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� Introduction

Let a� b � Z with �� � �a� � 	
b� �� �� De�ne a �nite set of places S �
fq�� � � � � qs��� qs ��g of Q and put Q � maxfq�� � � � � qs��g� Consider the group
EQ� of rational points or Mordell�Weil group of the elliptic curve

E � y� � x� � ax� b ��

over Q with discriminant �� and absolute invariant j � �	� �a
�

��

� The multi�
plicative height of a rational point P � x� y� � EQ� is de�ned as the following
product over all places q of Q including q ����

HP � �
Y
q

maxf�� jxjqg�

where the jxjq �s are the normalized multiplicative absolute values of Q corre�
sponding to the places q and satisfying the product formula�
Let EZS� denote the set of S�integral points of EQ�� i�e�

EZS� � fP � x� y� � EQ�jHS P � � �g�

where
HSP � �

Y
q��S

maxf�� jxjqg�

Siegel �		� proved in ��	� that the number of integral points on an elliptic curve
E over an algebraic number �eld K is �nite� and Mahler ���� generalized this
result in ���� to S�integral points� Moreover� beginning with the pioneering
work of Baker ���� several authors derived bounds for the size of the coordinates
of integer points on elliptic curves E over K � Coates ��� proved that EZS�
contains only �nitely many elements and that these can be e�ectively computed�
The proofs used algebraic number�theoretical methods� the equation �� was
transformed into �nitely many S�unit equations�
A completely di�erent method for proving the �niteness of EZS� was proposed
by S� Lang ���� and Zagier ����� Here one makes use of the group structure of
EQ� and invokes properties of ordinary and q�adic elliptic logarithms� After S�
David �
� established an explicit lower bound for linear forms in complex elliptic
logarithms� Lang�s idea could be transformed into an algorithm for computing
all integer points on elliptic curves� This was done by Gebel� Peth�o and Zimmer
���� and independently by Stroeker and Tzanakis �	
�� The algorithm of Gebel�
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Peth�o and Zimmer was implemented by Gebel in the computer algebra package
SIMATH and is available free of charge�
N� Smart �	�� generalized the above method to an algorithm for �nding all S�
integral points on elliptic curves� Unfortunately� his approach� which seems to
work well in practice� depends on an unproved lower bound for linear forms
in q�adic elliptic logarithms� If the rank of EQ� is at most two� then such a
bound was obtained by R�emond and Urfels �	�� and applied by Gebel� Peth�o
and Zimmer ���� to �nd all S�integral points on Mordell�s curves y� � x� � k�
with jkj � ��� and such that the rank of the curve is strictly less then three�
In this note we combine the advantages of the methods of Siegel�Baker�Coates
and of Lang�Zagier to overcome the absence of an explicit lower bound for
linear forms in q�adic elliptic logarithms� This was made possible by a recent�
completely explicit upper bound for the S�integral solutions of �� established
by Hajdu and Herendi �����
In Section 	 we state our theoretical result and in the subsequent section we
prove it� In Section � we deal with the computational aspects of the main result
and in Section � we explain how we compute q�adic elliptic logarithms� Finally
we show through an example how our method works in practice�

� Notations and the Theorem

To state our result we require several de�nitions� Let P�� � � � � Pr denote a basis of
the Mordell�Weil group and let g be the order of the torsion subgroup EQ�tors
of EQ�� We have g � �	 by a famous result of Mazur �	��� Let �h denote the
N�eron�Tate height as well as the associated symmetric bilinear form on EQ��
Designate by � the smallest eigenvalue of the positive de�nite regulator matrix
�hPi� Pj����i�j�r �
Let �u� be the Weierstra� ��function corresponding to the curve EC �� Let
� be its fundamental lattice and � its real period� There exists� for any P �
x� y� � EC �� an element u � C �� such that x� y� � �u�� ��u��� This u
is called the �complex� elliptic logarithm of P� In the sequel ui�� denotes the
elliptic logarithm of Pi� i � �� � � � � r� We put u�i�� � gui�����

For a prime q of Q�  E denotes the reduced curve E modulo q� Let Nq � !  EFq �

be the number of rational points on  E�Fq �With the order g of the torsion group�
we de�ne the number

m � mq � lcmg�Nq��

Finally� for the �nite places q � S� let u�i�q denote the q�adic elliptic logarithm
of mPi for i � �� � � � � r� Now we are in a position to state our main result�

Theorem Assume that the S�integral point P � x� y� � EZS� has the
representation

P �

rX
i��

niPi � T 	�

	



with ni � Z� i� �� � � � � r� and T a torsion point of EQ�� For N � maxfjnij� i �
�� � � � � rg� we have

N � N� �
p
c��	 � c����� ��

with
c� � logmaxf�jaj����� �	jbj����g�

c� � 
 � ���	s
��s��s
��Q��log�Q��s��c�log c��
�c� � 	�s� ��c� � logec����

where log�Q � maxflogQ� �g for Q � maxfq�� � � � � qs��g�

c� �
�	

�

p
j��j

�
� �

�

	
log j��j

��
�

c� � ���maxf��a�� 	��
p
j��j

�g
with �� � �a� � 	
b��
Moreover� there exists a place q � S such that�����

rX
i��

niu
�
i�q � nr
�

�����
q

� c� expf���s�N� � c��sg� ��

with nr
� � Z if q �� and nr
� � � otherwise� and with c� �
p
�g�� if q ��

and c� � � otherwise�
Remarks

�� If r � 	� then we can use the estimate of R�emond and Urfels �	�� for linear
forms in q�adic elliptic logarithms to derive an upper bound for N see
������ The example shown in Section � reveals that this bound can be
much smaller than our bound N��

	� The proof of the Theorem will show that� in the Proposition below� c�
can be replaced by any upper bound for the height of S�integer points in
EQ�� For example� in the case of s � �� one can take the smaller constant

c�� � � � ����c� log c�c� � log c���

instead of specializing to s � � in the formula for c� see ����� Theorem
��� Then we obtain

N � N �
� �

q
c���	 � c����

instead of ���

In the case of s � �� Gebel� Peth�o and Zimmer ���� � as well as Stroeker and
Tzanakis �	
� established another bound for N� namely

N � N� � 	r
�
p
c�c log

�r
����cr � ��r
��

�The constants given here di	er from those in 
��� because in 
��� on pages ��������
two corrections are necessary� First r must be replaced by r � � and second� C requires an
adjustment to the new version of the Theorem in 
���

�



with

c� � max

�
log	

p
	 �
p
�g���

�
� �

�
�

c � max

�
C

�
� ���

��
h

	

�r
� rY
i��

logVi�

C � 	�� � ����r
�����r
���r � 	��r
�
��r
�����

h � logmaxf�jaj�j� �jbj�j� jj�jg for j �
j�
j�
�

j�� j� � Z� gcdj�� j�� � ��

and

logVi � max
n
�hPi�� h�

��ju�i��j
�

�

Im�

o
� i � �� � � � � r�

logV� � maxfh� ��
Im � g�

It seems hard to compare the size of N �
� and N� because they depend on di�erent

parameters of the curve� The numerical examples of Section � suggest that
N� � N �

� if r � 	� but N� � N �
� if r � 	� Therefore� it makes sense to compute

both bounds N �
� and N� before starting the reduction procedure� which is based

on inequality �� and does not depend on the way� by which an upper bound
for N was obtained�

� Proof of the Theorem

The proof of the Theorem is divided into three parts� First we obtain an explicit
upper bound for the ordinary height hP � of the S�integral points P in EQ�� In
the second part we prove a relation between hP � and N and derive ��� Finally�
we prove �� by using properties of complex and q�adic elliptic logarithms�

��� Estimation of h�P ��

Proposition Let EQ� be the elliptic curve ��� and S be the �nite set of rational
places �containing the in�nite place �� de�ned above� Then all S�integral
points

P � x� y� �

�
	


�
�
�


�

�
� 	� �� 
 � Z� gcd	� 
� � � � gcd�� 
�

in EQ� satisfy
maxfhx�� hy�g � c��

with the constant c� de�ned in the Theorem� where

h

�
�



�
� logmaxfj�j� jjg� ��  � Z� gcd�� � � ��

Proof� ����� Theorem 	�

�



��� Height estimates and the proof of ����

Let us start out from an elliptic curve

E � Y � � a�XY � a�Y � X� � a�X
� � a�X � a� ai � Z�

in long Weierstra� form over Q� Tate�s quantities are

b� � a�� � �a�� b� � 	a� � a�a�� b� � a�� � �a��
b	 � a��a� � �a�a� � a�a�a� � a�a

�
� � a���

c� � b�� � 	�b�� c� � �b�� � ��b�b� � 	��b��

E has discriminant

� � �b��b	 � �b�� � 	
b�� � �b�b�b� � �����

and absolute invariant

j �
c��
�

�
j�
j�

j�� j� � Z� gcdj�� j�� � ���

The invariant di�erential is

� �
dx

	y � a�x� a�
�

dy

�x� � 	a�x� a� � a�y
�

We begin by estimating heights� In the introduction we de�ned the multiplica�
tive height of a rational point P � x� y� � EQ�� The ordinary additive height
is then

hP � ��
�

	
log HP �

and the N�eron�Tate or canonical additive height is

�hP � �� lim
n��

h	nP �

	�n
�

From Theorem � in ���� cf� also �	��� ��	�� ������ one readily derives the inequal�
ity

hP � � �hP �� c�� for P � EQ�

with the constant

c�� ��
�

	
log 	 � ����

where
�� �� log maxfjb�j�� jb�j

�

�

�� jb�j
�

�

�� jb	j
�

�

�g�
We now specialize this height estimation to the curve in short Weierstrass form
��� We have a� � a� � a� � � and a� � a� a� � b� so that �� becomes

�� � logmaxf	jaj����� �jbj����� jaj���g � logmaxf	jaj����� �jbj����g�
Hence

hP � � �hP �� c� for P � EQ�� ��

�



with the constant c� de�ned in the Theorem�
Let� as before� P�� � � � � Pr be a basis of the free part of the Mordell�Weil group
EQ�� Then P � EQ� has the unique� representation 	� with ni � Z� i �
�� � � � r� and T a torsion point� Put N � maxfjnij� i � �� � � � � rg� The canonical

height �h can be extended to the r�dimensional real vector space EQ� �ZR
and the extension of �h is a positive de�nite quadratic form on this space�
As explained in ����� this leads to the lower estimate on non�torsion points

�hP � � �N�

involving the smallest eigenvalue � of the regulator matrix associated with the
basis points P�� � � � � Pr � EQ� via the canonical height �h� This� together with
��� implies that

hP � � �N� � c� for P � EQ� nEQ�tors � ��

Let now P � x� y� � EZS�� Then� since hP � � �
� log hx�� we obtain

hP � � c��	

by the Proposition� with c� as de�ned in the Theorem� On combining the lower
and upper estimates for hP �� we obtain

�N� � c� � c��	�

This implies the asserted inequality ���

N �
p
c��	 � c�����

��� Elliptic logarithms and the proof of inequality ����

Let now P � x� y� � EQ� be an S�integral point and choose q � S such that

jxjq � maxfjxjq� � � � � � jxjqs�� � jxj�g� 
�

In the sequel we keep this q �xed� First we conclude that

HP � � jxjsq for s �� �S

and hence that
hP � � s

	
log jxjq � ��

Combining �� and �� yields cf� ����

�

jxj���q

� c	 exp �c�N�� ��

with

c	 �� exp
	c�
s



� c� ��

�

s
�

�



To transform the upper bound for jxj� �

�

q into the upper bound for the left hand
side of the inequality ��� we must study the properties of elliptic logarithms�
Two cases are to be distinguished� the complex case of q � � and the q�adic
case�

Case �� q �� � S�
Let �u� be the Weierstra� function associated to the curve ��� Let � � h�� ��i
be the period lattice of �u�� generated by the two fundamental periods � and
��� where � � � is real and �� is complex� Let P � x� y� � EQ� and denote
by u � uP � its elliptic logarithm� i�e� that residue class u � C mod � for which
P � �u�� ��u���
Then we have

u 	
Z �

x

dtp
t� � at� b

mod ��

see ������
Let

t� � at� b � t� ��t� �t � ��

be the decomposition of the cubic polynomial into linear factors with roots

� �  � � if �� � � � R
and

� � " � C � � � R otherwise�

De�ne

M �

��


� � if � � �

exp��
	��� � �

� if � � �

and put
x� � maxf�� � 	�g�M�

With this notation� we have the

Lemma Let x � R such that x � maxf�� x�g� ThenZ �

x

dtp
t� � at� b

�
p
�p
x
�

Proof� ����� pp� �
� and �������� Note that in ����� the number x is assumed
to be the �rst coordinate of an integer point of EQ�� but in the proof this
assumption was not needed�

Let now P � x� y� be an S�integral point on EQ� with �rst coordinate of
absolute value

jxj� � maxfx�� exp��g� ���

Denote by u its elliptic logarithm� Assume furthermore that 
� holds with
q � �� Then� by the Lemma and by ��� we obtain� on normalizing u to
� � juj� � ��	��

juj� �
p
�

jxj����

�
p
� c	 exp�c�N��� ���






Let ui�� � uPi�� i � �� � � � � r� denote the elliptic logarithms of P�� � � � � Pr� Then

ugP � � u

�
rX

i��

nigPi�

�
�

rX
i��

nigui����

where g is the order of the torsion subgroup of EQ�� Moreover� there exists an
integer nr
� � Z such that

jn�gu���� � � � �� nrgur��� � nr
��j� �
p
� g c	 exp�c�N���

Dividing by � we obtain �� in the case of q ���

Case 	� q � qi � S for some i � N such that � � i � s� ���
Here we use q�adic elliptic logarithms cf� ���� �	��� �	����

For the convenience of the reader� we explain in some detail how one proceeds
in the q�adic case� Let Qq be the q�adic completion of Q and Zq be its ring of
q�adic integers� Denote by

E�Qq � �� fP � EQq � j  P �  Og
the kernel of the reduction map modulo q� where E is regarded as a curve over
Qq and  P �  O are the reduced points P�O modulo q� Designate by EqZq� the
formal group associated to E cf� �	��� �	���� We consider the isomorphism

EqZq� �
 E�Qq �

z ��

�

� if z � �
 z
w�z� �� �

w�z�� if z �� �

�
�

where

z � �x
y
� wz� � ��

y
�

The equation for w � wz� inferred from the long Weierstra� equation for EQ�
becomes

w � z� � a�z � a�z
��w � a� � a�z�w

� � a�w
� � fz� w��

A recursive procedure based on this equation see �	��� leads to the power series

w � z� � a�z
� � a�� � a��z

� � a�� � 	a�a� � a��z
�

�a�� � �a��a� � �a�a� � a�� � a��z
 � � � �

� Z�a�� a�� a�� a�� a����z���
This is the unique power series in z satisfying the relation

wz� � fz� wz���

From it we also get the Laurent series for x and y� viz�

xz� � z
w�z� � �

z� � a�
z � a� � a�z � a� � a�a��z

� � � � � �
yz� � � �

w�z� � � �
z� � a�

z� � a�
z � a� � a� � a�a��z � � � � � �	�

�



The invariant di�erential has the expansion

�z� � � � a�z � a�� � a��z
� � a�� � 	a�a� � a��z

�

�a�� � �a��a� � �a�a� � a�� � 	a��z
� � � � ��dz�

Note that in these expansions the coe#cients of the powers of z each have the
same weight depending on the exponent of z�

The q�adic elliptic logarithm is now the image under the homomorphism to
the additive group �Ga over the completion C q of the algebraic closure of Qq ��
de�ned as follows�

�q � E�Qq � �
 �Ga

P � x� y� ��
 �qP � �
R
�z� � z � d�

� z
� � d�

� z
� � � � � �

In particular� the q�adic logarithm �q has the properties

�qP �Q� � �qP � � �qQ�

and

j�qP �jq � jzjq �
�����xy

����
q

�

As before� let  E be the reduced curve E modulo q� and denote by Nq � �  EFq �

the number of rational points on  E�Fq � With the number

m � lcmg�Nq�

de�ned in Section 	� we have from the Lutz �ltration of E see ��
���

mPi �� P �
i � E�Qq � i � �� � � � � r�

for the generating points Pi of EQ�� and

mPr
� � O
for the torsion points Pr
� � EQ�tors �

The representation 	� of an S�integral point P � x� y� � EQ� then gives rise
to the representation

P � � n��P� � � � �� n�rPr � n�P
�
� � � � �nrP �

r n�i �� mni � Z� ���

of its m�multiple P � � x�� y�� � mP � E�Qq �� In analogy to �	�� we have the
Laurent series

x� �
z�

wz��
�

�

z��
� a�

z�
� a� � a�z

� � a� � a�a��z
�� � � � � �

and this expansion entails the estimate

jx�jq � �

jz�j�q
�

�

ju�qj�q
� ���

�



where we use the abbreviating notation u�q �� �qP
�� for the elliptic logarithm

of P ��

On combining the inequalities �� and ��� and observing that jx�jq � jxjq � we
end up with the upper estimate for the q�adic elliptic logarithm u�q � �qP

�� of
the point P � � x�� y�� � mP � mx� y��

ju�qjq �
�

jx�j���q

� �

jxj���q

� c	 exp�c�N���

From ���� we have the relation

u�q � n��u��q � � � �� n�rur�q � n�u
�
��q � � � �� nru

�
r�q n�i � mni � Z�

between the elliptic logarithms u�q � �qP
�� of the m�multiple P � � mP of

the given S�integral point P � ui�q � �qPi� of the generating points Pi and
u�i�q � �qP

�
i � of their m�multiples P �

i � mPi � EQ�� and inequality �� is
proved in this case too�

� Computational aspects of the Theorem�

The Theorem� together with some computational techniques for elliptic curves
and with diophantine approximation methods� in practice makes it possible to
compute all S�integral solutions of ��� To this end� we must carry out the
following steps�

�i� Compute a basis P�� � � � � Pr of the Mordell�Weil group EQ�� This can be
achieved� for example� by employing the algorithm ��� see also ����� ������
Having obtained the basis� one can easily compute the constants c�� c� and
� and thus the upper bound N� for N � de�ned by the inequality ���

�ii� N� is usually very large see the examples�� but we also have the estimate
�� at one of the places q � S� Some observations on the computation
of rational approximations of the elliptic logarithms with the necessary
very high precision will be made in the next section� The solutions of the
system of inequalities �� and �� are then found by the reduction method
of de Weger �	��� Since this method is well�described in �	��� we omit the
details here� Of course� one must perform de Weger�s reduction for all
places q � S� Let Mq denote the bound for N after the reduction with
respect to a prime q � S� assuming that 
� holds for this q � S� Then
we change the value of N� to maxfMq� q � Sg� If possible we iterate the
reduction�

�iii� Experience shows that the last value ofN� obtained after several reductions
is su#ciently small in order to enable one to test the points

Pr
i�� niPi�T

within the range N � maxfjnij� i � �� � � � � rg � N� and with T � EtorsQ�
for S�integrality�

��



However� this can be a lengthy procedure� Therefore� we describe here
some ideas as to how to proceed in a more economical way� If the r�tuple
n � n�� � � � � nr� of integer vectors is such thatN � maxfjnij� i � �� � � � � rg �
N�� then we �rst test for q � S by $oating point approximation if q ���
or by q�adic approximation if q is a �nite place� of u�i�q � whether or not
�� is true� If� for an n� inequality �� does not hold for some q � S�
then there is no S�integral point on the curve given by the vector n in
the representation 	�� Otherwise we must test all linear combinationsPr

i�� niPi � T with varying torsion points T for S�integrality�
�iv� There is one extra search to be carried out eventually� This is due to

the fact that� if 
� holds for q � �� then ��� and �� hold only for
those S�integral points P � x� y�� whose �rst coordinate satis�es the
inequality ���� We must also determine the S�integral points for which
��� is violated� Then� by 
�� we have

jxjqi � maxfx�� exp��g� i � �� � � � � s� ��

Write

x �
	

q��� � � � q�s��

s��

with gcd	� qi� � �� i � �� � � � � s� �� ���

This yields
jxjqi � q�i

i �

so that

�i � logmaxfx�� exp��g� log qi� i � �� � � � � s� �� ���

Hence the exponents �i are bounded� We note that the exponents �i
are even� The negation of inequality ���� together with the boundedness
relations ��� for the coordinates ���� shows that there are only �nitely
many S�integral points� which are to be tested in this case�

� Computation of the q�adic elliptic logarithms

The complex elliptic logarithms can be computed either by applying the arith�
metic�geometric mean method see H�Cohen ���� or by employing a method of
Zagier �����
In contrast to the case of complex elliptic logarithms� there exists� for the com�
putation of q�adic elliptic logarithms� a quadratically convergent procedure only
for Tate curves see ����� �� That is why we must apply a di�erent q�adic pro�
cedure here� In fact� we simply use the formulae of Section �� However� we
must overcome some technical di#culties if we need to calculate the q�adic el�
liptic logarithms to a precision of up to ���� or more digits� Of course� we can
compute the formal Laurent series expansion of wT � by Newton iteration� How�
ever� unfortunately the coe#cients in this expansion soon become very large�

�We wish to thank J�H�Silverman for calling our attention to the paper 
���

��



We circumvent this problem by invoking the Lutz �ltration of E over Qq and
calculating q�adic approximations to a su#cient high precision as follows�
Suppose that� for some given positive integer t� we have computed an approxi�
mation

 �T � ��
tX

i��

di
i
T i 	 �T � mod T t
��

of the formal elliptic integral �T � �
R
wT � dT � where d� � �� We want

to compute an approximation ��qP � of the q�adic elliptic logarithm �qP � of
P � E�Qq � such that

j�qP ����qP �jq � q�n

for some positive integer n� In practice� t is �xed and n depends on q and
is much larger than t�� Put V � �nt � and de�ne PV � qV P � Then we have
PV � EV
�Qq � by the Lutz �ltration theorem ��
�� Now we can compute a

suitable q�adic approximation  PV of the point PV sinceE is considered as a curve
over Qq as in Section ���� Here a suitable approximation means that� for the

point PV � xPV
� yPV

� � EQq �� we choose  PV �  xPV
�q��V
���  yPV

�q��V
���
with  xPV

�  yPV
� Z such that����xPV

yPV

�  xPV

 yPV

qV
�
����
q

� q�n
�

�

with n� � n� V � To this end we take  zPV
� Z such that

j zPV
jq �

�����  xPV

 yPV

qV
�
����
q

and

���� zPV
�

 xPV

 yPV

qV
�
����
q

� q�n
�

�

Then we have ���� zPV
�
xPV

yPV

����
q

� q�n
�

�

which implies

����  � zPV
��  �

�
�xPV

yPV

�����
q

�

�����
tX

i��

di
i

�
 ziPV

�
�
�xPV

yPV

�i
������

q

�
���� zPV

�
xPV

yPV

����
q

� q�n
�

�

On the other hand� we have

�����
�
�xPV

yPV

�
�  �

�
�xPV

yPV

�����
q

�

�����
�X

i�t
�

di
i

�
�xPV

yPV

�i
�����
q

�
����� dt
�t� �

�
�xPV

yPV

�t
�
�����
q

� q��t
���V
��

jt� �jq � q�n
�

�	



by the choice of V � Thus�����
�
�xPV

yPV

�
�  � zPV

�

����
q

� q�n
�

�

We have

�

�
�xPV

yPV

�
� �qPV � � qV �qP ��

hence
j�qP ��  � zPV

��qV jq � q�n
�
V � q�n�

i�e�  � zPV
��qV is the required approximation of �qP �� the q�adic elliptic loga�

rithm of P �

� Comparison of the Theorem with earlier esti�

mates

We �rst consider the S � f�� ���g�integer points of the curve

ESmQ� � y� � y � x� � x� � 	x�

treated by Smart �	��� He proved that P� � �� ��� P� � �� �� form a basis of
the Mordell�Weil group of ESm over Q and that ESm has no non�trivial torsion
points� Moreover� he showed that if

P � n�P� � n�P�

is an S�integral point on ESm with maxfjn�j� jn�jg � ����� then �n�� n�� �
�� ��� �� 	�� �� ��� �� ��� �� ��� ������ ������ 	� ��� 	����� 	� 	�� 	��	��
	����� �� ��� �� ��� ���	�� ������ �� 	��
Using the transformation X � ��x � �	� Y � 	��y � ���� we obtain the short
Weierstra� form

E�
SmQ� � Y � � X� � ��	�X � ��		��

It is clear that if P � x� y� is an S�integral point on ESm� then P
� � x�� y�� �

��x � �	� 	��y � ���� is an S�integral point on E�
Sm� Thus it su#ces to �nd

all S�integral points on E�
Sm� Let P

� � x�� y�� be an S�integral point on E�
Sm

with
P � � n�P

�
� � n�P

�
�

for P �
� � �	� ����� P �

� � ��� ����� Then the Theorem implies that

N � maxfjn�j� jn�jg � N� � � � ������
as follows by a simple computation� This bound is much larger then the bound
used by Smart� However� by performing one de Weger reduction with this
unconditional bound� we obtain

maxfjn�j� jn�jg � ����

��



This shows that Smart indeed found all S�integral points on ESm�

As the rank of ESm is two� one can also apply the theorem of R�emond and
Urfels �	�� to estimate N in the way described in ����� Using that method one
easily veri�es that

N � ��
 � �����
Here the worst case appears when maxfjuj�� juj�� juj�g � juj�� This is a much
smaller bound for N than the one which follows from the Theorem� and hence
we obtain another proof that Smart found all S�integral points on ESm� this
time without any further computation�

In Remark 	� and thereafter� we gave two di�erent bounds N �
� and N� for N in

the case s � �� Now we are going to compare them for some curves� for which
all integer points were found by the elliptic logarithm method�
The �rst set of examples is taken from ����� where the classical Mordell equations

y� � x� � k

were solved y for jkj � ���� In Table � we list� for some k�s� the rank rk of the
curve y� � x� � k and the values of N� and N �

��

Table �

k rk N� N �
�

��� � 	�� � ���� ��� � ����
		� 	 ��� � ���� ��� � ����
��	� � ��� � ���� ��� � ����
	��� � ��� � ��	� 
�
 � ����
�	�	
� � 	�� � ����� 	�� � ����

Next� in Table 	� we take some examples from ���� where the family of elliptic
curves

y� � x� � ��x� ���kk � ��	k � ��

was considered�

Table �

k rk N� N �
�

� � ��� � ���� ��� � ����
� 	 ��� � ���� ��� � ����

 � 	�� � ���� ��� � ����
	� � 	�� � ��	� 	�� � ���

yThe rank one cases left open in 
��� have been settled by K� Wildanger in his PhD thesis
��Uber das L�osen von Einheiten� und Indexformgleichungen in algebraischen Zahlk�orpern mit
einer Anwendung auf die Bestimmung aller ganzen Punkte einer Mordellschen Kurve�� Berlin
����� In those cases� the Mordell curves have no integral points � as conjectured by the
authors�

��



Finally� we consider four curves from ���� ���� and from �	�� of the form

y� � x� � ax� b�

In Table � we exhibit� for certain coe#cients a� b� the rank r of the curve de�ned
by �� and the corresponding values of N� and N �

��

Table �

a b r N� N �
�

�	���
	 ����
��� � 	�� � ����� 
�� � ���
����	��	 �	�
�
�	� � ��� � ����� 	�� � ����
���
��	 	����
�� 
 	�
 � ���	 ��� � ���

�����	�������� ����	��
����	
����� � ���
 � ����� 	��� � ���	

The examples indicate� that N� � N �
�� if r � 	� but N� � N �

�� if r � 	� Of
course� for rank � curves it is quite easy to �nd all integer points by examining
the algebra of the curve� Our comparison shows that N� is signi�cantly smaller
than N �

� if r � �� For r � 	� N� and N �
� are of a similar size� but N� appears to

be slightly smaller than N �
�� For r � �� the constant N �

� becomes much smaller
than N�� and with growing rank r� the di�erence becomes rather signi�cant�
This can be very well observed in the above rank 
 and � examples� The reason
for this phenomenon probably lies in the fact that in David�s �
� lower bound�
which enters into the bound N�� the constant

C � 	�� � ����r
�����r
���r � 	��r
�
��r
����

shows up� and this constant depends exponentially on r�� On the other hand�
the constant term of N �

� does not depend on r�
Our examples make it plausible that� in order to �nd all integer points on elliptic
curves� it makes sense to �rst compute both bounds N� and N �

� and then start
the reduction procedure with the smaller one�

	 An example

To illustrate our method� we choosen the rank�four curve

E � y� � x� � �
	x� ��� �
�

from the paper A� Wiman ���� see also Bremner and Tzanakis ����� Wiman
showed that there are at least �� integer points on E� Here we prove that there
are exactly �� integer points and� moreover� ��� S� integer points on E� where
S � f�� �� 
��g� More precisely� we prove the following theorem�
Theorem� Let S � f�� �� 
��g� Then all S�integer points P � x��y� with
x � �

	� � y � 

	� � 	� �� 
 � Z� gcd	� 
� � gcd�� 
� � � on E over Q are those

displayed in Table 	�
Proof	 First we compute the quantities c�� c�� c� and c� of the Theorem in
Section 	 to obtain N� in dependence on � only� For this purpose� we do not

��



need any geometrical information about the elliptic curve E� We have a � ��
	
and b � ���� hence

�� � 	�����	� c� � ����� c� � ��
 � ��	 and c� � ���� � �����
Taking s � � and Q � 
� we obtain

c� � ����� � ������
and this yields

N� � ��


 � ������
p
��

Now we consider E as an elliptic curve over Q� Inserting the coe#cients of E
into SIMATH we obtain� after some minutes of computation� that E has trivial
torsion� its rank is �� and a basis of its Mordell�Weyl group is given by the
points�

P� � �	� ���� P� � ���� ���� P� � ��� 	�� and P� � ��� 		���

The regulator of the curve is R � 	�
���	� the real period is � � ������
� and
the least eigenvalue corresponding to the chosen basis is � � ��
��
����
We have g � �� hencemq � Nq � and the actual values ofmq arem� � 
�m� � ��
and m � �	� By the Theorem� for each q � S� we have to solve the following
diophantine approximation problems�����

�X
i��

niu
�
i�q � nr
�

�����
q

� expf������ �N� � c��g�

N � maxfjn�j� � � � � jn�jg � N� � ���� � �����

for each q � S� where c�� � ���	� if q �� and c�� � ����	 otherwise�
In order to reduce the huge upper bound for N� we �rst take q � � and
perform de Weger reduction with C � ������ We obtain the new upper bound
N � M� � ��� Next� for each q � S n f�g� we compute the q�adic elliptic
logarithms of Pi� i � �� � � � � �� with precision at least

n� � �	��� n� � �
�� n � 
	��

This precision is necessary in order to carry out the q�adic de Weger reduction�
For this purpose� we use the method of Section �� We have chosen t � 	�� and�
for safety reasons�

V� � �� V� � �� V � ��

and computed the approximations of qVqPi for q � f�� �� 
g and i � �� � � � � �
with

n�� � �
��� n�� � ����� n� � ����

q�adic digit numbers� In Table � we have listed the �rst and last three signi�cant
digits of �qmqPi�� i�e�� the digits a�� a�� a�� anq�� � anq�� and anq assuming� that

�qmqPi� 
nqX
i��

aiq
i�

Note that� as mqPi � E�Q�� we always have a� � ��

��



Table 


i � � � �

Pi ���� ��� ����� ��� ���� ��� ���� ����

���	Pi� ��� �� �� � � � � 
� �� �� ��� 
� �� � � � � �� �� �� ��� �� 
� � � � � �� �� �� �
� �� �� � � � � 
� �� ��

����
Pi� ��� 
� �� � � � � �� �� �� ��� �� 
� � � � � 
� �� �� ��� �� �� � � � � �� �� 
� ��� �� �� � � � � 
� �� ��

�����Pi� �
� �� 
� � � � � �� �� �� ��� �� �� � � � � 
� �� �� ��� �� �� � � � � �� �� �� ��� �� �� � � � � �� �� ��

Now we perform the q�adic de Weger reduction with the values C� � ���	�� C� �
�	� and C � 
�� and obtain the new bound

N� � �	� � maxfM��M��M��Mg�

This new upper bound for N can be further reduced� On repeating this reduc�
tion process ��times� we eventually get N � �
� which cannot be reduced any
further� In order to compute all S�integral solutions of �
� with this last bound�
we use the sieving procedure described in ���� Finally� we must also determine
the S�integral points for which ��� is violated� In the case under consideration�
we have

jxjqi � maxf		���� �����g� ������ i � �� � � � � �� ���

thus �� � � and ��� �� � 	� where we used the notation of Section �� part iv��
A simple computation shows that all the solutions of �
� satisfying the above
inequality ��� are among those already found� Theorem� is proved� �

Table �

S�integral points P � x� y� �

�
	


�
�
�


�

�
�

�X
i��

niPi on

E � y� � x� � �
	x� ���

for S � f �� �� 
� �g

rank �

basis P� � �	� ���� P� � ���� ���� P� � ��� 	��� P� � ��� 		��

torsion trivial

! 	 � 
 F n�� n�� n�� n��

� ��� �� � �� �� �� ��

	 ��	 	� � �� �� �� ��

� ��� �� � ��� ����� ��
� �� �
 � ����� �����
� �	 	� � �� ����� ��

�
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