + 8y + 31.4 + log(a2(y + 3.84)2).

On the other hand (12) and (13) imply

− log |Λ| > (2k + 1) log a− log 3a >

(
1 +

3
a3

)−1

(−u3) log a− log 3a (14)

for all a ≥ 1. Combining the last two inequalities, multiplying them by
2

(
1 + 3

a3

)
and dividing by a2 log a we get:

51.06(y + 3.9)2 + 7.9(y + 3.9) + 4.2(y + 3.84)3/2 + 0.1y

0.03 log(y + 3.84) + 0.5 > exp(y),

which implies

−2u3

a2
< 9824.1. (15)

We have |2u3| > a log 2a by (14), hence

a log 2a < 9824.1
(

2 log 2a +
20
a

)
.
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Thus for a > 17866 inequality (12) has no solution, i.e. the Lemma is proved
in this range.

If 104 < a ≤ 17866 then (16) implies

|2u3| < 1.8 · 105.

Finally, if 1 ≤ a ≤ 104, then the lower bound for |Λ| becomes

− log |Λ| < 242.1a2(y + 4.2)2 + 20.6a2(y + 4.2)
+27.84a2(y + 4.13)3/2 + 8y + 40.42 + 2 log(y + 4.13)

Comparing this inequality again with (15) we get

1937(y + 4.2)2 + 165(y + 4.2) + 223 · (y + 4.13)3/2 + 1.6y

+8.1 + 0.4 log(y + 4.13) > exp(y),

which implies

|2u3| < 2.5 · 107 (16)

by the choice of a2.

To prove the theorem in the range 1 ≤ a ≤ 17866 we used the following
reduction procedure. From (12) we get

∣∣∣∣2u2 − 2u3
log α2

log α1

∣∣∣∣ <
3

α2k log 2a
. (17)

We proved also −2.5 · 107 < 2u3 < 0, if 1 ≤ a ≤ 17866. Let p
q be a

convergent of log α2

log α1
such that q > 2.5 · 107, then by a well known property

of the continued fractions we get
∣∣∣∣p− q

log α2

log α1

∣∣∣∣ <

∣∣∣∣2u2 − 2u3
log α2

log α1

∣∣∣∣ <
3

α2k log 2a
.

Computing for each a from the range 1 ≤ a ≤ 17866 the first convergent
p(a)
q(a) of the continued fraction expansion of log α2(a)

log α1(a) such that q(a) > 2.5 ·107

and then the value
∣∣∣∣p(a)− q(a)

log α2(a)
log α1(a)

∣∣∣∣ = Θ(a)
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we find a, hopefully smaller, new upper bound for k, which implies by (13) a
new upper bound for |2u3|. We expect, that iterating eventually this process
we find that for most of the values of a inequality (12) can not hold.

This indeed happened. Unfortunatelly we can not recapitulate here the
computation for all values, we only give the most important data for the
case a = 2. The 17-th convergent of the continued fraction expansion of
α2(2)
α1(2) is 17012895

68139853 and Θ(2) = 2.88210−7, hence k ≤ 3. A simple calculation
showes that k = 3, i.e. m = 7 is indeed a solution. For a > 2 we got k ≤ 1
after the reduction, which proves the lemma. 2

3 Proof of the Theorems

Proof of Theorem 1. Assume that (1) holds for an n > 0. If the largest
prime divisor q of n is greater then 3 then uq = 2 or uq2 = 2 by Lemma
1.2. This is possible by Lemma 2.1 only if a = 2 and m = 7. As u5(2) =
29, u14(2) = 2 · 239 · 132, u21(2) = 5 · 132 · 45697 and u49(2) = 132 · 293 ·
40710764977973 we see that if 7 is the largest prime factor of n and n/7 > 1
then un(2) has always a prime factor, which is larger then 2, on the first
power. Hence it remains to examine the cases when n = 2α3β with α, β ≥ 0.
But this was already done in Lemma 1.3. Theorem 1 is proved. 2

References

[C1] J.H.E Cohn, On square Fibonacci numbers, J. London Math. Soc. 39
(1964), 537–540.

[C2] J.H.E Cohn, Eight Diophantine equations, Proc. London Math. Soc.,
16 (1966), 153–166.

[C3] J.H.E Cohn, The Diophantine equation y2 = Dx4 + 1, J. London
Math. Soc. 42 (1967), 475–476.

[L] W. Ljungreen, Zur Theorie der Gleichung x2+1 = Dy4, Avh. Norske
Vid. Akad. Oslo, No. 5 1 (1942).

[LMN] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en
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