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1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the rational numbers
%, %27 % and 11—065 have the following property: the product of any two of them increased
by 1 is a square of a rational number (see [4]). The first set of four positive integers
with the above property was found by Fermat, and it was {1, 3,8,120}. A set of positive
integers {a1,as, ..., an} is said to have the property of Diophantus if a;a; + 1 is a perfect
square for all 1 < i < j < m. Such a set is called a Diophantine m-tuple (or Pj-set of
size m). In 1969, Baker and Davenport [2] proved that if d is a positive integer such
that {1, 3,8,d} is a Diophantine quadruple, then d has to be 120. The same result was
proved by Kanagasabapathy and Ponnudurai [9], Sansone [12] and Grinstead [7]. This
result implies that the Diophantine triple {1, 3,8} cannot be extended to the Diophantine
quintuple.

In the present paper we generalize the result of Baker and Davenport and prove that
the Diophantine pair {1,3} can be extended to infinitely many Diophantine quadruple,
but it cannot be extended to a Diophantine quintuple.

The first part of this assertion is easy. Of course let {1, 3, ¢} be a Diophantine triple,
then from [8, Theorem 8] it follows that there exists £ > 1 such that

c=cp= é[(2+ V3)(T+4V3)* + (2 — V3)(T — 4V3)* — 4]

and it is easy to check that {1,3, ¢k, cx—1} and {1, 3, ¢, cx+1} are Diophantine quadruples
provided k > 2. We have: ¢y =0, ¢; = 8, co = 120, ¢3 = 1680, ... Now we formulate our
main results.

THEOREM 1 Let k be a positive integer. If d is an integer such that there exist integers
x,y, z with the property

d+1=22 3d+1=1v% cpd+1=2 (1)
then d € {0, cr_1,cki1}-

*Research partially supported by Hungarian National Foundation for Scientific Research Grants No.
16791 and 16975



2 A. Dujella and A. Peth$

From Theorem 1 we obtain the following corollaries immediately.

COROLLARY 1 The Diophantine pair {1,3} cannot be extended to the Diophantine
quintuple.

COROLLARY 2 Let 0 <1 < k and z be integers such that

ciep + 1 =22

thenl =k — 1.

REMARK 1 The statement of Theorem 1 for k = 1 is just Davenport-Baker’s result,
and the case k = 2 is proved recently by Kedlaya [10].

Let k be the minimal positive integer for which the statement of Theorem 1 is not
valid. Then k£ > 3 and we begin our proof by proving that k < 75.

PRrROPOSITION 1 If Theorem 1 is true for 1 < k < 75, then it holds for all positive
integers k.

The proof of Proposition 1 is divided into several parts. In Section 2 we consider
the equations (1) separate and prove linear recurrence relations for their solutions. In
Section 3 we first localize the initial terms of the recurrence sequences defined previously
provided that the system of equations (1) is soluble. Here we use congruence conditions
modulo ¢ = ¢. In the second step we consider the remaining sequences modulo ¢? and
rule out all but two equations in terms of linear recurrence sequences. Using linear forms
in logarithms in three algebraic numbers we finish the proof of Proposition 1 in Section
4. Finally in Section 5 we prove Theorem 1 for 2 < k < 75 by using a version of the
reduction procedure due to Baker and Davenport [2].

2 Preliminaries
The system (1) is equivalent to the system of Pell equations:

22—0k$2 = 1—Ck, (2)

322 —cpy? = 3—¢p. (3)
From the definition of ¢ it follows that there exist integers s; and t; such that

c+1 = s2,
3cp +1 = t7.
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Thus neither ¢, nor 3¢y is a square and both Q(,/cx) and Q(/3cy) are real quadratic
number fields. Moreover s, + (/¢ and t; + /3¢c; are non-trivial units of norm 1 in
the number rings Z[,/cx] and Z[\/3ci] respectively. Thus there exist finitely many with
respect to the unit s; + /¢ non-associated elements z((]l) + xél)@,i =1,...,79 of norm
1—cy, in Z[/cx] such that there exist for all solutions (z,z) € Z? of (2) integers 1 < i < ip
and m with

2t ave= () + Ve (s + Vo,
(4)

or z = vy, for some m, where the sequence v is defined by the recursion

N PR P )
For simplicity we omitted here the index k and we do the same in the sequel.
Similarly, all solutions of (3) are given by

V3 +yve= VB Vot + VB, i=1,... o,

or by z = w7(1j ) for some j and n, where the sequence w) is defined by the recursion

w(()j) = z%j)j ng) = tz%i) + cygi), w,(ﬁ_Q = 2tUT(LjJ)rl — v,gj).
Here the elements z%j )\/3 + y%j )\/E are fundamental solutions of equation (3). In this way
we reformulated the system of equations (1) to finitely many diophantine equations of
form

o) = )

in integers 1 <1 < ip,1 < j < jo,m and n.
By [11, Theorem 108a] we have the following estimates for the fundamental solutions
of (2) and (3):

0<|z] < ﬁ(s S e—1) <[ DE<E (4)

ot < [z < e < "
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3 Application of congruence relations

Let a mod b denote the least non-negative residue of the integer a modulo the integer

b and consider the sequences (1)7(7? mod ¢) and (w ) mod ¢). We have:

véi) = (252 — 1)z Qe = (2¢ + 1)260 = v(()i) (mod c¢), Ué) = sz(()l) = §Z) (mod ¢).
(i) (i) (1) (i)

Therefore, vy, = 25" (mod ¢) and vy, | = sz5° (mod c), for all m > 0. Furthermore,

wéj)z(%z—l) U) = = (6c+ 1)z () _w(()]) (mod ¢), wéj)ztzgj)zw:(lj) (mod c¢).

Therefore, wgl) = z%j) (mod ¢) and wggﬂ = tzy) (mod ¢), for all n > 0. In the

following lemma we prove that if (1) has a non-trivial solution then the initial terms of
the sequences v and w) are restricted.

LEMMA 1 Let k > 2 be the smallest positive integer for which the assertion of The-
orem 1 is not true. Let 1 < i < iy,1 < j < jo and v, w9 be the sequences defined in
Section 2. Then

1° If the equation vé?n = wéjn) has a solution, then v(()i) = z(()i) = zﬁj) = w(()j) = =£1.

2° If the equation "ngzﬂ = wgl) has a solution, then z(()i) = =+1 and z(j) = (i) = *s.
3° If the equation vgﬁl = ngn)ﬂ has a solution, then z(()) +t and z = zO /t

4°  If the equation vgzlﬂ = wéjn)ﬂ has a solution, then zé) =+t and zi D = 15,

Proof. 1° We have z(()i) = z%j) (mod ¢). (From (4) and (6) we obtain zéi) = zy).
Let dy = [(zgj))2 — 1]/c. Then dj satisfies system (1). We compare dy with ci_1:

cr > 24 VBTH VBT —a] > 09202+ VE)(7 + 4VE)
— é £0.92(7 — 4v/3)(2 + V/3)(7 + 4V3)F > 0.066¢
1 /e e
do < —- 53 2\[<0027c

Hence, dy < ¢ip_1, and from the minimality of k it follows that dg = 0. Thus, |z§j )| =1

and we have: z((]) zi 7= =1or z[()) (‘j) = —1.

2° We have sz[()) g 2 (mod c). If zoz) = =£1, then as ¢ — s > ¢/2 inequality (6)

implies that z(j) = sz() . Assume |z0 | > 2. Then x(()) > 2 and we have \z(() | > t.

()

Let us consider the number czy’ — 8|ZO )\. We have

02(1,81'))2 _ 82(2(()1‘))2 B 2 _ c(:z:éi))Q 1 2

() - - = - - < <z
cal) + 5287 ca) + 5128 2c+cV3 3

ca) — 5]z =

e}
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Furthermore,

: 2
A —ca2-1 > A- C(‘/E;) — 1> 0.94¢%,

2
¢/ \/E;_ +Ve+ 1\/0\2/E < 1.48c+/c,

cx(()i) - s|z(()i)| > 0.631/cv/c > “;\\/fg. (8)

Notice that in the proof of (8) we did not used that |z(()i)| > 1.
Let z(()z) > 0. Since z§]) = sz[()z) (mod ¢) and —c¢ < sz(()z) - cxéz) < 0, we have

zgj) € {S,Zéi) - cx(()i), sz(()i) - cx(()i) +c}. But

cxg) + s|z(()i) |

IA

and so

eve
2v/3

sz(()i) —c:zj(()i) < =

sz(gz) — cx(oz) +c > gc’

which both contradict (6).
‘ @) . () Q)

Tf 23" < 0, then we have 2 € {520 + call), s2{" + ca{’ — ¢}, and since
0 0 0 5% 0

@, () cy/c
Sz  +cxy’ > ,
0 0 2\/5
i i 2
SZ(())jLCl‘(())*C < —EC,

we obtain contradiction as before.
3° We have z(()i) = tzij) (mod ¢). If zgj) = =£1, then (4) implies z(()i) = tz%j) = *+t.
Assume ]zij)\ > 2. Then ygj) > 2 and we have |z£])\ > s. As in 2° we have

e g0 = BCWTE = 3PG? 32 -3 -se-3 3 e
1 - . . —_— . 3 Pl
3(eys” +11217)) (et +12l)  B2e+ev3) 3
3c¢2 — ?)(ygj))2 —8—3 > 2.9,
3(cyt’) + 5|21 < 574ce,
and

ey’ — 1l > Jy/feve. 9)
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Thus we have z(()i) € {tz%j) F cy%j), tz%j) F cygj) +c}. But

2
") F eyt i6|>§c

and (4) implies that

o) =t F eyl (10)
Let dy = [(z(gi))2 —1]/c. From (9) and the definition of the sequences (v,(fl)) and (wg))
we see that dy satisfies the system (1). Furthermore,

lc\f
c

dop < < 0.046¢ < ¢

and from the minimality of k, it follows that dy = 0. But, now we have \z(()i)\ =1, which
is in a contradiction with (9) and (10).
(1)

4° We have sz(()i) = tzgj ) (mod c). The estimates for the numbers czy’ — s|z((]i)| and

cygj ) _ t]zy G )| in the proof of 2° and 3° imply the followings:

a) Ifzé)>0and z§)>0 then sz() (i):tz(j)—cygj).

b) Ifz() > 0 and z§ 7 < 0, then sz( )—ca:( o= (j)+cy§ 7 But sz(gi)—c:z:(()i)jtc > %
() @) -

and tz;”’ + cyp , a contradiction.

c) If z(()) < 0 and z( ) > 0, then sz(()) + cac(()) = tz(j) cygj) +c. But sz(()i) + cac(()i) <3

and tz(]) cy( 2 +c> g, a contradiction.

d) If z(()) < 0 and zg D < 0, then szé) + CCL'( D) = tz%j) + cyij).
Hence, we have
sz(()i) F cx(()i) = tzgj) F Cyij) .
Consider the number )
do = - [(szé) ¥ c:c((f)) —1].

As in 3° we see that d satisfies the system (1). Furthermore,

1

do < E-(§)2=g<c, and
1

dg > E-O.39cﬁ>0.

Therefore, from the minimality of k it follows that dy = cx_1.
We have
c-cp1 +1=(st—2c)
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Hence,

cx(()i) - s|z(()i)\ = 2c — st,

and
c(z$) —2) = 5(128"| — 1),

Since ged(s,c¢) = 1, we have a:(()i) =2 (mod s), and from (5) we conclude that xg) =2

and |z(()i)| = t. In the same manner, from
cy%j) — t|z§j)\ = 2¢ — st
we conclude that y%j ) =2 and \z%j )] = s. Thus we have z(()i)
(4)
= —8S. |

Now we will consider the sequences (v(?) mod ¢?) and (w") mod ¢?) which have the
initial terms given in Lemma 1. (We will omit the superscripts (i) and (j).)

(”) 0 _ 4,

=t,zy =sorzy =

z

LEMMA 2 Assume that the conditions of Lemma 1 are satisfied, then
1° vom = 20 + 2¢(m?z9 + mszg) (mod ¢?)

2° womi1 = 820 + c[2m(m + 1)szo + (2m + 1)xg] (mod c?)
3° wgy, = 21 + 2¢(3n221 + ntyy) (mod c?)
4° wopyq =tz +cfbn(n+ 1)z + (2n+ 1y1)] (mod c?)

Proof. We prove the lemma by induction. We use the fact that the sequences (vay,)
and (vgm+1) satisfy the recurrence relation

Am+2 = 2(20 + 1)am+1 — Qm

and the sequences (wgy,) and (wa,+1) satisfy the recurrence relation

bn+2 = 2(60 + 1)bn+1 — bn .

1° vy =29, U = 25%20+ 2scxo — 20 = 20 + 2¢(z0 + sxo).
Assume that the assertion is valid for m — 1 and m. Then we have

VIm+2 = (40 + 2)U2m — UV2m—2
= dczg + 220 + 4e(mPz0 + msxg) — 2o — 2¢[(m — 1)%29 + (m — 1)s0)
= 20 + 2¢[20(2 + 2m* — m® + 2m — 1) + szo(2m — m + 1)]
= 20 + 2¢[(m + 1)%29 + (m + 1)sz] (mod c¢?).
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2° vy = szg+ crg, V_1 = Szg — CIg.
Assume that the assertion is valid for m — 1 and m. Then we have

Vom+3 = (40 + 2)U2m+1 — V2m—1
= deszg + 2szp + 2¢[2m(m + 1)szp + (2m + 1))
— szp — c¢[2m(m — 1)szg + (2m — 1)x¢]
= 520 + c[sz0(4 4+ 4m> + 4m — 2m? + 2m) + zo(4m + 2 — 2m + 1)]
= 520 + c[2(m + 1)(m + 2)szp + (2m + 3)xo] (mod ?).

The proof of 3° and 4° is completely analogous. [
COROLLARY 3 The equations vo, = Wopt1 and Voms1 = Wo, have no solutions.
Proof. If vay, = wopt1, then Lemmas 1 and 2 imply

+2m?t + 4ms = £6n(n + 1)t + (2n +1) (mod ¢).

But this contradicts the obvious fact that c is even.
If voy4+1 = wap, then Lemmas 1 and 2 imply

+2m(m +1)s + (2m + 1) = +6n%s 4+ 4nt (mod c)

and we have again a contradiction with the fact that c is even. [

4 Linear forms in three logarithms

LEMMA 3 1°  If vg,, = way, then

0 < 2mlog(s + v/c) — 2nlog(t + V/3c) + log \/\g/(gf\i/gl) < g(s + o),
2° If Vom+1 = W2an+1, then
0 < (2m + 1) log(s 4+ v/c) — (2n + 1) log(t + V/3¢) + log % < 22(s 4 /c)"tm2,

Proof. 1° We have:

v = S[(VEE (s + VO™ + (~Ve£ 1)(s — va"],

1 n n
w, = ﬁ[(\/éi\/g)(t—i-\/%) + (=ve £ V3)(t — V3e)"].
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If we put
P=(Jet1)(s+vO", Q= jgwéi V3)(t+ V3",
then
Pt YEELan, qt = SRSy

Now the relation v, = w,, implies P — (c — 1)P™1 = Q — C;g?’Q_l. It is clear that P > 1
and @ > 1, and from

P-Q=(c-1)P" - (g —1DQ ' > (c—-D)P T -Q ) =(c—1)(Q-P)PIQ!

it follows that P > Q. Furthermore, we have P—Q < (c—1)P~! and % <(c—1)P72
We may assume that m > 1. Thus, we have P > (y/c—1)-2y/¢c > ¢, and so (c—1)P~2 < 3.
Hence,

P P -
O<logQ:—log(1—PQ)

) 3 1 o
<(c—=1)P 2+ (c—1)°P 4<§(c—1)-w(s+\/é) m <

| W

(s++/c)72™.
2° We have:

v = S[@VEE (s + VO™ + (-2EE 1)(s — VA",
1 n .
w, = m[(mﬁisﬂ)(wﬂ/{% + (=2Ve + sV3)(t — V3c)"].

Let us put
1

\/g(zﬁ + 5v/3)(t +V3c)™.

P=Q2VeEt)(s+V)", Q

Then we have
2 t 2
P—l _ \ﬁ:': (8 . \/E)m’ Q_l _ \/g( \/E:FS\/g) (t— \/%)n’
c—1 c—3
and the relation v,,, = wy, implies P—(c—1)P~! = Q—%Q‘l. Asin 1°, we obtain P > @
and P—Q < (c—1)P~!. As we may assume that m > 1, we have P > (2y/c—t)-2y/c > §
and (c — 1)P~% < 3. Hence,

0<logg:—log(1—P_PQ)
< g(c— 1)P~2 < ;(c_ 1) (2\%1—75)2(S+ Jo)2m
_§C_ 2ve ! s 0_27”:§ 2 s o) —2m
BRI Ve R G Ly s Ll

< 22(s 4+ +/c) ™.
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|
Now use Lemmas 2 and 3 and obtain a lower bound for m and n. We consider two
cases:

1° vy = wa,, m,n#0
From Lemma 3 we have

2mlog(s + v/c) — 2nlog(t + v3c) < 0,

and so

1 1 log(y/c+ L +/c
m_ log(t +v3c) ogv3  loalyetstve o

n  log(s++/c) log(s++c)  log(ve+ 1+ /¢

On the other hand, Lemma 2 implies

+2m? + 2ms = £6n? + 2nt (mod c) .
Assume that n < 0.105y/c. Then m < 0.124,/c. We have
9l £ m? +ms| < 2¢(0.124% +.124 - 1.005) < g ,

2|4 3n? +nt| < 2¢(3-0.105% 4 0.105 - 1.735) <

o

Hence, +m? 4+ ms = £3n? + nt. But

0.876ms
0.685nt

+m? 4+ ms < 1.124ms ,

<
< +3n? 4+ nt < 1.315nt.

Note that 1.727 <t/s < V3. Thus, for sign 4+ we obtain:

M5 50889 = >1535,
t n

n
and for sign — we obtain:

M5 50685 = 2 >1.182,
nt n

a contradiction.

2° Vomy1 = Wapt1
From Lemma 3 we have

(2m + 1)log(s 4+ v/c) — (2n + 1) log(t + V3c) < 0,

and so
2m +1  log(t+ v/3c)

2n+1  log(s++/c)

< 1.178.
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On the other hand, Lemma 2 implies
£2m(m + 1)st +2(2m + 1) = £6n(n+ 1)st +2(2n+ 1) (mod ¢). (11)
Multiplying congruence (11) by s we obtain
+2m(m+ 1)t +2(2m + 1)s = £6n(n + 1)t +2(2n+ 1)s (mod ¢).

Let mi =m + %, nt=n+ %, and let ny < 0.156+/c. Then m; < 0.184/c. We have

o £ m(m + 1)t + (2m + 1)s| < 2(0.1842 - 1.735¢ + 2 - 0.184 - 1.005y/ ev/e) < g :
2 c
2|+ 3n(n+1)t+ (2n+ 1)s| < 2(3-0.156% - 1.735¢ + 2 - 0.156 - 0.1051/ c\/c) < 7
Hence,
m(m+1t+2m+1)s=3n(n+1)t+£ (2n+1)s. (12)
Multiplying congruence (11) by ¢ we obtain
+2m(m+1)s+2(2m + 1)t = £6n(n+ 1)s + 2(2n + 1)t (mod c¢)
and in the same manner as above we obtain
m(m+1)s+ (2m+ 1)t =3n(n+1)s+ (2n+ 1)t. (13)

Since t # +s we conclude from (12) and (13) that it holds
mm+1)+(2m+1)=3n(n+1)£ (2n+1)

and
mm+1)F2m+1)=3nn+1)F2n+1).

Hence 2m + 1 =2n+ 1 and m(m + 1) = 3n(n + 1), which implies that m =n = 0.
Thus we prove

LEMMA 4 1°  If vg,, = way, and n # 0, then n > 0.105/c.
2°  If vymt1 = Want1 and n # 0, then n > 0.156/c.

Now we apply the following theorem of Baker and Wiistholz [3]:

THEOREM 2 For a linear form A # 0 in logarithms of | algebraic numbers aq, ..., o
with rational coefficients by, ...,b; we have

log A > —18(1 + 1)1 1" (32d)!2H (@) - - - W (o) log(21d) log B,

where B = max(|b1],...,|b|), and where d is the degree of the number field generated by
af,...,00.
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Here 1
W (@) = o max (h(a), |log al, 1),
and h(«) denotes the standard logarithmic Weil height of «.
1) Let us first consider the equation vg,, = way,, with n # 0. Using Lemma 3,1°, we
will apply Theorem 2. We have: | =3, d =4, B =2m,
a1:S+\ﬁ7 a2:t+\/3icv

VBWVe+l) |, VB(Ve-1)

Vetvs T -3

1
h(a1) = 5 logay < 0.33loge, h(az) =

a3 —

log ap < 0.381og c,

N |

1
W (as) = W (af) < 1 log(12.63¢%) < 0.64log c,

3 3
log 5(3 +ve) ™ < log(s + vc) 3™ < —3 log c.
Hence 3
ymloge < 3.822- 10% - 0.331og ¢ - 0.38log ¢ - 0.64 log ¢ - log 2m,
and

< 2.045- 10" log? c.

log 2m
But m > n > 0.105y/c. Thus

m < 2.045 - 101 log 2m log?(91m?),
which implies m < 9 - 10! and finally ¢ < 8 - 10*'. From
é(2 +V3)(7T+4V3)F < 8- 104,
it follows that k£ < 36.
2) Let vamm+1 = want1, with n # 0. Now we have: [ =3, d=4, B=2m+ 1,
a1 = s+ /e, a2:t+\/§,

VBevery ., _ VBeve-
2v/c+sv3 0 2c—sV/3
h'(a1) < 0.331loge, h'(ag) < 0.38logc,

a3 —

1
W (az) = h' (o) < 1 log(75.79¢*) < 0.73log c,



Generalization of the theorem of Davenport and Baker 13

log 22(s + /)42 < —2mlogec.

Hence
2mlogc < 3.822-10% - 0.331logc - 0.38logc- 0.73log ¢ - log(2m + 1),
and m
og@m 1) < 1.75-10"%1og? c.

But m > n > 0.156/c. Thus
m < 1.75 - 10" 1og(2m + 1) log?(1689m*),

which implies m < 4 - 10?0 and finally ¢ < 5-10%°. It implies k < 75, which completes
the proof of Proposition 1. (]

5 The reduction method

For completing the proof of Theorem 1 for all positive integers k, we must check the
following;:
1) If2 <k <36 and

v=1, vi==xs+c¢, Umg2=28Vpm+1 — Uy, m >0,

wog =1, wy ==xt+e¢, wppo2 =2twpy1 —wy, n >0,
then vg,, = way, implies that m = n = 0. We know that n < m < 9-109.
2) If2<k<75and

vo =1, v ==xst+2¢, Upmi2 =25Vm41 — U, m >0,

wo =8, wi = =xst+2¢, Wpio = 2twWp41 — Wy, n >0,

then vomm4+1 = wap41 implies that m = n = 0. We know that n <m < 4- 1020,

We use the reduction method based on Baker-Davenport lemma (see [2]). Let
k= log(s ++/¢)/log(t +v/3c), 2 = V3(Ve+ 1) /(e £ V3), 134 = V3(2V/e 1) /(2/c+
$V/3), p11,2y = logv1,2/ log(t + v/3c), pg 1) = logysa/log(t +V/3c), A1 = 3/2log(t + V/3c),
Ay =22/ log(t +v/3¢), B = (s + /¢)2.

Let v, = wy, m,n > 0. If m and n are even, then Lemma 3, 1° implies
O<mrk—n+pup2<A4-B™ (14)
and if m and n are even, then Lemma 3, 2° implies

0<mn—n+u374 < Ag-B7™. (15)
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LEMMA 5 Suppose that M is a positive integer. Let p/q be the convergent of the
continued fraction expansion of k such that ¢ > 6M and let € = ||ug|| — M - ||kql|, where
|| - || denotes the distance from the nearest integer.

a) Ife >0, then there is no solution of the inequality

O<mrk—n+p<AB™™ (16)

in integers m and n with
log(Aa/e)
loeB —
b) Letr = |uq+ %J If p—q+r =0, then there is no solution of inequality (16) in

integers m and n with
log(34q)

ax( log B

H<m< M.

Proof. a) Assume that 0 < m < M. We have
m(kq —p) +mp —nq+pg < gAB™™.
Thus
gAB™" > |ug — (ng — mp)| — m|kq|| = ||ngll — M||rql| =€,

which implies
_ log(Ag/e)
logB

b) Assume that 0 < m < M. We have

m(kq —p) + (mp—ng+r)+ (ug—1) < gAB™™.

Thus
2
|mp—ng+r| < gAB™" + |ug—r|+m|kg—p| < gABT" + | pgl| + M||kql| < qAB‘m+§~
If gAB™™ < 1, then
mp—ng+r=20. (17)

Thus m = mgy (mod q), where myg is the least nonegative solution of linear Diophantine
equation (17). But p — ¢+ r = 0 implies my = 1. Now, 0 < m < M and g > 6M implies
that m = 1.
If gAB™™ > %, then
log(3A4q)

log B
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We apply Lemma 5 to inequality (14), resp. (15), with M = 2-10%°, resp. M = 8-10%.
If the first convergent such that ¢ > 6M does not satisfy the conditions a) or b) of Lemma
5, then we use next convergent. We have to consider 2 - 35 + 2 - 74 = 218 cases, and the
use of next convergent is necessary only in 3 cases. In all cases (2 < k < 36 for p; and pue,
and 2 < k < 75 for pug and pg4) the reduction gives new bound m < My, where My < 9.
The next step of the reduction (the applying of Lemma 5 with M = M) in all cases
gives m < 1, which completes the proof of Theorem 1.

6 Concluding remarks

Arkin, Hoggatt and Strauss [1] proved that every Diophantine triple {a,b,c} can
be extended to the Diophantine quadruple {a,b,c,d}. More precisely, if ab + 1 = r?
ac+1 =52 bc+1 =12 then we can take d = a + b + ¢ + 2abc £ 2rst. The conjecture is
that d has to be a + b+ ¢+ 2abc & 2rst. Thus, in present paper we verify this conjecture
for Diophantine triples of the form {1,3,c}. Let us observe that the above conjecture is
verified for Diophantine triples of the form {k—1,k+ 1,4k}, k > 2, (see [6]), and also for
the Diophantine triples {1,8,120}, {1,8,15}, {1,15,24}, {1,24,35} and {2,12,24} (see
[10]).

If we allow that the elements of a Diophantine m-tuples are positive rational numbers,
then the statement of Corollary 1 is not longer valid. Namely, the Diophantine pair
{1,3} can be extended on infinitely many ways to the rational Diophantine quintuple.
For example, if ¢ is an integer such that {1, 3, c} is a Diophantine triple, and integers s
and t are defined by ¢+ 1 = 52, 3¢ + 1 = t2, then the sets

8st(2s +t)(3s + 2t)(2¢ + st)
(21¢? + 12¢ — 1 4 12¢st)?

{1, 3, ¢, Tc + 4st + 4, }

and
8(c—4)(c—2)(c+2)
{1, 3, ¢, (F—8ctd)2

(2¢—st+t—s—1)(2c—st—t+s—1)(2c—st+3t—5s+1)(2c—st—3t+5s+1)(2s—t—1)(2s—t+1) }
(83c2+56c—4—48cst)?

have the property that the product of its any two distinct elements increased by 1 is a
square of a rational number (see [5, Corollary 2 and Example 5]).
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