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1 Introduction and the Theorem

In [7] we determined all torsion groups of elliptic curves with integral j−invariant
over arbitrary cubic fields. We found in particular, that there are infinitely many
curves having a torsion group isomorphic to ZZ/5ZZ. Moreover we obtained a
parametrization for the defining polynomials of the possible cubic ground fields.
Using this parametrization we proved that, in contrast to the general case, there
are only finitely many curves having a torsion group isomorphic to ZZ/5ZZ over
cyclic cubic fields. The proof is based on the Theorem below already mentioned
(but not proved) in [6]. Here we shall provide a detailed proof of that theorem,
where we shall use ideas of [1], [2], [5] and [8].

Theorem 1 Let n ≥ 0 be an integer, ε, ε1 ∈ {1,−1} and denote by IK a cyclic
cubic number field. Assume that there exist an η ∈ ZZIK, the ring of integers of
IK, such that

NIK/Q(η) = ε

(1)
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NIK/Q(η2 − 11η − 1) = ε15n.

Then IK is generated by a zero of one of the following eight polynomials p (for
which the discriminants of p and IK are also listed).

i p(z) D(p(z)) DIK n

1 z3 − 12z2 + 9z + 1 (32 · 13)2 (32 · 13)2 0
2 z3 − 12z2 + 35z + 1 (5 · 13)2 132 4
3 z3 + 3z2 − 160z + 1 (52 · 163)2 1632 4
4 z3 − 17z2 − 25z + 1 (23 · 5 · 13)2 132 5
5 z3 − 13z2 + 10z + 1 1392 1392 0
6 z3 − 14z2 + 11z + 1 1632 1632 2
7 z3 − 9z2 + 6z + 1 (32 · 7)2 (32 · 7)2 3
8 z3 + 3z2 − 10z + 1 (5 · 13)2 132 5

Moreover if η ∈ ZZIK is a solution of (1) then either η or −1/η is a zero of
the generating polynomial p of IK.

2 Auxiliary Results

In the sequel we denote by {Fn}∞−∞ and {Ln}∞−∞ the sequence of the Fibonacci
and Lucas numbers respectively. They are given by the initial conditions F0 =
0, F1 = 1 and L0 = 2, L1 = 1 and satisfy the difference equation

xn+1 = xn + xn−1.

For later application, we list several properties of these sequences.

(P1) If x, y ∈ ZZ is a solution of the diophantine equation

x2 − 5y2 = ±4

then (x, y) = (±Lm,±Fm) for some integer m ∈ ZZ≥0.

(P2)

F−n =
{

Fn, if n is odd
−Fn, if n is even

and

L−n =
{−Ln, if n is odd

Ln, if n is even

(P3) 2Fn+m = FmLn + FnLm

(P4) 2Ln+m = LmLn + 5FmFn

2



(P5) Let n = ±2α · 3β · k for α, β ∈ ZZ≥0 with α ≥ 2 and k ∈ ZZ such that
gcd(k, 6) = 1. Then for any m ∈ ZZ
Fn+m ≡ −Fm (mod L2α−2k) and
Ln+m ≡ −Lm (mod L2α−2k).

(P6) For any M ∈ IN, the sequences {Fm mod M}∞−∞ and {Lmmod M}∞−∞
are periodic.
The minimal length of period of the corresponding sequence will be de-
noted by r(M) = rF (M) and rL(M). We have rL(M)|rF (M).

(P7) 5|Fn if and only if 5|n.

(P8) If k ∈ IN is odd, then Ln|Lkn for any n ∈ ZZ.

(P9) For any m ∈ ZZ, L2m = L2
m − 2(−1)m

Using the properties of the Fibonacci and Lucas numbers listed above we
first characterize the solutions of (1) in cubic fields.

Lemma 1 Let ε = −1, IK a cubic number field and η ∈ ZZIK a solution of (1).
Then there exist an m ∈ ZZ≥0 and ε2, ε3 ∈ {1,−1} such that η is a zero of the
polynomial

P (z) := P (z; k,m, ε2, ε3) = z3 +(−12+ε25kGm)z2 +(10+ε2ε35kGm−5ε3)z +1,

where

Gm =





Fm , if n = 2(k + 1), k ∈ ZZ≥0

Lm , if n = 2(k + 1) + 1, k ∈ ZZ≥0

F5m , if n = 0, k = −1.

For n = 1, (1) is unsolvable.
Conversely, is η is a zero of the polynomial P (z; k, m, ε2, ε3) and IK = Q(η),

then η is a solution of (1) in ZZIK.

Remarks
(a.) It follows immediately from Lemma 1 that for any n ∈ ZZ≥0, n 6= 1,

there exit infinitely many cubic fields in which (1) is solvable.

(b.) Let us fix a cubic number field IK and consider the extension field L =
IK(
√

5). By the same argument as in Fung et al. [3], one can easily show that
n is bounded and (1) has only finitely many effectively computable solutions
η ∈ ZZIK. But their method seems not capable to show that there exists only
finitely many cyclic cubic fields, for which (1) is solvable.

The Lemma could be proved by using the Theorem of [6] but we prefer to
argue here directly.
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Proof of Lemma 1. Suppose that η ∈ ZZIK solves (1). Let P (x) = z3 −
vz2 + m1z + 1 and q(z) denote the minimalpolynomial of η and η2 − 11η − 1,
respectively, and put h(z) = z2 − 11z − 1. Then q(z) divides the resultant

q1(z) = Resy(z − h(y), P (y))

by Theorem 8 in [2]. A simple computation using MAPLE V results

q1(z) = z3 − (v2 − 11v − 2m1 − 3)z2

−(2v2 − 24v + 11vm1 −m2
1 − 125m1 + 30)z

−v2 + 134v − 11vm1 + m2
1 + 112m1 − 1364.

Since the constant term of q1(z) is ε15n we obtain the following quadratic equa-
tion for the integer m1 :

m2
1 −m1(11v − 112)− v2 + 134v − 1364− ε15n = 0.

The discriminant of this equation in m1 has to be a square of an integer w; thus
, after a simple computation, we obtain

w2 − 125(−v + 12)2 = −4ε1 · 5n = ±4 · 5n, (2)

m1 =
11v − 112 + w

2
. (3)

Equation (2) is obviously unsolvable for n = 1, hence our assertion in true
in this case. Now we distinguish three cases.

Case 1. Let n = 2(k + 1) with a k ∈ ZZ≥0 and suppose that v, w ∈ ZZ
form a solution of (2). We claim that there exists an m ∈ ZZ≥0 such that
w = ε4 · 5k+1Lm and −v + 12 = ε2 · 5k · Fm with ε2, ε4 ∈ {1,−1} and k ∈ ZZ≥0.
The assertion of Lemma 1 then follows immediately.

Of course, this claim is true for k = 0 for we then have w = 5w1 with an
w1 ∈ ZZ and after division by 25 equation (2) becomes

w2
1 − 5(−v + 12)2 = ±4.

We can now apply (P1) to get the asserted expressions for v and w.
Suppose now that the claim is true for a k ≥ 0. Then, as

w2 − 125(−v + 12)2 = ±4 · 52(k+2)

we have w = 5w1 with a w1 ∈ ZZ and 5|(−v + 12). Thus

w2
1 − 125

(−v + 12
5

)2

= ±4 · 52(k+1).

The claim follows by induction.
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Inserting the values of v and w into (3) we obtain

m1 =
11(12− ε2 · 5kFm)− 112 + ε4 · 5k+1Lm

−2
= 10 + 5k−11ε2Fm + 5ε4Lm

2
.

We have F5 = F−5 = 5 and −L5 = L−5 = −11 by (P2), hence by (P3)

m1 =
{

10 + 5kε2Lm−5 , if ε2 = ε4

10− 5kε2Fm+5 , if ε2 = −ε4,

which can be summarized in the form m1 = 10 + 5kε2ε3Fm−5ε3 . This proves
Lemma 1 in Case 1.

Case 2. Let n = 2(k + 1) + 1 with a k ∈ ZZ≥0. This case can be treated
analogously to Case 1. One needs only observe that, for odd n’s the role of w
and −v +12 is to be interchanged. Furthermore in the final step, one has to use
(P4) instead of (P3) .

Case 3. Let n = 0. Then (2) becomes

w2 − 5(5(−v + 12))2 = ±4.

Hence, by (P1), w = ε3Lm′ and 5(−v + 12) = ε2 · Fm′ for some m′ ∈ ZZ≥0 and
ε2, ε3 ∈ {1,−1}. By (P7), we know that 5|m′ and hence, on putting m′ = 5m
the relations

−v = −12 + ε2 · 5kF5m and w = ε3L5m

hold with k = −1. Now m1 can be transformed into the asserted form as in
Case 1.2

In the sequel,
(

x
m

)
will denote the Jacobi symbol for coprime integers x,m.

The following two lemmata play a crucial role in the proof of the Theorem.
They are generalizations of Lemmata 2 and 3 in [2].

Lemma 2 Fix an integer h, a polynomial H(x, y) ∈ ZZ[x, y], a set P = {p1, . . . , pt}
of a primes and let {Gm} be one of the sequences defined in Lemma 1. Let
r(p) denote the minimal period of the sequence {Gm mod p} for p ∈ P, put
lcm[r(p1), . . . , r(pt)] = R and choose M = {m1, . . . , ms} as a set of integers
satisfying 0 ≤ m1 < m2 < . . . < ms < R. If, for each m ∈ M there exists a
p ∈ P such that

(
H(Gm, Gm+h)

p

)
= −1 (4)

then any solution x, z ∈ ZZ of the diophantine equation

H(Gx, Gx+h) = z2 (5)

satisfies the incongruences x 6≡ mi (mod R) 1 ≤ i ≤ s.
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Before giving the proof, we formulate a simple consequence of Lemma 2,
which is very useful with respect to proofs of unsolvability of diophantine equa-
tions of form (5).

Corollary Let the notation be the same as in Lemma 2. If for each 0 ≤ m <
R there exists a p ∈ P such that (4) holds, then (5) has no solution x, z ∈ ZZ.

Proof of Lemma 2. Suppose that x, z ∈ ZZ is a solution of (5) such that
x mod R ∈M. We may assume without loss of generality that x ≡ m1 (mod R).
For x, z ∈ ZZ to be a solution of (5), it is necessery that

(
H(Gx, Gx+h)

p

)
= 1

for any prime number p.
On the other hand by the hypothesis there exists a prime p ∈ P such that

(
H(Gm1 , Gm1+h)

p

)
= −1.

As x ≡ m1 mod R and r(p)|R we have a fortiori x ≡ m1 (mod r(p)), thus
Gx ≡ Gm1 (mod p) and Gx+h ≡ Gm1+h (mod p). Hence

H(Gx, Gx+h) ≡ H(Gm1 , Gm1+h) (mod p);

thus the last two equations are contradictory. This proves Lemma 2. 2

A typical application of Lemma 2 is to prove, with an appropriate choice of
the set of P, that all solutions of (5) in x belong to some residue classes mod R.
Enlarging the set P we can prove the same result with respect to an R′ > R.
But this process does not yield a complete solution of (5), for when x0 ∈ ZZ
is a solution of (5), then H(Gx, Gx+h) is a quadratic residue mod R for all x
belonging to the residue class x0 mod R. The next lemma serves the purpose of
showing that, in a fixed residue class with respect to a sufficiently large modulus
R, at most one integer x can be part of a solution of (5). The lemma at the
same time also provides a method for constructing the modulus R.

Lemma 3 Let H(x, y) ∈ ZZ[x, y],m0, h ∈ ZZ and P = {p1, . . . , pt} a set of
primes with pi ≥ 5, 1 ≤ i ≤ t. Suppose that there exist a, b1, . . . , bt ∈ ZZ>0 such
that, for any α ≥ a − 1 there exist integers β1, . . . , βt with 0 ≤ βi ≤ bi (i =
1, . . . , t) for which (

H(−Gm0 ,−Gm0+h)
L

2αp
β1
1 ···pβt

t

)
= −1 (6)

hold. Then equation (5) has at most one solution x, z ∈ ZZ satisfying

x ≡ m0 (mod 2a+1pb1
1 · · · pbt

t ),

namely x = m0.
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Proof. Let x, z ∈ ZZ be a solution of (5) with x = m0 + 2a+1pb1
1 · · · pbt

t · n
for 0 6= n ∈ ZZ. Write n = ±2c · 3dn1 with n1 odd and 3 6 |n1. Then we have
L

2a+c−1p
b1
1 ···p

bt
t
|L

2a+c−1p
b1
1 ···p

bt
t ·n1

by (P8) and by (P5) it then follows that

Gx ≡ −Gm0 (mod L
2a+c−1p

b1
1 ···p

bt
t

)

and

Gx+h ≡ −Gm0+h (mod L
2a+c−1p

b1
1 ···p

bt
t

).

Therefore,

H(Gx, Gx+h) ≡ H(−Gm0 ,−Gm0+h) (mod L
2a+c−1p

b1
1 ···p

bt
t

). (7)

Choose α = a + c − 1 ≥ a − 1. Then, by hypothesis (6) holds for some
(α, β1, . . . , βt) with 0 ≤ βi ≤ bi, 1 ≤ i ≤ t. By (P8), we know that L

2αp
β1
1 ···pβt

t
|L

2αp
b1
1 ···p

bt
t

and then (7) yields

H(Gx, Gx+h) ≡ H(−Gm0 ,−Gm0+h) (mod L
2αp

β1
1 ···pβt

t
).

This congruence together with (6) contradicts the hypothesis that x, z ∈ ZZ
form a solution of (5). The lemma is proved. 2

3 Proof of the Theorem

At this stage we have at hand most of the auxiliary results which we need in
order to prove our Theorem. We shall see that it is a direct consequence of the
following proposition

Proposition 1 Let

D(u, w) = 15125 + 1464w − 3948u− 462uw + 24w2

−24uw2 + 244u2 + 20u2w + u2w2 − 4u3 − 4w3

and {Gm}∞−∞ one of the sequences defined in Lemma 1. Then the diophantine
equation

D(ε25kGm, ε2ε35kGm−5ε3) = y2 (8)

has only the following solutions in non-negative integers k, m, y and ε2, ε3 ∈
{−1, 1}

Fm : (k, m, y, ε2, ε3) (1, 0, 65, 1, 1) (1, 4, 4075, 1,−1) (0, 3, 163,−1, 1)
Lm : (1, 1, 520,−1, 1) (0, 2, 63, 1, 1) (1, 2, 65, 1, 1)
F5m/5 : (−1, 0, 117, 1,−1) (−1, 5, 139,−1, 1).
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Before proving the Proposition we shall show how it implies the Theorem.

Proof of the Theorem. Let η be a solution of (1) with ε = −1. Then
−1/η solves (1) with ε = 1, thus, in the sequel, we may assume ε = −1. Then
by Lemma 1, η is a zero of P (z; k,m, ε2, ε3) for some values of the parameters
k,m, ε2, ε3. It is well known that the discriminant of a defining polynomial of a
cyclic cubic number field is a square of an integer.

Let
p(z; u,w) = z3 + (−12 + u)z2 + (10 + w)z + 1

so that we have

p(z; ε25kGm, ε2ε35kGm−5ε3) = P (z; k, m, ε2, ε3).

A simple computation shows that the discriminant of p(z;u, w) is D(u,w). Thus
to determine all cyclic cubic number fields which contain an element η satisfying
(1), it is enough, by Lemma 1, to solve (8) for the recursive sequences Gm =
Fm, Lm and F5m/5.

The solutions of (8) given in the Proposition yield the number fields 2.,3.
and 5. for the Fibonacci sequence; the fields 4.,7. and 8., for the Lucas sequence
and finally the fields 1. and 6. for F5m/5. The Theorem is proved. 2

4 Proof of the Proposition

We first require a lemma.

Lemma 4 Equation (8) has no solution for k ≥ 2, m ≥ 0.

Proof. Let k ≥ 3,m ≥ 0 and ε2, ε3 ∈ {−1, 1} be fixed. Then D =
D(ε25kGm, ε2ε35kGm−5ε3) is an integer. We shall prove that 54|(D − 15125).
As 53‖15125 this implies that 53‖D and D can not be a square of an integer. In
fact this claim is trivially true for k ≥ 4. Define A = 1464ε3Gm−5ε3 − 3948Gm.
For k = 3 we have 56|(D − ε2 · 5kA− 15125) and we want to prove that 5|A.

We obviously have

A ≡ 4ε3Gm−5ε3 + 2Gm (mod 5).

It is easy to see that Gm+5 = 8Gm +5Gm−1 for any m ∈ ZZ, which implies that

A ≡
{−32Gm + 2Gm, if ε3 = −1

4Gm−5 + 16Gm−5, if ε3 = 1 (mod 5)

Thus A ≡ 0 (mod 5) in both cases. Therefore equation (8) is not solvable for
k ≥ 3.

Now we consider the case k = 2 and suppose that n is odd. Then by Lemma
1 Gm = Lm. Since the relation 5|A holds also for k ≤ 2, we have 53|D. Assume
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that (8) is solvable then we must even have 54|D since D is a square. We shall
prove that this is impossible. In fact if 54|D, then

D ≡ 15125 + ε25k(1464ε3Lm−5ε3 − 3948Lm) ≡ 0 (mod 54).

On dividing by 25, we see that the quantity D1 := D/53 satisfies

5D1 ≡ 5 + ε2(14ε3Lm−5ε3 + 2Lm) ≡ 0 (mod 25).

By virtue of the identity Lm+5 = 8Lm + 5Lm−1 we obtain

5D1 ≡
{

5(1− 2ε2(Lm + 2Lm−1)), if ε3 = −1
5(1 + ε2(Lm−5 + 2Lm−6)), if ε3 = 1 (mod 25).

But it is easy to check that Lm + 2Lm−1 ≡ 0 (mod 5) holds for any m ∈ ZZ,
hence D1 ≡ 1 mod 5 in contradiction to 54|D.

In the remaining case, when k = 2 and n is even, the solvability of equation
(8) cannot be disproved in the same way. This can be seen as follows: We have
Gm = Fm and by the same computation obtain the condition

0 ≡ D1 ≡
{

1− 2ε2(Fm + 2Fm−1), if ε3 = −1
1 + ε2(Fm−5 + 2Fm−6), if ε3 = 1 (mod 5).

Since it is easy to show that Fm + 2Fm−1 ≡ Lm (mod 5) for any m ∈ ZZ we see
that D1 ≡ 0 (mod 5) holds for any choice of ε2 and ε3.

Therefore we use an other argument. We invoke the corollary of Lemma 2
choosing H(x, y; ε2, ε3) = D(ε2 · 52x, ε2ε352y), h = −5ε3 and the set of primes
P = P1 = {3, 11, 17, 19, 31, 41, 61 , 107, 181, 541, 2521}. Then one easily checks
that r(p)|360 for any p ∈ P1. We compute

J(m, p; ε2, ε3) =
(

H(Fm, Fm+h)
p

)

for each 0 ≤ m < 360 and each p ∈ P1 and found a p = p(m, ε2, ε3) ∈ P1

with J(m, p; ε2, ε3) = −1 for each possible choice of ε2, ε3 ∈ {−1, 1} and each
0 ≤ m < 360. Hence, by the Corollary, (8) is not solvable for k = 2 and n even,
and so Lemma 4 is completely proved.2

Proof of the Proposition. By Lemma 4, we need to consider equation (8)
only for k = −1, 0, 1 . The proof, carried out essentially by means a computer,
is divided into three steps.

Step 1. Exclusion of those triples (k, ε2, ε3) for which (8) is unsolvable and
computation of the small solutions m0 of (8) in the case of solvability was achived
by means of Lemma 2.
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Step 2. This is a search for a small set of primes which enables us to exclude
solutions of (8) by means of Lemma 3.

Step 3. Using Lemma 2 we prove that if, for some triple (k, ε2, ε3), m is a
solution of (8), then

m ≡ m0 (mod 2a+1pb1
1 . . . pbt

t )

for some suitable primes p1, . . . , pt and integers a, b1, . . . , bt. In what follows we
specify the parameters used in each step and the results of the computations.

In Step 1 we tested (8) for any possible choice of the parameters (ε2, ε3, n, k)
using Lemma 2 with the set of primes P2 = P1 ∪ {5, 7, 23, 241, 2161}. We have
r(p)|720 for any p ∈ P2. In Table 1 we exhibit the result of the test. A number
m0 in the table indicates that, if m is a solution of (8), then m ≡ m0 (mod 720),
while an asterisk * indicates that, for that choice of parameters, (8) is not
solvable.

(n,k) (5,1) (3,0) (4,1) (2,0) (0,-1)
(ε2, ε3)
(1,1) 2 2 0 * *
(1,-1) 718,719 718 4 * 0
(-1,-1) * * 0 717 719
(-1,1) 1 * 716 3 0,1

Table 1.

Using (P2) it is easy to check that

P (z; k,−m, ε2, ε3) =
{

P (z; k, m, ε2,−ε3), if m + n is odd
P (z; k, m,−ε2,−ε3), if m + n is even.

Hence, by Table 1, it is enough to consider the following values: (n, k, ε2, ε3) =
(5, 1, 1, 1), (5, 1,−1, 1), (3, 0, 1, 1), (4, 1, 1, 1), (4, 1, 1,−1), (2, 0,−1, 1), (0,−1, 1,−1),
(0,−1,−1, 1). Let m0 = m0(n, k, ε2, ε3) denote the value shown at the corre-
sponding place in Table 1. Let

H(x, y) = H(x, y; k, ε2, ε3) = D(ε25kx, ε2ε35ky).

In Step 2 we search for suitable sets P of primes for which we can apply
Lemma 3 with suitable exponents a, b1, . . . , bt. In Table 2 we summarize the re-
sult of this search. In the column Dm0 we list the value of D(−Gm0 ,−Gm0−5ε3)
and in the rows columnwise headed by the primes 2, p1 = 5, . . . , p7 = 37 we
display the respective exponents a, b1, . . . , bt for which we were able to verify
the hypothesis of Lemma 3. Here a hyphen indicates here that the coresponding
prime did not enter into the calculation.
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(n, k, ε2, ε3) m0 Dm0 2 5 7 11 13 17 31 37

(5,1,1,1) 2 33 · 52 · 907 4 2 2 1 - - - -
(5,1,-1,1) 1 −25 · 52 · 337 3 2 1 - 1 - - -
(3,0,1,1) 2 47 · 911 5 2 - - - - - -
(4,1,1,1) 0 33 · 52 · 83 4 2 - - - - - -
(2,0,-1,1) 3 7537 3 2 1 1 - 1 1 1
(4,1,1,-1) 4 33 · 52 · 419 4 2 1 - 1 - - -
(0,-1,1,-1) 0 17 · 977 3 1 2 1 - - - -
(0,-1,-1,1) 1 72 · 233 3 1 2 - - - - -

Table 2.

In Step 3 we prove that, if m = m(n, k, ε2, ε3) solves (8), then

m ≡ m0 (mod 2a · 5b1 · 7b2 · 11b3 · 13b4 · 17b5 · 31b6 · 37b7) (9)

for the numbers a, b1, . . . , b7 listed in the row (n, k, ε2, ε3) of Table 2. Indeed, if
we are able to verify (9), then, by Lemma 3, we conclude that m = m0.

For this purpose we once again apply Lemma 2, this time for the following
eight sets of primes corresponding to the eight cases of Table 2. The associated
values of R are also listed.

P3 = {3, 7, 11, 13, 29, 41, 71, 97, 101, 151, 281, 401, 491, 701, 911, 1471, 2161, 2801, 3001},
R = 16900 = 24 · 52 · 72

P4 = {13, 17, 19, 29, 83, 97, 107, 167, 211, 281, 293, 421, 503, 587, 1009, 1427, 3527, 3529},
R = = 24 · 32 · 72

P5 = {3, 7, 23, 47, 127, 383, 769, 1087, 1103, 2207, 3167},
R = = 28 · 3
P6 = {43, 89, 197, 199, 263, 307, 331, 661, 881, 967, 991, 1321, 2179, 2731, 3169},
R = 7920 = 24 · 32 · 11 · 5
P7 = {79, 103, 131, 233, 467, 521, 859, 1171, 1249, 1637, 1951, 2081, 2341, 2731, 3121},
R = 24 · 32 · 5 · 13 = 9360
P8 = {3, 7, 11, 23, 31, 41, 61, 67, 409, 919, 1021},
R = 4080 = 24 · 3 · 5 · 17
P9 = {3, 7, 11, 23, 31, 41, 61, 557, 743, 2417, 311, 1489, 1861, 2791, 3347},
R = 22320 = 24 · 32 · 5 · 31

P10 = {3, 7, 11, 23, 31, 41, 61, 73, 149, 443, 887, 2663, 1481, 3331, 2221},
R = 8880 = 24 · 3 · 5 · 37.

On employing this sets of primes one verifies that Table 2 contains all solu-
tions of equation (8). This proves the Proposition. 2
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