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1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the rational numbers
1
16 , 33

16 , 17
4 and 105

16 have the following property: the product of any two of them increased
by 1 is a square of a rational number (see [4]). The first set of four positive integers
with the above property was found by Fermat, and it was {1, 3, 8, 120}. A set of positive
integers {a1, a2, . . . , am} is said to have the property of Diophantus if aiaj +1 is a perfect
square for all 1 ≤ i < j ≤ m. Such a set is called a Diophantine m-tuple (or P1-set of
size m). In 1969, Baker and Davenport [2] proved that if d is a positive integer such
that {1, 3, 8, d} is a Diophantine quadruple, then d has to be 120. The same result was
proved by Kanagasabapathy and Ponnudurai [9], Sansone [12] and Grinstead [7]. This
result implies that the Diophantine triple {1, 3, 8} cannot be extended to the Diophantine
quintuple.

In the present paper we generalize the result of Baker and Davenport and prove that
the Diophantine pair {1, 3} can be extended to infinitely many Diophantine quadruple,
but it cannot be extended to a Diophantine quintuple.

The first part of this assertion is easy. Of course let {1, 3, c} be a Diophantine triple,
then from [8, Theorem 8] it follows that there exists k ≥ 1 such that

c = ck =
1
6
[(2 +

√
3)(7 + 4

√
3)k + (2−

√
3)(7− 4

√
3)k − 4]

and it is easy to check that {1, 3, ck, ck−1} and {1, 3, ck, ck+1} are Diophantine quadruples
provided k ≥ 2. We have: c0 = 0, c1 = 8, c2 = 120, c3 = 1680, . . . Now we formulate our
main results.

Theorem 1 Let k be a positive integer. If d is an integer such that there exist integers
x, y, z with the property

d + 1 = x2, 3d + 1 = y2, ckd + 1 = z2, (1)

then d ∈ {0, ck−1, ck+1}.
∗Research partially supported by Hungarian National Foundation for Scientific Research Grants No.

16791 and 16975
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From Theorem 1 we obtain the following corollaries immediately.

Corollary 1 The Diophantine pair {1, 3} cannot be extended to the Diophantine
quintuple.

Corollary 2 Let 0 ≤ l < k and z be integers such that

clck + 1 = z2

then l = k − 1.

Remark 1 The statement of Theorem 1 for k = 1 is just Davenport-Baker’s result,
and the case k = 2 is proved recently by Kedlaya [10].

Let k be the minimal positive integer for which the statement of Theorem 1 is not
valid. Then k ≥ 3 and we begin our proof by proving that k ≤ 75.

Proposition 1 If Theorem 1 is true for 1 ≤ k ≤ 75, then it holds for all positive
integers k.

The proof of Proposition 1 is divided into several parts. In Section 2 we consider
the equations (1) separate and prove linear recurrence relations for their solutions. In
Section 3 we first localize the initial terms of the recurrence sequences defined previously
provided that the system of equations (1) is soluble. Here we use congruence conditions
modulo c = ck. In the second step we consider the remaining sequences modulo c2 and
rule out all but two equations in terms of linear recurrence sequences. Using linear forms
in logarithms in three algebraic numbers we finish the proof of Proposition 1 in Section
4. Finally in Section 5 we prove Theorem 1 for 2 ≤ k ≤ 75 by using a version of the
reduction procedure due to Baker and Davenport [2].

2 Preliminaries

The system (1) is equivalent to the system of Pell equations:

z2 − ckx
2 = 1− ck , (2)

3z2 − cky
2 = 3− ck . (3)

From the definition of ck it follows that there exist integers sk and tk such that

ck + 1 = s2
k ,

3ck + 1 = t2k .
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Thus neither ck nor 3ck is a square and both Q(
√

ck) and Q(
√

3ck) are real quadratic
number fields. Moreover sk +

√
ck and tk +

√
3ck are non-trivial units of norm 1 in

the number rings Z[
√

ck] and Z[
√

3ck] respectively. Thus there exist finitely many with
respect to the unit sk +

√
ck non-associated elements z

(i)
0 + x

(i)
0
√

ck, i = 1, . . . , i0 of norm
1−ck in Z[

√
ck] such that there exist for all solutions (z, x) ∈ Z2 of (2) integers 1 ≤ i ≤ i0

and m with

z + x
√

c = (z(i)
0 + x

(i)
0

√
c)(s +

√
c)m,

or z = v
(i)
m for some m, where the sequence v(i) is defined by the recursion

v
(i)
0 = z

(i)
0 , v

(i)
1 = sz

(i)
0 + cx

(i)
0 , v

(i)
m+2 = 2sv

(i)
m+1 − v(i)

m .

For simplicity we omitted here the index k and we do the same in the sequel.
Similarly, all solutions of (3) are given by

z
√

3 + y
√

c = (z(j)
1

√
3 + y

(j)
1

√
c)(t +

√
3c)n, j = 1, . . . , j0,

or by z = w
(j)
n for some j and n, where the sequence w(j) is defined by the recursion

w
(j)
0 = z

(j)
1 , w

(j)
1 = tz

(i)
1 + cy

(i)
1 , w

(j)
n+2 = 2tv

(j)
n+1 − v(j)

n .

Here the elements z
(j)
1

√
3+y

(j)
1

√
c are fundamental solutions of equation (3). In this way

we reformulated the system of equations (1) to finitely many diophantine equations of
form

v(i)
m = w(j)

n

in integers 1 ≤ i ≤ i0, 1 ≤ j ≤ j0,m and n.
By [11, Theorem 108a] we have the following estimates for the fundamental solutions

of (2) and (3):

0<|z(i)
0 | ≤

√
1
2
(s− 1)(c− 1) <

√
c
√

c

2
<

c

4
, (4)

0≤x
(i)
0 ≤

√
c− 1

2(s− 1)
<

√
c(s + 1)

2c
<

√√
c + 2
2

, (5)

0<|z(j)
1 | ≤ 1

3

√
3
2
(t− 1)(c− 3) <

√
c
√

c

2
√

3
<

c

6
, (6)

0≤y
(j)
1 ≤

√
3(c− 3)
2(t− 1)

<

√
c(t + 1)

2c
<

√√
3c + 2
2

. (7)
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3 Application of congruence relations

Let a mod b denote the least non-negative residue of the integer a modulo the integer
b and consider the sequences (v(i)

m mod c) and (w(j)
m mod c). We have:

v
(i)
2 ≡ (2s2 − 1)z(i)

0 = (2c + 1)z(i)
0 ≡ v

(i)
0 (mod c), v

(i)
3 ≡ sz

(i)
0 ≡ v

(i)
1 (mod c).

Therefore, v
(i)
2m ≡ z

(i)
0 (mod c) and v

(i)
2m+1 ≡ sz

(i)
0 (mod c), for all m ≥ 0. Furthermore,

w
(j)
2 ≡ (2t2 − 1)z(j)

1 = (6c + 1)z(j)
1 ≡ w

(j)
0 (mod c), w

(j)
3 ≡ tz

(j)
1 ≡ w

(j)
1 (mod c).

Therefore, w
(j)
2n ≡ z

(j)
1 (mod c) and w

(i)
2n+1 ≡ tz

(j)
1 (mod c), for all n ≥ 0. In the

following lemma we prove that if (1) has a non-trivial solution then the initial terms of
the sequences v(i) and w(j) are restricted.

Lemma 1 Let k ≥ 2 be the smallest positive integer for which the assertion of The-
orem 1 is not true. Let 1 ≤ i ≤ i0, 1 ≤ j ≤ j0 and v(i), w(j) be the sequences defined in
Section 2. Then
1◦ If the equation v

(i)
2m = w

(j)
2n has a solution, then v

(i)
0 = z

(i)
0 = z

(j)
1 = w

(j)
0 = ±1.

2◦ If the equation v
(i)
2m+1 = w

(j)
2n has a solution, then z

(i)
0 = ±1 and z

(j)
1 = sz

(i)
0 = ±s.

3◦ If the equation v
(i)
2m = w

(j)
2n+1 has a solution, then z

(i)
0 = ±t and z

(j)
1 = z

(i)
0 /t = ±1.

4◦ If the equation v
(i)
2m+1 = w

(j)
2n+1 has a solution, then z

(i)
0 = ±t and z

(j)
1 = ±s.

Proof. 1◦ We have z
(i)
0 ≡ z

(j)
1 (mod c). ¿From (4) and (6) we obtain z

(i)
0 = z

(j)
1 .

Let d0 = [(z(j)
1 )2 − 1]/c. Then d0 satisfies system (1). We compare d0 with ck−1:

ck−1 >
1
6
[(2 +

√
3)(7 + 4

√
3)k−1 − 4] >

1
6
· 0.92(2 +

√
3)(7 + 4

√
3)k−1

=
1
6
· 0.92(7− 4

√
3)(2 +

√
3)(7 + 4

√
3)k > 0.066c ,

d0 <
1
c
· c
√

c

2
√

3
=

√
c

2
√

3
< 0.027c .

Hence, d0 < ck−1, and from the minimality of k it follows that d0 = 0. Thus, |z(j)
1 | = 1

and we have: z
(i)
0 = z

(j)
1 = 1 or z

(i)
0 = z

(j)
1 = −1.

2◦ We have sz
(i)
0 ≡ z

(j)
1 (mod c). If z

(i)
0 = ±1, then as c − s > c/2 inequality (6)

implies that z
(j)
1 = sz

(i)
0 = ±s. Assume |z(i)

0 | ≥ 2. Then x
(i)
0 ≥ 2 and we have |z(i)

0 | ≥ t.
Let us consider the number cx

(i)
0 − s|z(i)

0 |. We have

cx
(i)
0 − s|z(i)

0 | = c2(x(i)
0 )2 − s2(z(i)

0 )2

cx
(i)
0 + s|z(i)

0 |
=

c2 − c(x(i)
0 )2 − 1

cx
(i)
0 + s|z(i)

0 |
<

c2

2c + c
√

3
<

c

3
.
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Furthermore,

c2 − c(x(i)
0 )2 − 1 ≥ c2 − c(

√
c + 2)
2

− 1 > 0.94c2,

cx
(i)
0 + s|z(i)

0 | ≤ c

√√
c + 2
2

+
√

c + 1

√
c
√

c

2
< 1.48c 4

√
c,

and so

cx
(i)
0 − s|z(i)

0 | > 0.63
√

c
√

c >

√
c
√

c

2
√

3
. (8)

Notice that in the proof of (8) we did not used that |z(i)
0 | > 1.

Let z
(i)
0 > 0. Since z

(j)
1 ≡ sz

(i)
0 (mod c) and −c < sz

(i)
0 − cx

(i)
0 < 0, we have

z
(j)
1 ∈ {sz(i)

0 − cx
(i)
0 , sz

(i)
0 − cx

(i)
0 + c}. But

sz
(i)
0 − cx

(i)
0 < −

√
c
√

c

2
√

3
,

sz
(i)
0 − cx

(i)
0 + c >

2c

3
,

which both contradict (6).
If z

(i)
0 < 0, then we have z

(j)
1 ∈ {sz(i)

0 + cx
(i)
0 , sz

(i)
0 + cx

(i)
0 − c}, and since

sz
(i)
0 + cx

(i)
0 >

√
c
√

c

2
√

3
,

sz
(i)
0 + cx

(i)
0 − c < −2c

3
,

we obtain contradiction as before.

3◦ We have z
(i)
0 ≡ tz

(j)
1 (mod c). If z

(j)
1 = ±1, then (4) implies z

(i)
0 = tz

(j)
1 = ±t.

Assume |z(j)
1 | ≥ 2. Then y

(j)
1 ≥ 2 and we have |z(j)

1 | ≥ s. As in 2◦ we have

cy
(j)
1 − t|z(j)

1 | = 3c2(y(j)
1 )2 − 3t2(z(j)

1 )2

3(cy(j)
1 + t|z(j)

1 |)
=

3c2 − 3(y(j)
1 )2 − 8c− 3

3(cy(j)
1 + t|z(j)

1 |)
<

3c2

3(2c + c
√

3)
<

c

3
,

3c2 − 3(y(j)
1 )2 − 8c− 3 ≥ 2.9c2,

3(cy(j)
1 + s|z(j)

1 |) ≤ 5.74c 4
√

c,

and

cy
(j)
1 − t|z(j)

1 | ≥ 1
2

√
c
√

c. (9)
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Thus we have z
(i)
0 ∈ {tz(j)

1 ∓ cy
(j)
1 , tz

(j)
1 ∓ cy

(j)
1 ± c}. But

|tz(j)
1 ∓ cy

(j)
1 ± c| > 2c

3
,

and (4) implies that

z
(i)
0 = tz

(j)
1 ∓ cy

(j)
1 . (10)

Let d0 = [(z(i)
0 )2− 1]/c. From (9) and the definition of the sequences (v(i)

m ) and (w(j)
n )

we see that d0 satisfies the system (1). Furthermore,

d0 <
1
c
· c
√

c

2
< 0.046c < ck−1

and from the minimality of k, it follows that d0 = 0. But, now we have |z(i)
0 | = 1, which

is in a contradiction with (9) and (10).

4◦ We have sz
(i)
0 ≡ tz

(j)
1 (mod c). The estimates for the numbers cx

(i)
0 − s|z(i)

0 | and
cy

(j)
1 − t|z(j)

1 | in the proof of 2◦ and 3◦ imply the followings:

a) If z
(i)
0 > 0 and z

(j)
1 > 0, then sz

(i)
0 − cx

(i)
0 = tz

(j)
1 − cy

(j)
1 .

b) If z
(i)
0 > 0 and z

(j)
1 < 0, then sz

(i)
0 −cx

(i)
0 +c = tz

(j)
1 +cy

(j)
1 . But sz

(i)
0 −cx

(i)
0 +c > 2c

3

and tz
(j)
1 + cy

(j)
1 < c

3 , a contradiction.

c) If z
(i)
0 < 0 and z

(j)
1 > 0, then sz

(i)
0 + cx

(i)
0 = tz

(j)
1 − cy

(j)
1 + c. But sz

(i)
0 + cx

(i)
0 < c

3

and tz
(j)
1 − cy

(j)
1 + c > 2c

3 , a contradiction.

d) If z
(i)
0 < 0 and z

(j)
1 < 0, then sz

(i)
0 + cx

(i)
0 = tz

(j)
1 + cy

(j)
1 .

Hence, we have
sz

(i)
0 ∓ cx

(i)
0 = tz

(j)
1 ∓ cy

(j)
1 .

Consider the number
d0 =

1
c
[(sz(i)

0 ∓ cx
(i)
0 )2 − 1] .

As in 3◦ we see that d0 satisfies the system (1). Furthermore,

d0 <
1
c
· ( c

3
)2 =

c

9
< c, and

d0 >
1
c
· 0.39c

√
c > 0.

Therefore, from the minimality of k it follows that d0 = ck−1.
We have

c · ck−1 + 1 = (st− 2c)2.
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Hence,

cx
(i)
0 − s|z(i)

0 | = 2c− st,

and
c(x(i)

0 − 2) = s(|z(i)
0 | − t).

Since gcd(s, c) = 1, we have x
(i)
0 ≡ 2 (mod s), and from (5) we conclude that x

(i)
0 = 2

and |z(i)
0 | = t. In the same manner, from

cy
(j)
1 − t|z(j)

1 | = 2c− st

we conclude that y
(j)
1 = 2 and |z(j)

1 | = s. Thus we have z
(i)
0 = t, z

(j)
1 = s or z

(i)
0 = −t,

z
(j)
1 = −s.

Now we will consider the sequences (v(i) mod c2) and (w(j) mod c2) which have the
initial terms given in Lemma 1. (We will omit the superscripts (i) and (j).)

Lemma 2 Assume that the conditions of Lemma 1 are satisfied, then
1◦ v2m ≡ z0 + 2c(m2z0 + msx0) (mod c2)

2◦ v2m+1 ≡ sz0 + c[2m(m + 1)sz0 + (2m + 1)x0] (mod c2)

3◦ w2n ≡ z1 + 2c(3n2z1 + nty1) (mod c2)

4◦ w2n+1 ≡ tz1 + c[6n(n + 1)z1 + (2n + 1)y1)] (mod c2)

Proof. We prove the lemma by induction. We use the fact that the sequences (v2m)
and (v2m+1) satisfy the recurrence relation

am+2 = 2(2c + 1)am+1 − am ,

and the sequences (w2n) and (w2n+1) satisfy the recurrence relation

bn+2 = 2(6c + 1)bn+1 − bn .

1◦ v0 = z0, v2 = 2s2z0 + 2scx0 − z0 = z0 + 2c(z0 + sx0).
Assume that the assertion is valid for m− 1 and m. Then we have

v2m+2 = (4c + 2)v2m − v2m−2

≡ 4cz0 + 2z0 + 4c(m2z0 + msx0)− z0 − 2c[(m− 1)2z0 + (m− 1)sx0]
= z0 + 2c[z0(2 + 2m2 −m2 + 2m− 1) + sx0(2m−m + 1)]
= z0 + 2c[(m + 1)2z0 + (m + 1)sx0] (mod c2) .
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2◦ v1 = sz0 + cx0, v−1 = sz0 − cx0.
Assume that the assertion is valid for m− 1 and m. Then we have

v2m+3 = (4c + 2)v2m+1 − v2m−1

≡ 4csz0 + 2sz0 + 2c[2m(m + 1)sz0 + (2m + 1)x0]
− sz0 − c[2m(m− 1)sz0 + (2m− 1)x0]

= sz0 + c[sz0(4 + 4m2 + 4m− 2m2 + 2m) + x0(4m + 2− 2m + 1)]
= sz0 + c[2(m + 1)(m + 2)sz0 + (2m + 3)x0] (mod c2) .

The proof of 3◦ and 4◦ is completely analogous.

Corollary 3 The equations v2m = w2n+1 and v2m+1 = w2n have no solutions.

Proof. If v2m = w2n+1, then Lemmas 1 and 2 imply

±2m2t + 4ms ≡ ±6n(n + 1)t + (2n + 1) (mod c) .

But this contradicts the obvious fact that c is even.
If v2m+1 = w2n, then Lemmas 1 and 2 imply

±2m(m + 1)s + (2m + 1) ≡ ±6n2s + 4nt (mod c)

and we have again a contradiction with the fact that c is even.

4 Linear forms in three logarithms

Lemma 3 1◦ If v2m = w2n, then

0 < 2m log(s +
√

c)− 2n log(t +
√

3c) + log
√

3(
√

c± 1)√
c±√3

<
3
2
(s +

√
c)−4m.

2◦ If v2m+1 = w2n+1, then

0 < (2m + 1) log(s +
√

c)− (2n + 1) log(t +
√

3c) + log
√

3(2
√

c± t)
2
√

c± s
√

3
< 22(s +

√
c)−4m−2.

Proof. 1◦ We have:

vm =
1
2
[(
√

c± 1)(s +
√

c)m + (−√c± 1)(s−√c)m] ,

wn =
1

2
√

3
[(
√

c±
√

3)(t +
√

3c)n + (−√c±
√

3)(t−
√

3c)n] .



Generalization of the theorem of Davenport and Baker 9

If we put

P = (
√

c± 1)(s +
√

c)m, Q =
1√
3
(
√

c±
√

3)(t +
√

3c)n,

then

P−1 =
√

c∓ 1
c− 1

(s−√c)m, Q−1 =
√

3(
√

c∓√3)
c− 3

(t−
√

3c)n.

Now the relation vm = wn implies P − (c− 1)P−1 = Q− c−3
3 Q−1. It is clear that P > 1

and Q > 1, and from

P −Q = (c− 1)P−1 − (
c

3
− 1)Q−1 > (c− 1)(P−1 −Q−1) = (c− 1)(Q− P )P−1Q−1

it follows that P > Q. Furthermore, we have P −Q < (c−1)P−1 and P−Q
P < (c−1)P−2.

We may assume that m ≥ 1. Thus, we have P ≥ (
√

c−1)·2√c > c, and so (c−1)P−2 < 1
2 .

Hence,

0 < log
P

Q
= − log(1− P −Q

P
)

< (c− 1)P−2 + (c− 1)2P−4 <
3
2
(c− 1) · 1

(
√

c− 1)2
(s +

√
c)−2m <

3
2
(s +

√
c)−2m.

2◦ We have:

vm =
1
2
[(2
√

c± t)(s +
√

c)m + (−2
√

c± t)(s−√c)m] ,

wn =
1

2
√

3
[(2
√

c± s
√

3)(t +
√

3c
n

+ (−2
√

c± s
√

3)(t−
√

3c)n] .

Let us put

P = (2
√

c± t)(s +
√

c)m, Q =
1√
3
(2
√

c± s
√

3)(t +
√

3c)n.

Then we have

P−1 =
2
√

c∓ t

c− 1
(s−√c)m, Q−1 =

√
3(2
√

c∓ s
√

3)
c− 3

(t−
√

3c)n,

and the relation vm = wn implies P−(c−1)P−1 = Q− c−3
3 Q−1. As in 1◦, we obtain P > Q

and P −Q < (c−1)P−1. As we may assume that m ≥ 1, we have P ≥ (2
√

c−t) ·2√c > c
2

and (c− 1)P−2 < 1
2 . Hence,

0 < log
P

Q
= − log(1− P −Q

P
)

<
3
2
(c− 1)P−2 <

3
2
(c− 1) · 1

(2
√

c− t)2
(s +

√
c)−2m

=
3
2
(c− 1)

2
√

c + t

(c− 1)(2
√

c− t)
(s +

√
c)−2m =

3
2
(1 +

2

2
√

c
3c+1 − 1

)(s +
√

c)−2m

< 22(s +
√

c)−2m.
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Now use Lemmas 2 and 3 and obtain a lower bound for m and n. We consider two
cases:

1◦ v2m = w2n, m,n 6= 0
From Lemma 3 we have

2m log(s +
√

c)− 2n log(t +
√

3c) < 0 ,

and so
m

n
<

log(t +
√

3c)
log(s +

√
c)

=
log

√
3

log(s +
√

c)
+

log(
√

c + 1
3 +

√
c)

log(
√

c + 1 +
√

c)
< 1.178 .

On the other hand, Lemma 2 implies

±2m2 + 2ms ≡ ±6n2 + 2nt (mod c) .

Assume that n < 0.105
√

c. Then m < 0.124
√

c. We have

2| ±m2 + ms| ≤ 2c(0.1242 + .124 · 1.005) <
c

3
,

2| ± 3n2 + nt| ≤ 2c(3 · 0.1052 + 0.105 · 1.735) <
c

2
.

Hence, ±m2 + ms = ±3n2 + nt. But

0.876ms ≤ ±m2 + ms ≤ 1.124ms ,

0.685nt ≤ ±3n2 + nt ≤ 1.315nt .

Note that 1.727 ≤ t/s <
√

3. Thus, for sign + we obtain:

ms

nt
≥ 0.889 ⇒ m

n
≥ 1.535 ,

and for sign − we obtain:

ms

nt
≥ 0.685 ⇒ m

n
≥ 1.182 ,

a contradiction.

2◦ v2m+1 = w2n+1

From Lemma 3 we have

(2m + 1) log(s +
√

c)− (2n + 1) log(t +
√

3c) < 0 ,

and so
2m + 1
2n + 1

<
log(t +

√
3c)

log(s +
√

c)
< 1.178 .
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On the other hand, Lemma 2 implies

±2m(m + 1)st + 2(2m + 1) ≡ ±6n(n + 1)st + 2(2n + 1) (mod c) . (11)

Multiplying congruence (11) by s we obtain

±2m(m + 1)t + 2(2m + 1)s ≡ ±6n(n + 1)t + 2(2n + 1)s (mod c) .

Let m1 = m + 1
2 , n1 = n + 1

2 , and let n1 < 0.156 4
√

c. Then m1 < 0.184 4
√

c. We have

2| ±m(m + 1)t + (2m + 1)s| ≤ 2(0.1842 · 1.735c + 2 · 0.184 · 1.005
√

c
√

c) <
c

2
,

2| ± 3n(n + 1)t + (2n + 1)s| ≤ 2(3 · 0.1562 · 1.735c + 2 · 0.156 · 0.105
√

c
√

c) <
c

2
.

Hence,
m(m + 1)t± (2m + 1)s = 3n(n + 1)t± (2n + 1)s . (12)

Multiplying congruence (11) by t we obtain

±2m(m + 1)s + 2(2m + 1)t ≡ ±6n(n + 1)s + 2(2n + 1)t (mod c)

and in the same manner as above we obtain

m(m + 1)s± (2m + 1)t = 3n(n + 1)s± (2n + 1)t . (13)

Since t 6= ±s we conclude from (12) and (13) that it holds

m(m + 1)± (2m + 1) = 3n(n + 1)± (2n + 1)

and
m(m + 1)∓ (2m + 1) = 3n(n + 1)∓ (2n + 1) .

Hence 2m + 1 = 2n + 1 and m(m + 1) = 3n(n + 1), which implies that m = n = 0.
Thus we prove

Lemma 4 1◦ If v2m = w2n and n 6= 0, then n > 0.105
√

c.

2◦ If v2m+1 = w2n+1 and n 6= 0, then n > 0.156 4
√

c.

Now we apply the following theorem of Baker and Wüstholz [3]:

Theorem 2 For a linear form Λ 6= 0 in logarithms of l algebraic numbers α1, . . . , αl

with rational coefficients b1, . . . , bl we have

log Λ ≥ −18(l + 1)! ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) log B ,

where B = max(|b1|, . . . , |bl|), and where d is the degree of the number field generated by
α1, . . . , αl.
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Here
h′(α) =

1
d

max (h(α), | log α|, 1) ,

and h(α) denotes the standard logarithmic Weil height of α.

1) Let us first consider the equation v2m = w2n, with n 6= 0. Using Lemma 3,1◦, we
will apply Theorem 2. We have: l = 3, d = 4, B = 2m,

α1 = s +
√

c, α2 = t +
√

3c,

α3 =
√

3(
√

c + 1)√
c +

√
3

, α′3 =
√

3(
√

c− 1)√
c−√3

,

h′(α1) =
1
2

log α1 < 0.33 log c, h′(α2) =
1
2

log α2 < 0.38 log c,

h′(α3) = h′(α′3) <
1
4

log(12.63c2) < 0.64 log c,

log
3
2
(s +

√
c)−4m < log(s +

√
c)−3m < −3

2
log c.

Hence
3
2
m log c < 3.822 · 1015 · 0.33 log c · 0.38 log c · 0.64 log c · log 2m,

and
m

log 2m
< 2.045 · 1014 log2 c.

But m > n > 0.105
√

c. Thus

m < 2.045 · 1014 log 2m log2(91m2),

which implies m < 9 · 1019 and finally c < 8 · 1041. From

1
6
(2 +

√
3)(7 + 4

√
3)k < 8 · 1041,

it follows that k ≤ 36.

2) Let v2m+1 = w2n+1, with n 6= 0. Now we have: l = 3, d = 4, B = 2m + 1,

α1 = s +
√

c, α2 = t +
√

3c,

α3 =
√

3(2
√

c + t)
2
√

c + s
√

3
, α′3 =

√
3(2
√

c− t)
2
√

c− s
√

3
,

h′(α1) < 0.33 log c, h′(α2) < 0.38 log c,

h′(α3) = h′(α′3) <
1
4

log(75.79c2) < 0.73 log c,



Generalization of the theorem of Davenport and Baker 13

log 22(s +
√

c)−4m−2 < −2m log c.

Hence

2m log c < 3.822 · 1015 · 0.33 log c · 0.38 log c · 0.73 log c · log(2m + 1),

and
m

log(2m + 1)
< 1.75 · 1014 log2 c.

But m > n > 0.156 4
√

c. Thus

m < 1.75 · 1014 log(2m + 1) log2(1689m4),

which implies m < 4 · 1020 and finally c < 5 · 1085. It implies k ≤ 75, which completes
the proof of Proposition 1.

5 The reduction method

For completing the proof of Theorem 1 for all positive integers k, we must check the
following:

1) If 2 ≤ k ≤ 36 and

v0 = 1, v1 = ±s + c, vm+2 = 2svm+1 − vm, m ≥ 0,

w0 = 1, w1 = ±t + c, wn+2 = 2twn+1 − wn, n ≥ 0,

then v2m = w2n implies that m = n = 0. We know that n ≤ m < 9 · 1019.
2) If 2 ≤ k ≤ 75 and

v0 = t, v1 = ±st + 2c, vm+2 = 2svm+1 − vm, m ≥ 0,

w0 = s, w1 = ±st + 2c, wn+2 = 2twn+1 − wn, n ≥ 0,

then v2m+1 = w2n+1 implies that m = n = 0. We know that n ≤ m < 4 · 1020.

We use the reduction method based on Baker-Davenport lemma (see [2]). Let
κ = log(s+

√
c)/ log(t+

√
3c), γ1,2 =

√
3(
√

c±1)/(
√

c±√3), γ3,4 =
√

3(2
√

c± t)/(2
√

c±
s
√

3), µ1,2) = log γ1,2/ log(t +
√

3c), µ3,4) = log γ3,4/ log(t +
√

3c), A1 = 3/2 log(t +
√

3c),
A2 = 22/ log(t +

√
3c), B = (s +

√
c)2.

Let vm = wn, m,n ≥ 0. If m and n are even, then Lemma 3, 1◦ implies

0 < mκ− n + µ1,2 < A1 ·B−m, (14)

and if m and n are even, then Lemma 3, 2◦ implies

0 < mκ− n + µ3,4 < A2 ·B−m. (15)
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Lemma 5 Suppose that M is a positive integer. Let p/q be the convergent of the
continued fraction expansion of κ such that q > 6M and let ε = ‖µq‖ −M · ‖κq‖, where
‖ · ‖ denotes the distance from the nearest integer.

a) If ε > 0, then there is no solution of the inequality

0 < mκ− n + µ < AB−m (16)

in integers m and n with
log(Aq/ε)

log B
≤ m ≤ M .

b) Let r = bµq + 1
2c. If p− q + r = 0, then there is no solution of inequality (16) in

integers m and n with

max(
log(3Aq)

log B
, 1) ≤ m ≤ M .

Proof. a) Assume that 0 ≤ m ≤ M . We have

m(κq − p) + mp− nq + µq < qAB−m.

Thus
qAB−m > |µq − (nq −mp)| −m‖κq‖ ≥ ‖µq‖ −M‖κq‖ = ε ,

which implies

m <
log(Aq/ε)

log B
.

b) Assume that 0 ≤ m ≤ M . We have

m(κq − p) + (mp− nq + r) + (µq − r) < qAB−m.

Thus

|mp−nq+r| < qAB−m + |µq−r|+m|κq−p| < qAB−m +‖µq‖+M‖κq‖ < qAB−m +
2
3

.

If qAB−m ≤ 1
3 , then

mp− nq + r = 0 . (17)

Thus m ≡ m0 (mod q), where m0 is the least nonegative solution of linear Diophantine
equation (17). But p− q + r = 0 implies m0 = 1. Now, 0 ≤ m ≤ M and q > 6M implies
that m = 1.

If qAB−m > 1
3 , then

m <
log(3Aq)

log B
.
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We apply Lemma 5 to inequality (14), resp. (15), with M = 2·1020, resp. M = 8·1020.
If the first convergent such that q > 6M does not satisfy the conditions a) or b) of Lemma
5, then we use next convergent. We have to consider 2 · 35 + 2 · 74 = 218 cases, and the
use of next convergent is necessary only in 3 cases. In all cases (2 ≤ k ≤ 36 for µ1 and µ2,
and 2 ≤ k ≤ 75 for µ3 and µ4) the reduction gives new bound m ≤ M0, where M0 ≤ 9.
The next step of the reduction (the applying of Lemma 5 with M = M0) in all cases
gives m ≤ 1, which completes the proof of Theorem 1.

6 Concluding remarks

Arkin, Hoggatt and Strauss [1] proved that every Diophantine triple {a, b, c} can
be extended to the Diophantine quadruple {a, b, c, d}. More precisely, if ab + 1 = r2,
ac + 1 = s2, bc + 1 = t2, then we can take d = a + b + c + 2abc± 2rst. The conjecture is
that d has to be a + b + c + 2abc± 2rst. Thus, in present paper we verify this conjecture
for Diophantine triples of the form {1, 3, c}. Let us observe that the above conjecture is
verified for Diophantine triples of the form {k−1, k +1, 4k}, k ≥ 2, (see [6]), and also for
the Diophantine triples {1, 8, 120}, {1, 8, 15}, {1, 15, 24}, {1, 24, 35} and {2, 12, 24} (see
[10]).

If we allow that the elements of a Diophantine m-tuples are positive rational numbers,
then the statement of Corollary 1 is not longer valid. Namely, the Diophantine pair
{1, 3} can be extended on infinitely many ways to the rational Diophantine quintuple.
For example, if c is an integer such that {1, 3, c} is a Diophantine triple, and integers s
and t are defined by c + 1 = s2, 3c + 1 = t2, then the sets

{1, 3, c, 7c + 4st + 4,
8st(2s + t)(3s + 2t)(2c + st)
(21c2 + 12c− 1 + 12cst)2

}

and

{1, 3, c, 8(c−4)(c−2)(c+2)
(c2−8c+4)2

,

(2c−st+t−s−1)(2c−st−t+s−1)(2c−st+3t−5s+1)(2c−st−3t+5s+1)(2s−t−1)(2s−t+1)
(83c2+56c−4−48cst)2

}

have the property that the product of its any two distinct elements increased by 1 is a
square of a rational number (see [5, Corollary 2 and Example 5]).
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