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Laboratory of Informatics
University of Medicine

Nagyerdei Krt. 98
H-4032 Debrecen

Hungary

R.F. Tichy
Institut für Mathematik

Technische Universität Graz
Steyrergasse 30
A-8010 Graz

Austria

Abstract. For a wide class of one-parameter families of Thue equations of arbitrary
degree n ≥ 3 all solutions are determined if the parameter is sufficiently large. The result
is based on the Lang-Waldschmidt conjecture, on the primitivity of the associated number
fields and on an index bound, which does not depend on the coefficients. Applying the
theory of Hilbertian fields and results on thin sets, primitivity is proved for almost all
choices (in the sense of density) of the parameters.

∗This paper was written in the academic year 1995/96 when the author was a visiting professor at the
TU Graz

1



1 Introduction

For an algebraic number field K, we denote by NK/Q the norm for K/Q. If K = Q(α), where
α is an algebraic integer, then the polynomial F (x, y) = NK/Q(x − αy) is an irreducible
polynomial over Z, and the binary diophantine equation

F (x, y) = 1

is called a Thue equation . Bombieri and Schmidt [BSch] proved that the number of
solutions of a Thue equation of degree n ≥ 3 is at most O(n), and they observed that this
result is best possible. Indeed, the Thue equation

n∏

i=1

(x− aiy) + yn = 1

with distinct integers ai ∈ Z, has at least n + 1 solutions, namely

(x, y) = (1, 0), (a1, 1), (a2, 1), . . . , (an, 1) .

In this paper, we shall be concerned with the Thue equation

n∏

i=1

(x− aiy)± yn = ±1 , (1)

and we shall call any solution of (1) of the form ±(x, y) = (1, 0) or ±(x, y) = (ai, 1) a
trivial solution .

For n = 3, a1 = 0, a2 = 1, a3 = a ∈ Z, Mignotte and Tzanakis [MT] proved that if
|a| > 3.67·1032, then (1) has only one non-trivial solution, namely (x, y) = (−a+3,−a+2).

For n = 4, a1 = 0, a2 = 1, a3 = −1, a4 = a ∈ Z, equation (1) was completely
solved for |a| ≥ 2 by Mignotte, Pethö and Roth [MPR] (for |a| > 1028 already by Pethö
[Pe]). In this case, there is again exactly one (parametrized) non-trivial solution, namely
(x, y) = (1,−a).

E. Thomas [Th] investigated equation (1) in the case, where the coefficients ai are
integer polynomials of distinct degrees in an integer variable a, ai = ai(a) ∈ Z[a]. He
conjectured that (1) has only the trivial solutions if a is large enough, and pointed out
that the conjecture might also be true in specific cases of polynomials of equal degrees. In
the case n = 3, a1 = 0, a2 = ak, a3 = al, where a ∈ Z and 0 < k < l are integers, Thomas
proved in [Th] that for a ≥ (2 · 106 (k + 2l))4.85/(l−k), (1) has only the trivial solutions.

In section 4 we shall examine Thomas’ conjecture in the case where a1, . . . , an−1 are
distinct integers and an = a is an integral parameter. We make the additional assumption
that the algebraic number field K = Q(α), where α is a root of the polynomial

P (x) =
n∏

i=1

(x− ai)± 1 ∈ Z[x] ,

is primitive. We investigate the unit group of the order O = Z[α] of K and derive, using the
lower regulator bound of M. Pohst, an upper bound for certain linear forms in logarithms
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of algebraic numbers. Unfortunately, this upper bound is not sharp enough to prove
Thomas’ conjecture by comparing it even with the best known lower bounds for linear
forms in logarithms, see e.g. [BW]. However, assuming the Lang-Waldschmidt conjecture
[La1], we are able to prove Thomas’ conjecture in the cases described above (Theorem
4.1). On account of this result, the equations of degree 3 and 4 cited above, which possess
a parametrized non-trivial solution, should be considered as singular phenomena.

Algebraic number fields K = Q(α), where α is a zero of a polynomial P (x) as above,
were first considered by Ankeny, Brauer and Chowla [ABC] as examples of number fields
which usually have a large class number. Therefore we call these fields Ankeny-Brauer-
Chowla number fields.

In section 2 we investigate the unit groups involved. We do this in a slightly more
general setting, allowing also complex conjugates. In order to apply the lower regulator
bounds of Pohst, we must assume that our number field is primitive. We have no explicit
condition which guarantees primitivity for a large class of equations. However, we shall
prove that in almost all cases (in the sense of density) the Galois group of the generating
polynomial is the symmetric one, which in particular implies primitivity. Again, the
investigations concerning the Galois group will be performed in a more general setting.
This is done in section 3.

2 The Unit Group

We start by specifying notations and assumptions which remain valid throughout this
chapter. Let s, t ∈ lN0 be such that n = s + 2t ≥ 3 and r = s + t− 1 ≥ 1. Suppose that
d ∈ Z\{0}, a1, . . . , as ∈ Z, and let as+1, . . . , an ∈ C be imaginary-quadratic integers such
that aj+t = aj for s + 1 ≤ j ≤ s + t. We make the following two assumptions A. and B. .

A. For all 1 ≤ i < j ≤ n, d|(ai − aj) and |ai − aj| ≥ 1 .

B. Either
B1. s ≥ 1 and a = as ≥ 3 is sufficiently large, compared with a1, . . . , as−1, as+1, . . . , an.

or
B2. The following two inequalities hold:

|ai − aj| ≥ max{2, |d|} for 1 ≤ i < j ≤ n (2)

n∏
j=1
j 6=i

(
|ai − aj| − 1

3

)
> max

{
3|d|, n 5

4

}
for 1 ≤ i ≤ n . (3)

Note that condition (3) is not a very restrictive one. It follows from (2) whenever
n ≥ 5 or |d| > 3. Also in the remaining cases (n = 3, 4 and |d| ≤ 3) there are only some
special constellations of a1, . . . , an in which (3) is violated.

Now we set

n∗ =

{
1 if |d| = 1
n if |d| > 1

, ej =

{
1 for 1 ≤ j ≤ s
2 for s + 1 ≤ j ≤ s + t

, δ =





2
a

in case B1.

1
3

in case B2.
.
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For 1 ≤ i ≤ n, we put Di =
n∏

j=1
j 6=i

(
|ai − aj| − δ

)
, and we obtain in both cases

Di > max
{ |d|

δ
, n

5
4

}
.

Indeed, in case B2. this is just (3), and in case B1. the inequality is valid for sufficiently
large a.

We consider the polynomial

P (x) =
n∏

j=1

(x− aj)− d ∈ Z[x],

and we formulate our preliminary results in a series of Lemmas.

Lemma 2.1 The polynomial P (x) has n distinct zeroes α1, . . . , αn, which can be indexed
in such a way that

α1, . . . , αs ∈ R , αj+t = αj for s + 1 ≤ j ≤ s + t

and
|αj − aj| < δ for 1 ≤ j ≤ n . (4)

They satisfy the inequalities

(1− δ)|ai − aj| ≤ |ai − aj| − δ < |αi − aj| < (1 + δ)|ai − aj|

for all 1 ≤ i, j ≤ n with i 6= j, and

|d|
(1 + δ)n−1

< |αj − aj|
n∏

i=1
i 6=j

|ai − aj| < |d|
(1− δ)n−1

for all 1 ≤ j ≤ n.

Proof. We set d = |d|ε with ε ∈ {±1}, and we may assume that a1 < a2 < . . . < as.
For 1 ≤ i ≤ s, we have εP (ai) = −|d| < 0, and

εP (ai + (−1)s−iεδ) ≥ δ
n∏

j=1
j 6=i

(|ai − aj| − δ)− |d| = δDi − |d| > 0.

Therefore P has a real zero αi between ai and ai + (−1)s−iεδ.
For s + 1 ≤ i ≤ s + t and ξ ∈ C with |ξ| = δ, we have

|P (ai + ξ) + d| =
n∏

j=1

|ai − aj + ξ| ≥ δ
n∏

j=1
j 6=i

(|ai − aj| − δ) = δDi > |d| .
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Thus by Rouché’s theorem, P has exactly one zero in the disc with radius δ around ai.
The other inequalities follow easily by using the triangle inequality and

n∏

i=1

|αi − aj| = |d|.

2

Using the zeroes α1, . . . , αn of P (x) as specified in Lemma 2.1 we define, for 1 ≤ i ≤ n
and 1 ≤ j ≤ s + t, numbers ηij ∈ Z[αi] as follows. For |d| = 1,

ηij =





αi − aj if 1 ≤ j ≤ s

(αi − aj)(αi − aj) if s + 1 ≤ j ≤ s + t
.

For |d| > 1,

ηij =





(αi − aj)
n

d
if 1 ≤ j ≤ s

((αi − aj)(αi − aj))
n

d2
if s + 1 ≤ j ≤ s + t

.

As in [H-K1], we see that ηij ∈ Z[αi] are units in Z[αi] satisfying
∏s+t

j=1 ηij = ±1. Concerning
their size, Lemma 2.1 implies, for i 6= j,

(1− δ)n∗ ≤ |ηij| |d|
|ai − aj|n∗ ≤ (1 + δ)n∗ if 1 ≤ j ≤ s

(1− δ)2n∗ ≤ |ηij| |d|2
(|ai − aj||ai − aj|)n∗ ≤ (1 + δ)2n∗ if s + 1 ≤ j ≤ s + t .





(5)

Lemma 2.2

i) P (x) is irreducible.

ii) For 1 ≤ j ≤ s+ t, the numbers ηij (1 ≤ i ≤ s) are the real conjugates, and the numbers
ηi,j, ηi+t,j = ηi,j (s + 1 ≤ i ≤ s + t) are the pairs of complex conjugates of η1,j.

iii) Every subsystem of size r of η11, . . . , η1,s+t is a system of independent units of Z[α1].

Proof. In case B2. , (5) implies |ηij| > 1 for i 6= j. Hence the assertions follow as in
[H-K2], Lemma 3 and [H-K1], Satz 2.

Now suppose that B1. holds. We use the o- and O-notation for a →∞ (note that the
constants depend on d, a1, . . . , as−1, as+1, . . . , as+t). (5) implies for i 6= j

|ηij| =





(
an∗

|d|

)ej

(1 + o(1)) if i = s or j = s,

eO(1) if i 6= s and j 6= s.

i) Assume on the contrary that P is reducible. Then P possesses a monic irreducible
factor Q ∈ Z[x] such that Q(αs) 6= 0. If {αi | i ∈ I} is the set of zeroes of Q, then the
corresponding set {ηis | i ∈ I} is a full system of conjugated algebraic units, each of
modulus greater than 1, a contradiction.
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ii) is an obvious consequence of i).
iii) Since η1,1 · . . . · η1,s+t = ±1 it is sufficient to prove that {η1j | 1 ≤ j ≤ s+ t, j 6= s}

is a system of independent units. We calculate its regulator Rη. By definition,

Rη =

∣∣∣∣∣det
[
ei log |ηij|

]
1≤i,j≤s+t

i,j 6=s

∣∣∣∣∣ = (log a)r

∣∣∣∣∣det
[
ei

log |ηij|
log a

]
1≤i,j≤s+t

i,j 6=s

∣∣∣∣∣ .

For s 6= i 6= j 6= s we have ei
log |ηij |
log a

= o(1). For i = j 6= s, the estimate

|ηjj| <




2
a

if 1 ≤ j ≤ s,

2
a

(
|aj − aj|+ 2

a

)
if s + 1 ≤ j ≤ t

implies ej
log |ηjj |

log a
< −1 + o(1). If a is sufficiently large, we obain Rη 6= 0, and the assertion

follows.
2

Since P is irreducible, the algebraic number field K = Q(α1) is of degree n with s real
and t complex conjugates. We consider the order O = Z[α1] of K, we denote by DO its
discriminant, by UO its group of units and by RO its regulator. Let Uη be the subgroup
of UO generated by η1,1, . . . , η1,s+t and Rη its regulator. It is well known that

(UO : Uη) = w
Rη

RO
,

where w denotes the index of the torsion subgroups of UO and Uη. We shall obtain an
upper bound for the index (UO : Uη) which only depends on s and t, provided that K
is primitive (i.e. there are no intermediate fields between Q and K). For w we have the
trivial bound w ≤ ψ(s, t), where ψ(s, t) = 2 if s ≥ 1, and ψ(0, t) = max{k ∈ lN | ϕ(k)|2t}.

Lemma 2.3 We have

Rη ≤

2n∗

r

(
n2 log

1 + δ

1− δ
+ log

n∏

j=1

Dj

)


r

.

Proof. By Hadamard’s inequality,

Rη =
∣∣∣∣det

[
ei log |ηij|

]
1≤i,j≤r

∣∣∣∣ ≤
r∏

j=1

(
r∑

i=1

(ei log |ηij|)2

)1/2

≤
r∏

j=1

(
s+t∑

i=1

ei

∣∣∣log |ηij|
∣∣∣
)

=
r∏

j=1

(
s+t∑
i=1

|ηij |>1

ei log |ηij| −
s+t∑
i=1

|ηij |<1

ei log |ηij|
)

= 2r
r∏

j=1

(
s+t∑
i=1

|ηij |>1

ei log |ηij|
)
,
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since
∑s+t

i=1 ei log |ηij| = log |NK/Q(η1j)| = 0.
Using the inequality between the arithmetic and the geometric mean, we obtain

|Rη| ≤
(

2

r
log

r∏

j=1

s+t∏
i=1

|ηij |>1

|ηij|ei

)r

.

Now (5) implies, for 1 ≤ j ≤ r,

s+t∏
i=1

|ηij |>1

|ηij|ei ≤

(1 + δ)n

n∏
i=1
i6=j

|ai − aj|



n∗ej

≤
((

1 + δ

1− δ

)n

Dj

)n∗ej

,

and consequently
r∏

j=1

s+t∏
i=1

|ηij |>1

|ηij|ei ≤



(
1 + δ

1− δ

)n2

·
n∏

j=1

Dj




n∗

,

which implies the assertion.
2

Lemma 2.4 If K is primitive, then

RO ≥
(

3

n(n2 − 1)− 6t

) r
2

(
2t

nγr
r

) 1
2


log

n∏

j=1

Dj − n log n




r

.

Proof. By [PZ], ch. 5.6, (6.22), we have

RO ≥
(

3

n(n2 − 1)− 6t

) r
2

(
2t

nγr
r

) 1
2 (

log |DO| − n log n
)r

,

provided that K is primitive and |DO| > nn. Since

|DO| =
n∏

j=1

|P ′(αj)| =
n∏

j=1

n∏
i=1
i 6=j

|αj − ai| ≥
n∏

j=1

n∏
i=1
i 6=j

(|ai − aj| − δ) =
n∏

j=1

Dj > n
5
4
n ,

the assertion follows.
2

Theorem 2.1 If K is primitive and conditions A. and B. hold, then

(UO : Uη) ≤ ψ(s, t)
(

16nn∗

r

)r
(

n(n2 − 1)− 6t

3

) r
2 (

nγr
r

2t

) 1
2

.
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Proof. By Lemmata 2.3 and 2.4,

(UO : Uη) ≤ ψ(s, t)
Rη

RO

≤ ψ(s, t)
(

2n∗

r

)r
(

n(n2 − 1)− 6t

3

) r
2 (

nγr
r

2t

) 1
2




n2 log 1+δ
1−δ

+ log
n∏

j=1

Dj

log
n∏

j=1

Dj − n log n




r

.

Since D1 · . . . ·Dn > n
5
4
n, we obtain log

∏n
j=1 Dj − n log n > 1

4
n log n, and consequently

n2 log 1+δ
1−δ

+ log
n∏

j=1

Dj

log
n∏

j=1

Dj − n log n

<
4n2 log 5

n log n
+ 5 < 8n,

which implies the Theorem.
2

3 The Galois Group

Definition 3.1 Let m ≥ 2, d 6= 0, s ≥ 0, t ≥ 0 be integers such that n = s + 2t ≥ 2.

a) A vector (a1, . . . , as, b1, . . . , bt, c1, . . . , ct) ∈ Zn is called admissible if the following
conditions are fulfilled:

(A1) ai−aj ≡ ai−bl ≡ bk−bl ≡ 0 mod md for all i, j ∈ {1, . . . , s} and k, l ∈ {1, . . . , t}.
(A2) b2

j − cj < 0 and b2
j − cj ≡ 0 mod d2 for all j ∈ {1, . . . , t}.

(A3) The polynomial

P (x) =
s∏

i=1

(x− ai)
t∏

j=1

(x2 − 2bjx + cj)− d ∈ Z[x]

is irreducible and has the symmetric group Sn as its Galois group over Q.

b) Suppose that s ≥ 1. We say that a vector ~a = (a2, . . . , as, b1, . . . , bt, c1, . . . , ct) ∈
Zn−1 has an admissible completion if for X > 0

#{a1 ∈ lN | a1 < X , (a1, a) ∈ Zn is not admissible} ¿
√

X log X .

Theorem 3.1 Let the notations be as in the definition.

i) For X > 0 , we have

#{x ∈ Zn | x is admissible, |x| ≤ X} À Xn .

ii) Suppose that s ≥ 1. Then we have for X > 0

#{x ∈ Zn−1 | x has an admissible completion, |x| ≤ X} À Xn−1 .
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For the proof of Theorem 3.1 we need several preparations from Galois theory and
from the theory of Hilbertian fields and thin subsets. We start with Galois theory.

Proposition 3.1 Let k be a field, n ∈ lN , n ≥ 2 and char(k) - n(n−1) . Let T1, . . . , Tn

be (algebraically independent) indeterminates over k, d ∈ k× and

P (x) =
n∏

i=1

(x− Ti)− d ∈ k(T1, . . . , Tn)[x] .

Then P has the symmetric group Sn as its Galois group over k(T1, . . . , Tn) .

Proof. Let si ∈ k[T1, . . . , Tn] be the i-th elementary symmetric polynomial in
T1, . . . , Tn ; then

P (x) = xn +
n−1∑

i=1

(−1)isix
n−i + (−1)nsn − d .

Let M be a fixed algebraic closure of k(T1, . . . , Tn), let K be the splitting field of P over
k(s1, . . . , sn) inside M, and consider the field L = k(T1, . . . , Tn) ∩K. Then K(T1, . . . , Tn)
is the splitting field of P over k(T1, . . . , Tn), and

Gal (K(T1, . . . , Tn)/k(T1, . . . , Tn)) = Gal (K/L) .

Therefore it is sufficient to prove that Gal (K/L) = Sn .
Since the coefficients of P (x) are algebraically independent over k and generate

k(s1, . . . , sn), the Galois group of K/k(s1, . . . , sn) is the symmetric group Sn, and hence
Gal (K/L) < Sn. Since k(T1, . . . , Tn)/k(s1, . . . , sn) and K/k(s1, . . . , sn) are normal, the
same is true for L/k(s1, . . . , sn), and therefore Gal (K/L) / Sn.

Suppose now that Gal (K/L) 6= Sn. Then we have Gal (K/L) ⊂ An, and therefore L
contains the fixed field L0 of An, which is given by L0 = k(s1, . . . , sn)(

√
D), where D is

the discriminant of P (x). Therefore the theorem will be proved if we can show that D is
not a square in k(T1, . . . Tn).

We consider the specialization T1 = . . . = Tn−1 = 0 and Tn = T, where T is an
indeterminate over k. Then P (x) specializes to P0(x) = xn−Txn−1−d, and it is sufficient
to prove that the discriminant of P0 is not a square in k(T ). By [Sw], theorem 2, the
discriminant of P0 is given by

∆(T ) = (−1)
(n−1)(n−2)

2 dn−2 (nnd + (n− 1)n−1 T n) = AT n + B ,

where A, B ∈ k×. Since ∆(T ) is coprime with ∆′(T ) = nAT n−1 in k[T ], it cannot be a
square in k[T ] (and hence in k(T )). 2

We shall use the notion of thin subsets of Qn as in [Se1], 9.1 and the notion of Hilbertian
subsets of Qn as in [La2], Ch.9. Instead of repeating the rather involved definitions, we
collate the results which will become relevant in the sequel.

1) Subsets and finite unions of thin sets are thin. Zariski-closed proper subsets are
thin. Complements of Hilbert sets are thin.

9



2) If ∆ ⊂ Qn is thin, then

#{x ∈ Zn ∩∆ | |x| ≤ X} ¿ Xn− 1
2 log X

holds as X →∞ ; see [Se2], Theorem 3.4.4.

3) Let T = (T1, . . . , Tn) be algebraically independent over Q, and let fT(x) ∈ Q(T)[x]
be a monic and irreducible polynomial with Galois group G < Sn over Q(T). Then there
is a thin subset ∆ ⊂ Qn such that for all a ∈ Qn \∆:

i) a is not a pole of any of the coefficients of fT(x).

ii) If fa(x) ∈ Q[x] arises from fT(x) by the specialization T 7→ a, then fa(x) is irreducible
and has G as its Galois group over Q. See [Se2], Prop. 3.3.5.

Proposition 3.2 Let s ≥ 0, t ≥ 0 be integers such that n = s + 2t ≥ 2, and d ∈ Q×.
Then there exists a thin subset ∆ ⊂ Qn such that for all

(a1, . . . , as, b1, . . . , bt, c1, . . . , ct) ∈ Qn \∆ ,

the polynomial

P (x) =
s∏

i=1

(x− ai)
t∏

j=1

(x2 − 2bjx + cj)− d ∈ Q[x]

is irreducible and has the symmetric group Sn as its Galois group over Q.

Proof. Let A = (A1, . . . , As), B = (B1, . . . , Bt), C = (C1, . . . , Ct) be algebraically
independent over Q, and set K = Q(A,B,C). By 3), it is sufficient to prove that the
polynomial

P (x) =
s∏

i=1

(x− Ai)
t∏

j=1

(x2 − 2Bjx + Cj)− d ∈ K[x]

is irreducible and has the symmetric group Sn as its Galois group over K. Fix an algebraic
closure K of K, and let Yj, Y

′
j ∈ K be such that

x2 − 2Bjx + Cj = (x− Yj)(x− Y ′
j ) .

If Y = (Y1, . . . , Yt), Y′ = (Y ′
1 , . . . , Y

′
t ) then A,Y,Y′ are algebraically independent over

Q, and
[
Q(A,Y,Y′) : Q(A,B,C)

]
= 2t . By Proposition 3.1, P (x) is irreducible and has

Sn as its Galois group over Q(A,Y,Y′). Hence the same is true over Q(A,B,C).
2

Proof of Theorem 3.1. Let Ω be the set of all x ∈ Zn satisfying (A1) and (A2). Then
Ω contains a set of the form C ∩ (u + Γ), where u ∈ Zn , Γ < Zn is a complete lattice and
C is an open cone in Rn. Therefore we have for X > 0

#{x ∈ Ω | |x| ≤ X} À Xn .
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If Σ ⊂ Zn is the set of all a ∈ Zn for which (A3) is not satisfied, then Σ is contained in a
thin subset of Qn by Proposition 3.2, and consequently

#{x ∈ Σ | |x| ≤ X} ¿ Xn− 1
2 log X

by 2). Thus i) follows.
The proof of ii) runs along the same lines, using the following Lemma on thin sets.

2

Lemma 3.1 For b ∈ Qn, define jb : Qm → Qm+n = Qm × Qn by jb(a) = (a,b). Let
∆ ⊂ Qm+n be a thin subset. Then there exists a thin subset ∆2 ⊂ Qn such that for all
b ∈ Qn \∆2 the set j−1

b (∆) ⊂ Qm is thin.

Proof. Use the polynomial description of thin sets as given in [Se1], 9.1. Observe that
the rational function field Q(X1, . . . , Xn) is Hilbertian and that complements of Hilbertian
subsets of Qn are thin. 2

4 Connections between the Lang-Waldschmidt con-

jecture and a conjecture of E. Thomas

We now turn to apply the results of sections 2 and 3 to establish a connection between
the conjectures of Lang-Waldschmidt [La1] and E. Thomas [Th]. To formulate the result
we need a definition.

Let γ 6= 0 be an algebraic number, lmxm + . . . + l0 ∈ Z[x] its minimal polynomial and
γ1, . . . , γm its conjugates. Then the absolute logarithmic height of γ is defined by

h(γ) =
1

m
log

∣∣∣∣∣lm
m∏

i=1

max{1, |γi|}
∣∣∣∣∣ .

Conjecture 4.1 (Lang-Waldschmidt [La1]) Let K be an algebraic number field of de-
gree m, β1, . . . , βk ∈ K and b1, . . . , bk ∈ Z. Let B1, . . . , Bk, B be real numbers such that

log Bi ≥ h(βi) , i = 1, . . . , k, and B ≥ max{|b1|, . . . , |bk|, e} .

Then there exists a constant c(k, m) > 0 such that

|b1 log β1 + . . . + bk log βk| > exp{−c(k, m)(log B1 + . . . + log Bk) log B},
provided that b1 log β1 + . . . + bk log βk 6= 0.

We remark that this conjecture is stated in [La1] explicitly only for β1, . . . , βk ∈ Z,
but in a sharper form. It is a possible refinement of A. Baker’s theory of linear forms in
logarithms of algebraic numbers, where presently the best lower bounds are depending on
log B1 · · · log Bk (see for example [BW]), instead of the conjectured log B1 + . . . + log Bk.

We shall prove that a special case of the conjecture of E. Thomas [Th] is a consequence
of the Lang-Waldschmidt conjecture. More precisely, we prove the following theorem.
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Theorem 4.1 Let n ≥ 3, a1 = 0, a2, . . . , an−1 be distinct integers and an = a an integral
parameter. Let α = α(a) be a zero of P (x) =

∏n
i=1(x− ai)− d with d = ±1 and suppose

that the index I of 〈α− a1, . . . , α− an−1〉 in UO, the group of units of O, is bounded by a
constant J = J(a1, . . . , an−1, n) for every a from some subset Ω ⊂ Z. Assume further that
the Lang-Waldschmidt conjecture is true. Then for all but finitely many values a ∈ Ω the
diophantine equation

n∏

i=1

(x− aiy)− dyn = ±1 (6)

only has trivial solutions, except when n = 3 and |a2| = 1, or when n = 4 and (a2, a3) ∈
{(1,−1), (±1,±2)}, in which cases (6) has exactly one more general solution, as described
in the Introduction.

Remark: The integers d, a1, . . . , an = a of Theorem 4.1 satisfy assumptions A. and B1.
of section 2 with s = n; thus the results of section 2 apply. By Theorem 2.1, the index
(UO : Uη) is bounded by a constant J depending only on n, provided that K = Q(α) is
primitive over Q. Therefore, if n is a prime we can choose Ω = Z in Theorem 4.1. For
composite n the results of section 3 show that for most a1, . . . , an−1 ∈ Z we can choose Ω
to be a dense subset of Z (e.g. the set of all a for which Gal (K/Q) = Sn).

In the exceptional cases Theorem 4.1 is unconditionally true by the results of Mignotte
and Tzanakis [MT] as well as by Pethő [Pe] and Mignotte, Pethő and Roth [MPR].
Motivated by these results and by the proof of Theorem 4.1 (especially by Lemmata 4.3
and 4.4) we formulate the following conjecture.

Conjecture 4.2 Let n ≥ 3, a1 = 0, a2, . . . , an−1 be distinct integers and an = a an
integral parameter. If a is large enough then the diophantine equation (6) has only the
trivial solutions ±(x, y) = (1, 0), (ai, 1), i = 1, . . . , n except when n = 3 and |a2| = 1,
and when n = 4 and (a2, a3) = (1,−1), (±1,±2), in which cases it has exactly one more
parametrized solution.

After these remarks we start to prepare the proof of Theorem 4.1. We may assume
without loss of generality that 0 < |a2| ≤ . . . ≤ |an−1| < a and put A = log(a). Assume
further that the zeros αi of P (x) are ordered according to Lemma 2.1, thus

|αi − ai| < δ =
2

a
≤ 1

3
for 1 ≤ i ≤ n and 6 ≤ a .

For y = 0 equation (6) only has trivial solutions with |x| = 1.
Thus let us assume that (x, y) ∈ Z2 with y 6= 0 is a solution of (6). Then

∣∣∣∣∣y
nP

(
x

y

)∣∣∣∣∣ =

∣∣∣∣∣
n∏

i=1

(x− aiy)− dyn

∣∣∣∣∣ =

∣∣∣∣∣
n∏

i=1

(x− αiy)

∣∣∣∣∣ = 1.

Define j ∈ {1, . . . , n} to be that index such that

|x− αjy| = min
1≤i≤n

|x− αiy|. (7)

Obviously, |x− αjy| < 1. Let us put Y = log |y|.

12



Lemma 4.1 Let the notations be as above and j be given by (7). Then

log |x− αiy| =





−(n− 1)Y − A + O(1) if i = j < n,
−(n− 1)(Y + A) + O(1) if i = j = n,
Y + O(1) if i 6= j, i, j < n,
Y + A + O(1) if i 6= j, i or j = n.

Here and in the sequel the O-constants depend only on n and a2, . . . , an−1.

Proof. For i 6= j, we obtain

|x− αiy| ≥ |x− αiy|+ |x− αjy|
2

≥ |y||αi − αj|
2

> |y| |ai − aj|
6

,

and so

|x− αiy| >





|y|
6

if i, j 6= n,

|ya|
12

if i or j = n, and a ≥ 2|an−1| .

(8)

On the other hand, (6) and (8) imply

|x− αjy| = 1
n∏

i=1
i6=j

|x− αiy|
<





6n

a|y|n−1
if j 6= n,

12n−1

|ay|n−1
if j = n.

(9)

Since |x− αjy| < 1, we obtain for i 6= j the upper bound

|x− αiy| ≤ |x− αjy|+ |y||αi − αj| < |y|(|ai − aj|+ 2), (10)

which easily yields the stated asymptotic relations for the case i 6= j.
Finally, the lower bound in the case i = j follows from (6) and (10) immediately.

2

As in section 2, we put ηij = αi − aj for 1 ≤ i, j ≤ n. Then ηij are units in Q(αi). Let
us agree to choose α = α1 and let I denote the index of Uη = 〈η11, . . . , η1n〉 in the group
of units UO of the order O = Z[α]. By Lemma 2.2 the regulator Rη of Uη is non-zero if
a is large enough, hence I is a positive integer, and any subset of size n − 1 of the set
{η11, . . . , η1n} generates Uη, possibly up to {±1}.

We have x− αy ∈ UO, hence there exist integers ui, i ∈ {1, . . . , n}\{j} such that

(x− αy)I = ±
n∏

i=1
i6=j

ηui
1i . (11)

Lemma 4.2 Let the index j be defined by (7) and let ui, i ∈ {1, . . . , n}\{j} be the integers
given by (11). Then

ui

I
=





−nY
A
− 1 +O

(
Y +A
A2

)
if j 6= n, 1 ≤ i < n,

− (n−1)Y
A

− 1 +O
(

Y +A
A2

)
if j 6= n, i = n,

−Y
A
− 1 +O

(
Y +A
A2

)
if j = n, 1 ≤ i < n .
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Proof. ¿From Lemma 2.1 we immediately obtain

log |ηki| =





O(1) if i 6= k and i < n and k < n,

−A + O(1) if i = k < n,

A + O(1) if i < k = n or k < i = n,

−(n− 1)A + O(1) if i = k = n.

(12)

Taking absolute values and logarithms of all equations conjugated to (11), we obtain
n linear equations

log |x− αky| =
n∑

i=1
i6=j

ui

I
log |ηki| , 1 ≤ k ≤ n ,

for the n−1 rational numbers
ui

I
, i ∈ {1, . . . , n}\{j}. Any n−1 of these n equations have

determinant ±Rη, so we may omit any one of the equations. We omit the equation with
k = j and obtain a regular system of linear equations

log |x− αky| =
n∑

i=1
i6=j

ui

I
log |ηki| , k ∈ {1, . . . , n} \ {j}, (13)

with determinant

R = det (log |ηki|) 1≤i,k≤n
i,k 6=j

= (−A)n−1 + O(An−2) , (14)

where here and in the following we continuously use (12).
To simplify notations, for 1 ≤ ` ≤ n− 2 let ~v` denote any vector of Rn−1 of the shape

~v` = (O(1), . . . , O(1),−A + O(1), O(1), . . . , O(1), A + O(1)) ,

where −A + O(1) stands at the `-th position. Similarly we put

~v0 = (O(1), . . . , O(1),−A + O(1)),

~vn−1 = (A + O(1), . . . , A + O(1),−(n− 1)A + O(1)),

~w = (Y + O(1), . . . , Y + O(1), Y + A + O(1)),

~z = (Y + A + O(1), . . . , Y + A + O(1)).

Now we distinguish the two cases j 6= n and j = n.

Consider first j 6= n. By Lemma 4.1, the left hand side of the system (13) equals

(log |x− αky|) 1≤k≤n
k 6=j

= ~w ,

thus solving (13) by Cramer’s rule we get

∆` := det(~v1, . . . , ~v`−1, ~y, ~v`+1, . . . , ~vn−1) =





u`

I
R if 1 ≤ ` < j ,

u`+1

I
R if j ≤ ` ≤ n− 1 .
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To compute ∆` we use the relation ~vn−1+
n−2∑
k=1
k 6=`

~vk = −~v`+~v0 . Thus we get for 1 ≤ ` ≤ n−2

∆` = det(~v1, . . . , ~v`−1, ~w,~v`+1, . . . , ~vn−1) = − det(~v1, . . . , ~v`−1, ~vn−1, ~v`+1, . . . , ~vn−2, ~w)

= − det(~v1, . . . , ~v`−1, ~vn−1 +
n−2∑
h=1
h 6=`

~vh, ~v`+1, . . . , ~vn−2, ~w)

= det(~v1, . . . , ~vn−2, ~w)− det(~v1, . . . , ~v`−1, ~v0, ~v`+1, . . . , ~vn−2, ~w) = ∆n−1 −∆′
`.

Adding all rows but the last to the last row of ∆n−1, we obtain

∆n−1 =

∣∣∣∣∣∣∣∣∣∣

−A + O(1) O(1) . . . O(1) Y + O(1)
...

...
...

...
O(1) O(1) . . . −A + O(1) Y + O(1)
O(1) O(1) . . . O(1) (n− 1)Y + A + O(1)

∣∣∣∣∣∣∣∣∣∣

and ∆n−1 = (−A)n−2((n− 1)Y + A) + O(An−3(Y + A)). Therefore,

un

I
=

∆n−1

R
= −(n− 1)Y

A
− 1 + O

(
Y + A

A2

)
.

Computing ∆′
`, we obtain

∆′
` = det(~v1, . . . , ~v`−1, ~v0, ~v`+1, . . . , ~vn−2, ~w)

= det(~v1 + ~v0, ~v2 + ~v0, . . . , ~v`−1 + ~v0, ~v0, ~v`+1 + ~v0, . . . , ~vn−2 + ~v0, ~w).

Interchanging now the last and the `-th row we get

∆′
` = −

∣∣∣∣∣∣∣∣∣∣∣∣∣

−A + O(1) O(1) . . . O(1) Y + O(1)
O(1) −A + O(1) . . . O(1) Y + O(1)

...
...

...
...

O(1) O(1) . . . −A + O(1) Y + O(1)
O(1) O(1) . . . O(1) Y + O(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where the `-th coordinate of the last column is Y + A + O(1), hence

∆′
` = −(−A)n−2Y + O(An−3(Y + A)).

Thus

∆` = ∆n−1 −∆′
` = (−A)n−2((n− 1)Y + A) + (−A)n−2Y + O(An−3(Y + A))

= (−A)n−2(nY + A) + O(An−3(Y + A)) ,

and together with (14) this yields

u`

I
= −nY

A
− 1 + O

(
Y + A

A2

)
for 1 ≤ ` ≤ n− 1, ` 6= j .
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We now turn to the case j = n. For the system (13) we now have

(log |ηki|)k=1,...,n−1 =

{
~vi + ~v0 for 1 ≤ i ≤ n− 2 ,
~v0 for i = n− 1 ,

and as left hand side
(log |x− αky|)k=1,...,n−1 = ~z.

Applying again Cramer’s rule to (13) we obtain

R
ui

I
= det(~v1 + ~v0, . . . , ~vi−1 + ~v0, ~z, ~vi+1 + ~v0, . . . , ~vn−2 + ~v0, ~v0)

= (Y + A)(−A)n−2 + O((Y + A)An−3).

Using (14), we get for i = 1, . . . , n− 1

ui

I
= −Y

A
− 1 + O

(
Y + A

A2

)
.

2

The next lemma shows that equation (6) can have only finitely many solutions which
are of special kind.

Lemma 4.3 Let I, j, u, v ∈ Z be integers with 0 < I and 1 ≤ j < n. If n ∈ {3, 4} assume
furthermore that nv − (n− 1)u + I = 0. If

(u, v) 6=




(0, 0), (−1,−1)I, (−4,−3)I if n = 3 and |a2| = 1,
(0, 0), (−1,−1)I, (−5,−4)I if n = 4 and (a2, a3) = (1,−1), (±1,±2),
(0, 0), (−I,−I) otherwise,

then there exist only finitely many a ∈ Z for which

(
n−1∏
i=1
i6=j

η1i

)u

ηv
1n = (x− αy)I (15)

has a solution (x, y) = (x(a), y(a)) ∈ Z2.

Proof. Let (x, y) ∈ Z be a solution of (15) and let 1 ≤ h, p, q ≤ n be pairwise distinct
integers. Then

(αh − αp)(x− αqy) + (αp − αq)(x− αhy) = (αh − αq)(x− αpy) (16)

holds. Using
n∏

i=1

ηki = d we obtain

x− αky = ηw
kn (dηkj)

U , 1 ≤ k ≤ n, (17)

with U = −u

I
and w =

v − u

I
.
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Assume first that n ≥ 5. Choose p, q ∈ {1, . . . , n}\{j, n} distinct, and such that
|aj − ap| 6= |aj − aq|, which is always possible. Put h = j and insert (17) into (16). Then

(αj − αp)η
w
qn(dηqj)

U + (αp − αq)η
w
jn(dηjj)

U = (αj − αq)η
w
pn(dηpj)

U .

Dividing this equation by ηw
jn(αp − αq)d

U we derive

ηU
jj =

αj − αq

αp − αq

(
ηpn

ηjn

)w

ηU
pj −

αj − αp

αp − αq

(
ηqn

ηjn

)w

ηU
qj .

Assume that (15) has solutions for infinitely many a ∈ Z. Then for some j ∈ {1, . . . , n},
the algebraic function

ηU
jj −

αj − αq

αp − αq

(
ηpn

ηjn

)w

ηU
pj +

αj − αp

αp − αq

(
ηqn

ηjn

)w

ηU
qj

has infinitely many zeros, so it is identically zero. By Lemma 2.1 we have for any i, k ∈
{1, . . . , n− 1} with i 6= k

lim
a→∞

ηin

ηkn

= lim
a→∞

αi − a

αk − a
= 1 and lim

a→∞(αi − αk) = ai − ak = lim
a→∞ ηik .

This yields

lim
a→∞ ηU

jj =
(aj − aq)(ap − aj)

ap − aq

(
(ap − aj)

U−1 − (aq − aj)
U−1

)
.

The right hand side is a constant, and since lim
a→∞ ηjj = 0, U must be positive and the

constant must be zero. As aj, ap and aq are pairwise different, this means

(ap − aj)
U−1 = (aq − aj)

U−1.

Since |ap − aj| 6= |aq − aj|, this implies U = 1, i.e. u = −I.

Consider again (16), but now put h = j, p = n and q ∈ {1, . . . , n}\{j, n}, so

(αj − αn)ηw
qn ηqj + (αn − αq)η

w
jn ηjj = (αj − αq)η

w
nn ηnj.

Dividing by ηnjη
w
jn we get

αj − αn

ηnj

(
ηqn

ηjn

)w

ηqj +
αn − αq

ηnj

ηjj = (αj − αq)

(
ηnn

ηjn

)w

.

As above, one can see that for a tending to infinity the left hand side tends to aj−aq 6= 0.

Since lim
a→∞

∣∣∣ηnn

ηjn

∣∣∣ = 0, this implies w = 0. Thus we proved the lemma for n ≥ 5 and also

for n = 4, provided we can find suitable ap, aq with |aj − ap| 6= |aj − aq|.
For n ∈ {3, 4} we choose h = j and p = n. If n = 3, put q the remaining element of
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the set {1, 2, 3}, while in the case n = 4 we choose q either such that |aj − aq| > 1 or, if
this is not possible, one of the elements of the set {1, 2, 3}\{j}. Equation (16) implies

(αj − αn)ηw
qn ηU

qj + (αn − αq)η
w
jn ηU

jj = (αj − αq)η
w
nn ηU

nj,

which can be reformulated as

ηU
jj =

αn − αj

αn − αq

(
ηqn

ηjn

)w

ηU
qj +

αj − αq

αn − αq

ηU
nj

(
ηnn

ηjn

)w

. (18)

If a tends to inifinity then the first term of the right hand side tends to (aq − aj)
U 6= 0.

The second term of the right hand side can be transformed to

αj − αq

αn − αq

ηU
nj

(
ηnn

ηjn

)w

= (αj − αq)
ηnj

αn − αq

(
ηnj

ηjn

)U−1
ηw

nn

ηw−U+1
jn

.

Using the definition of w and U and the assumption nv − (n − 1)u + I = 0 we find
w − U + 1 = −(n− 1)w. Thus

ηw
nn

ηw−U+1
jn

= (ηnn ηn−1
jn )w =

(
dηn−1

jn∏n−1
k=1 ηkn

)w

because
∏n

k=1 ηkn = d. Summing up, the second term of the right hand side of (18) is

(αj − αq)
αn − αj

αn − αq

(
ηnj

ηjn

)U−1 (
dηn−1

jn∏n−1
k=1 ηkn

)w

,

which tends to aj − aq if a tends to infinity. Hence lima→∞ ηU
jj = (aq− aj)

U +(aj − aq)d
w.

As lima→∞ ηjj = 0, U must be positive, and (aq − aj)
(
(aq − aj)

U−1 − dw
)

= 0, which

implies U = 1, i.e. u = v = −I provided |aq − aj| > 1. Thus the lemma is proved also in
this case.

If n = 3 then |aq − aj| = 1 is only possible if |a2| = 1, while if n = 4 then |aq − aj| = 1
for q ∈ {1, 2, 3}\{j} is only possible if (a2, a3) = (±1,∓1), (±1,±2). In these cases the
assertion of the lemma follows from the theorems of [MT] as well as from [Pe], [MPR].

2

Lemma 4.4 Let I be a positive integer and u ∈ Z. If u 6= 0, I then there exist only finitely
many a ∈ Z for which

ηu
1n = (α1 − a)u = (x− αy)I (19)

has a solution (x, y) = (x(a), y(a)) ∈ Z2.

Proof. Assume that u 6= 0 and (19) holds for infinitely many a.
If u < 0 then lima→∞ |αi − a|u/I = 0 for 1 ≤ i < n, which together with (19) contradicts

1

3
< |(α2 − α1)y| ≤ |x− α1y|+ |x− α2y|.
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Hence we have u > 0. Now we apply (16) with p = n and 1 ≤ h < q < n to those a’s for
which (19) holds. Thus we obtain

(αh − αn)ηu/I
qn + (αn − αq)η

u/I
hn = (αh − αq)η

u/I
nn .

Dividing by (αn − αh)η
u/I
qn and using (12) we get

αn − αq

αn − αh

(
ηhn

ηqn

)u
I

− 1 =
αh − αq

αn − αh

(
ηnn

ηqn

)u
I

= O
(

1

a1+nu
I

)
.

If a is large enough, the right hand side is less then 1/2. Using that | log(x + 1)| < 2|x|
for |x| < 1/2, we conclude

∣∣∣∣∣ log
αn − αq

αn − αh

+
u

I
log

an − αh

an − αq

∣∣∣∣∣ < O
(
a−(1+nu

I
)
)
. (20)

On the other hand,

αn − αq

αn − αh

= 1 +
αh − αq

αn − αh

= 1 +
αh − αq

an − ah

+ O
(

1

a3

)

gives us

log
αn − αq

αn − αh

+
u

I
log

an − αh

an − αq

=
(

u

I
− 1

)
ah − aq

a
+ O

(
1

a2

)
.

Thus (20) is only possible if u = I, and the lemma is proved.
2

Proof of the Theorem 4.1 In the sequel c1, c2, . . . will denote constants depending
only on a2, . . . , an−1 and n. Let (a, x(a), y(a)) = (a, x, y) ∈ Z3 be a solution of (6) with
a > |an−1| and |y| > 1 (the solutions of (6) with |y| = 1 are only the trivial ones). Let the
index j be defined by (7) and let the integers ui, i ∈ {1, . . . , n}\{j}, be given by (11).

Put p = j and choose h, q ∈ {1, . . . , n}\{j} to be distinct numbers. Applying (16)
with these indices we get

αh − αj

αq − αj

n∏
i=1
i6=j

(
ηqi

ηhi

)ui
I

− 1 =
αh − αq

αq − αj

x− αjy

x− αhy
.

The right hand side is bounded by exp{−nY −A + c1} by Lemma 4.1, which is less then
1/4 if a is large enough.
Thus we have

0 < |Λ| :=
∣∣∣∣∣∣∣
I log

∣∣∣∣∣
αh − αj

αq − αj

∣∣∣∣∣ +
n∑

i=1
i6=j

ui log

∣∣∣∣∣
ηqi

ηhi

∣∣∣∣∣

∣∣∣∣∣∣∣
< e−nY−A+c2 .

Put U = max{J, e, |ui| | 1 ≤ i ≤ n, i 6= j}, where J is the upper bound for I as assumed
in the statement of the Theorem. Moreover, by Lemma 4.2

U

J
≤ U

I
<

(
nY

A
+ 1 + c3

Y + A

A2

)
<

(n + 1)Y

A
,
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if a is large enough. Thus Y >
A

(n + 1)J
U . Hence we get the upper bound

log |Λ| < − nA

(n + 1)J
U − A + c2 .

To apply the Lang-Waldschmidt conjecture we have to estimate the absolute logarith-
mic height of the algebraic numbers appearing in Λ. We start with the units. Using (12)
we obtain

h(ηqi) = h(η−1
qi ) =

1

n
log

n∏

k=1

max{1, |η−1
ki |}

≤ − 1

n

(
log |ηii|+ log(1− 1

a
)
)

<
n− 1

n
A + O(1) < A

for q, i ∈ {1, . . . , n}. Hence h
(ηqi

ηhi

)
< 2A for any 1 ≤ i ≤ n.

Further

h(αh − αj) ≤
(
n

2

)−1

log
∏

1≤k<`≤n

max{|αk − α`|, 1} =
2

n
A + O(1) < A .

The leading coefficient of the minimal polynomial of (αq−αj)
−1 is a divisor of the integer

∏

1≤k<`≤n

|αk − α`| < c4a
n−1.

Since the conjugates of (αq − αj)
−1 are less than 1 up to at most one, which is less than

3 by Lemma 2.1, we have

h

(
1

αq − αj

)
<

2

n
A + O(1) < A ,

and consequently

h

(
αh − αj

αq − αj

)
< 2A

for 1 ≤ j ≤ n. Finally the degree of Q(α1, . . . , αn) is at most n! .
After these preparations we apply the Lang-Waldschmidt conjecture to Λ with the

parameters m = n! , k = n, log B1 = . . . = log Bn = 2A and B = U and obtain

log |Λ| > −c(n, n!) 2nA log U.

A comparison of this estimate with the lower bound yields

c5(n)A log U >
nA

(n + 1)J
U + A− c2

with c5 = 2n c(n, n!) . The last inequality implies
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U ≤ c6 = c6(a1, . . . , an−1, n) (21)

for all solutions of equation (6).
Assume now that (6) has infinitely many solutions (a, x(a), y(a)) ∈ Z3 with |y(a)| > 1.

To any such triplet corresponds a vector

~u = (u1, . . . , un, I) =
(
u1(a, x, y), . . . , un(a, x, y), (UO : Uη)

)
∈ Zn+1

via (11). (We put uj = 0 for simplicity.) The absolute value of the coordinates of ~u is
bounded by (21). As for any given a ∈ Z (6) has only finitely many solutions, |y(a)| > 1
holds for infinitely many a. Therefore there exists an ~u = (u1, . . . , un, I) with |ui| < c6,
which corresponds to solutions (a, x(a), y(a)) of (6) with |y(a)| > 1 for infinitely many
a ∈ Z. Let A denote the set of these infinitely many a’s. In the remaining part of the
proof we have to distinguish the cases j < n and j = n.

Consider first the case j < n. Without restriction of generality, let us assume that
j 6= 1. If there exists an 1 < i < n with i 6= j such that ui 6= u1, then by Lemma 4.2 we
have

0 6= ui − u1

I
= O

(
Y + A

A2

)

and therefore Y ≥ O(A2). Consequently, |u1| ≥ c7A by Lemma 4.2, which contradicts
(21) if a is large enough. Hence u1 = ui (for 1 ≤ i ≤ n − 1, i 6= j) for all but finitely
many a ∈ A. Similarly we derive nun− (n− 1)u1 + I = 0 for all but finitely many a ∈ A.
Let

A1 = {a ∈ A | ui = u1, 1 ≤ i ≤ n− 1, i 6= j; nun − (n− 1)u1 + I = 0}.
Then A1 is an infinite set and by (11) we get

(x(a)− α1y(a))I =

(
n−1∏
i=1
i 6=j

η1i

)u1

ηun
1n

for all a ∈ A1. By Lemma 4.3 this is only possible if u1 = un = −I , i.e. if

x(a)− α1y(a) = ±η1j = ±(α1 − aj).

But now y(a) = ±1 yields a contradiction.

The case j = n is similar. Using Lemma 4.2 one proves first that ui = u1 (1 ≤ i ≤ n−1)
holds for all but finitely many a ∈ A. Then one derives a contradiction by means of Lemma
4.4. This completes the proof of Theorem 4.1. 2
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[MPR] M. Mignotte, A. Pethő and R. Roth, Complete solutions of quartic Thue
and index form equations, Math. Comp., 65 (1996), 341–354.

[MT] M. Mignotte and N. Tzanakis, On a family of cubics, J. Number Theory 39
(1991), 41–49.
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