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1. Introduction
In [GPZ 1] we describe a method, due to Lang and Zagier, for computing all
integral points on an elliptic curve E over the field Q of rational numbers. The
method requires the knowledge of the Mordell-Weil group E(Q) and relies on
height calculations and on estimating linear forms in complex elliptic logarithms.
The corresponding algorithm, implemented in the computer algebra package
SIMATH, works quite well for curves E over Q of rank r ≤ 7 (see [G]). In [GPZ
2] the algorithm is applied to Mordell’s elliptic curves

y2 = x3 + k (k ∈ Z, k 6= 0)

for k within the range
|k| ≤ 100, 000 .

Moreover, some interesting numerical experiments relating to Hall’s conjecture
are carried through. A report about these endeavors is given in [GPZ 3]. In
that report we also point out that the algorithm can be extended to yield all
S-integral points on E over Q, when S is chosen as a finite set of places of
Q including the infinite place. Some tables of S-integral points are exhibited
there for S = {2, 3, 5,∞}, but the extended procedure based on p-adic elliptic
logarithms in addition to the complex logarithm is not elaborated on.

In the present report, we outline the p-adic method and list some new tables
concerning S-integral points on elliptic curves. The results are achieved by
means of the implementation of the extended algorithm in the SIMATH package.

Basically, for the p-adic case, we shall follow the line of thought as described in
[Sm]. However, our approach differs from the one taken in [Sm] in two respects.
First, we use different height estimates and second, in the case of rank at most
two curves, we rely on an explicit bound for linear forms in two p-adic elliptic
logarithms which was recently established by Rémond and Urfels [R-U]. The
crucial idea is to establish an inequality for two functions on the maximum N of
the coefficients of S-integral points (see (2) below) of which the lower function
exceeds the upper one for sufficiently large N thus leading to an upper bound
for N .

2. Height estimates
Let

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (ai ∈ Z)
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be the given elliptic curve over Q with Tate’s quantities

b2 = a4
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6,
b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4,
c4 = b2

2 − 24b4, c6 = −b3
2 + 36b2b4 − 216b6.

E/Q has discriminant

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

and absolute invariant

j =
c4

∆
=:

j1
j2

(ji ∈ Z, gcd(j1, j2) = 1).

The invariant differential is

ω =
dx

2y + a1x + a3
=

dy

3x2 + 2a2 + a4 − a1y
.

By Mordell’s theorem, the group E(Q) of rational points on E is finitely gener-
ated:

E(Q) ∼= E(Q)tors ⊕ Zr,

where E(Q)tors is the torsion group and r the rank of E over Q. Suppose that a
basis P1, . . . , Pr ∈ E(Q) of the free part of E(Q) is known. Then every rational
point P ∈ E(Q) has a unique representation

(1) P = n1P1 + · · ·+ nrPr + Pr+1 (ni ∈ Z)

with a torsion point Pr+1 ∈ E(Q)tors.

We fix an arbitrary finite set S of places of Q (including the infinite one):

S := {p1, . . . , ps−1,∞}.

Our aim is to find an upper bound N2 for the coefficients ni in the representation
(1) of S-integral points P ∈ E(Q):

(2) N := max
i=1,...,r

{|ni|∞} ≤ N2.

To this end we start by estimating heights. The multiplicative height of a
rational point P = (x, y) ∈ E(Q) is defined as the following product over all
primes p of Q (including p = ∞):

H(P ) :=
∏
p

max{1, |x|p}

where | |p are the normalized multiplicative absolute values of Q corresponding
to the places p and satisfying the product formula. The ordinary additive height
is then

h(P ) :=
1
2

log H(P )
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and the canonical additive height

ĥ(P ) := lim
n→∞

h(2nP )
22n

.

From Theorem 5 in [Z], one readily derives the inequality

h(P ) ≥ ĥ(P )− C1 for P ∈ E(Q)

with the constant
C1 :=

1
2
(log 2 + µ∞)

in which
µ∞ := log max{|b2|∞, |b4|

1
2∞, |b6|

1
3∞, |b8|

1
4∞}.

As explained in [GPZ 1], this leads to a lower estimate

(3) h(P ) ≥ λ1N
2 − C1

involving the smallest eigenvalue λ1 of the regulator matrix associated with the
basis points P1, . . . , Pr ∈ E(Q) via the canonical height ĥ.

Let now P = (x, y) ∈ E(Q) be an S-integral point and choose p ∈ S in such a
way that

|x|p = max{|x|p1 , . . . , |x|ps−1 , |x|∞}.
Then we conclude that

H(P ) ≤ |x|sp for s := ]S

and hence that

(4) h(P ) ≤ s

2
log |x|p.

Combining (3) and (4) yields (cf. [G])

(5)
1

|x|1/2
p

≤ C2 exp (−C3N
2)

with

C2 := exp
(

C1

s

)
, C3 :=

λ1

s
.

3. Elliptic logarithms
A lower bound for |x|−

1
2

p to supplement the upper bound (5) is now obtained
by estimating a linear form in elliptic logarithms. Two cases are to be distin-
guished, the classical case of p = ∞ and the p-adic case. In both cases it is
convenient to transform the above long Weierstrass equation for E over Q into
short Weierstrass form:

E : Y 2 = X3 + aX + b (a, b ∈ Z).
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Note that the canonical height ĥ is invariant under the corresponding birational
transformation over Q (cf. Theorem 1 in [Z]).

Case 1: p = ∞ ∈ S. In this case S. David [D] computed a lower bound for linear
forms in complex elliptic logarithms. The elliptic curve E, now assumed to
be given in short Weierstrass form over Q, is parametrized by the Weierstrass
function ℘(u) and its derivative ℘′(u). The complex argument u ∈ C of a
rational point

P = (x, y) = (℘(u), ℘′(u)) ∈ E(Q)

is called the elliptic logarithm of P . David’s lower bound involves the following
quantities:

(6) g := E(Q)tors, the order of the torsion group,

(7) C := 2.9 · 106r+6 · 42r2
(r + 1)2r2+9r+12.3,

h := log max{4|aj2|∞, 4|bj2|∞, |j1|∞, |j2|∞},
and some numbers Vi ∈ R satisfying

log Vi ≥ max{ĥ(Pi), h,
3π|ui|2

ω2
1

im(τ)−1} (i = 1, . . . , r)

where ui ∈ R are the elliptic logarithms of the generating points Pi of E(Q),
ω1, ω2 denote the real and complex period of E, respectively, and τ = ω2

ω1
is the

quotient of ω1, ω2. The desired lower bound complementing (5) is then

(8)

ω1

g
√

8
exp{−Chr+1(log( r+1

2 gN) + 1)(log log( r+1
2 gN) + 1)r+1

·
r∏

i=1

log Vi)} ≤ 1

|x|1/2
∞

.

Of course, the inequalities (5) and (8) for |x|1/2
∞ have an analogue for the elliptic

logarithm u′ = gu ∈ R of the g-fold multiple P ′ = (x′, y′) = gP = g(x, y) of our
S-integral point P ∈ E(Q) (see the proposition on page 179 in [GPZ 1]).

Case 2 p = pi ∈ S (for some i ∈ N such that 1 ≤ i ≤ s− 1).
Here we use p-adic elliptic logarithms (cf. [G], [S], [Sm]). Unfortunately, an
explicit lower bound similar to (8) in the complex case exists only for r = 2.

We explain in some detail how one proceeds in the p-adic case. Let Qp be the
p-adic completion of Q and Zp its ring of p-adic integers. Denote by

E1(Qp) := {P ∈ E(Qp) | P̃ = Õ}
the kernel of the reduction map modulo p, where E is regarded as a curve over
Qp and P̃ , Õ are the reduced points P,O modulo p. Designate by E(pZp) the
formal group associated to E (cf. [S]). We consider the isomorphism

E(pZp) −→ E1(Qp)

z 7−→
{

0 if z = 0
( z

w(z) ,− 1
w(z) ) if z 6= 0

}
,
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where
z = −x

y
, w(z) = −1

y
.

The equation for w = w(z) entailed from the long Weierstrass equation for E/Q
becomes

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw2 + a6w
3 = f(z, w).

A recursive procedure based on this equation (see [S]) leads to the power series

w = z3 + a1z
4 + (a2

1 + a2)z5 + (a3
1 + 2a1a2 + a3)z6

+(a4
1 + 3a2

1a2 + 3a1a3 + a2
2 + a4)z7 + · · ·

∈ Z[a1, a2, a3, a4, a6][[z]].

This is the unique power series in z satisfying the relation

w(z) = f(z, w(z)).

¿From it we also get the Laurent series for x and y, viz.

(9)
x(z) = z

w(z) = 1
z2 − a1

z − a2 − a3z − (a4 + a1a3)z2 − · · · ,

y(z) = − 1
w(z) = − 1

z3 + a1
z2 + a2

z + a3 + (a4 + a1a3)z + · · · .

The invariant differential has the expansion

ω(z) = (1 + a1z + (a2
1 + a2)z2 + (a3

1 + 2a1a2 + a3)z3

+(a4
1 + 3a2

1a2 + 6a1a3 + a2
2 + 2a4)z4 + · · ·)dz.

Note that in these expansions the coefficients of the powers of z each have the
same weight depending on the exponent of z.

The p-adic elliptic logarithm is now the homomorphism to the additive group
Ĝa (over the p-adic analogue Cp of the complex numbers C) defined as follows:

ψp : E1(Qp) −→ Ĝa

P = (x, y) 7−→ ∫
ω(z) = z + d1

2 z2 + d2
3 z3 + · · · .

In particular, the p-adic logarithm ψp has the properties

(10) ψp(P + Q) = ψp(P ) + ψp(Q)

and
|ψp(P )|p = |z|p = | − x

y
|p.

Let Ẽ be the reduced curve E modulo p and denote by Np = ]Ẽ(Fq) the number
of rational points on Ẽ/Fp. With the order g of the torsion group introduced
in (6), we define the number

m := lcm(g,Np).
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Then, we have, from the Lutz filtration of E,

mPi =: P ′i ∈ E1(Qp) (i = 1, . . . , r)

for the generating points pi of E(Q) and

mPr+1 = O

for the torsion points Pr+1 ∈ E(Q)tors.

The representation (1) of an S-integral point P = (x, y) ∈ E(Q) gives rise to
the representation

(11) P ′ = n′1P1 + · · ·+ n′rPr = n1P
′
1 + · · ·nrP

′
r (n′i := mni ∈ Z)

of its m-multiple P ′ = (x′, y′) = mP ∈ E1(Qp). In analogy to (9), we then have
the Laurent series

x′ =
z′

w(z′)
=

1
z′2

− a1

z′
− a2 − a3z

′ − (a4 + a1a3)z′
2 − · · ·

and this expansion entails the estimate

(12) |x′|p ≤ 1
|z′|2p

=
1
|t′|2p

,

where we use the abbreviating notation t′ := ψp(P ′) for the elliptic logarithm
of P ′.

On combining the inequalities (5) and (12) and observing that |x′|p ≥ |x|p, we
end up with the upper estimate for the p-adic elliptic loarithm t′ = ψ(P ′) of the
point P ′(x′, y′) = mP = m(x, y):

(13) |t′|p ≤ 1

|x′|1/2
p

≤ 1

|x|1/2
p

≤ C2 exp(−C3N
2).

This is the p-adic analogue of the right hand inequality exhibited in the propo-
sition on page 179 of [GPZ 1]. In analogy to the left hand inequality in that
proposition and to (8), what we need here is an explicit lower estimate for the
p-value of the p-adic elliptic logarithm t′ of P ′. As mentioned above, to date
such an estimate is available only for r ≤ 2.

¿From (10) and (11), we have the relation

(14) t′ = n′1t1 + · · ·+ n′rtr = n1t
′
1 + . . . + nrt

′
r (n′i = mni ∈ Z)

between the elliptic logarithms t′ = ψp(P ′) of P ′, ti = ψp(Pi) of the generating
points Pi and t′i = ψp(P ′i ) of their m-multiples P ′i = mPi ∈ E(Q).

As in the complex case, we again suppose E to be given in short Weierstrass
form with coefficients a, b ∈ Z.
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An implicitly given lower bound is known for arbitrary ranks r from a theorem
of Bertrand [B]. Put

B := log max{|n1|∞, . . . , |nr|∞}

and
H := max{ĥ(P1), . . . , ĥ(Pr)}.

Then, for CM elliptic curves, Bertrand establishes the inequality

exp{−c(p log(m2H)16r2
(log B)8r} < |t′|p

for t′ = ψ(P ′), where
c = c(a, b, r) ∈ R>0

is a constant depending only on the coefficients a, b of the short Weierstrass
form and on the rank r of E over Q. What we require, however, is an explicit
form of this constant c comparable to David’s constant C in (7) and (8). We
trust that D. Bertrand or M. Waldschmidt will encourage a graduate student
to work out the explicit form of this constant. A first step in this direction was
already taken by Rémond and Urfels [R-U] in the special case of forms in r = 2
logarithms. In fact they obtained the following analogue of (8).

On dividing (14) by n2 and changing the sign, the linear form for r = 2 reads

Λ = nt′1 − t′2,

where
n =

n1

n2
∈ Q satisfies |n|p ≤ 1

(without loss of generality). We introduce the auxiliary quantities:

αi := max{1, ĥ(Pi)} (i = 1, 2)
h(n) := log max{|m1|∞, |m2|∞},

where n = m1
m2

is the simplest fraction representation of n,

h(E) := log max{1, |a|∞, |b|∞},
σ := ρ max{|t1|p, |t2|p}−1,

where

ρ := p−λp for λp :=
{ 1

p−1 if p > 2
3 if p = 2

}
,

β := max{h(n), h(E), ĥ(P1), ĥ(P2), δ},
where

δ := max{1, (log σ)−1},
and

γ := max{1, h(E), log β}.
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Rémond and Urfels [R-U] now proved that Λ 6= 0 implies the inequality

exp{−5.7 · 1026 · α1 · α2 · β · γ3 · δ6 · log σ} ≤ |Λ|p.
For any sufficiently large N , this inequality can be turned into

(15)
1
N

exp{−C ′ · log N · (log log N)3} ≤ |t′|p,

with an explicitly computable constant C ′ depending on ĥ(Pi), h(E), ρ and
|ti|p. The estimate (15) is the analogue of the lower estimate for the complex
elliptic logarithm given in the proposition on page 179 of [GPZ 1].

4. De Weger reduction
Comparing the lower bound (8) for the square root of the absolute value of the
x-coordinate of our given S-integral point P = (x, y) ∈ E(Q) with the upper
bound in (5) leads in case 1 (p = ∞) to the inequality

(16)

λ1
s N2 < Chr+1(log( r+1

2 gN) + 1)(log log( r+1
2 gN) + 1)r+1

·
r∏

i=1

log Vi + log
√

8gC2 − log ω1.

Similarly, comparing the lower bound (15) for the p-value of the p-adic elliptic
logarithm t′ = ψp(P ′) of the point P ′ = mP ∈ E(Q) (where P = (x, y) ∈ E(Q)
is the given S-integral point) with the upper bound in (13) leads in case 2 (the
p-adic case) to the inequality

(17)
λ1

s
N2 < log N(1 + C ′(log log N)3) + log C2

with the above explicitly computable constant C ′.

In both cases, for sufficiently large N , the left hand side of (16) and (17) each
exceeds the right hand side. Hence we obtain the desired upper bound

N ≤ N2

for the maximum, defined by (2), of the absolute values of the coefficients in the
basis representation (1) of our S-integral points P ∈ E(Q).

In case 1, we may choose (cf. [G], [GPZ 1])

N2 := max{N1,
2V

r + 1
,

1
λ1

log(g
27/3

ω1
)},

where
V := max

i=1,...,r
{Vi}

and
N1 := 2r+2

√
d1d2 log

r+2
2 (d2(r + 2)r+2)
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for
d1 := max{1, 1

λ1
log(g 27/3

ω1
)},

d2 := max{109,
1
λ1

C}(h

2
)r+1

r∏

i=1

log Vi

with g = ] E(Q)tors as before in (6) and C as in (7).

In case 2, analogous bounds can be derived from (17) if E has rank r ≤ 2 over
Q. Otherwise, we carry through our computations with an assumed bound

N2 ≈ 1040

and hope to find all S-integral points on E over Q in this way.

However, the bound N2 is by far too large to facilitate the determination of all
S-integral points. For instance, we may come up with (see [GPZ 1])

N2 ≈ 10126.

It is here where de Weger reduction (see [dW]) based on the LLL-algorithm
comes into play. This recursive procedure reduces the bound to

N2 ≈ 10.

Then the search for all S-integral points on E/Q becomes feasible by means of
an efficient sieving method (see [G]).

The application of de Weger reduction is described in detail in [G], [GPZ 1],
[Sm] in case 1 (p = ∞) and in [G], [Sm] in case 2 (p 6= ∞). We refrain therefore
from presenting the reduction method here.

The extended algorithm for determining all S-integral points on elliptic curves
E over Q has been implemented by the first author [G] in the computer algebra
package SIMATH. In the tables below we list some new examples.

In fact we computed the number of S-integral points for a varying set S of places
of Q on Mordell’s curves for

10, 000 < |k| < 100, 000 ,

but we selected only those curves which have either rank r = 5 or rank r = 4
and a large number of S-integral points.
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Mordell-Weil group

k r t basis
−92712 5 1 (46, 68), (58, 320), (106, 1048), ( 478

9 , 6452
27 ), ( 313

4 , 4973
8 )

−43847 5 1 (38, 105), (56, 363), (62, 441), (36, 53), ( 177
4 , 1655

8 )
−28279 5 1 (34, 105), (40, 189), (70, 561), (32, 67), (50, 311)

32977 4 1 (14, 189), (−28, 105), (98, 987), (−6, 181)
54225 4 1 (−30, 165), (30, 285), (15, 240), (90, 885)
66265 5 1 (−6, 257), (−24, 229), (24, 283), (54, 473), (−9, 256)
81077 5 1 (47, 430), (83, 808), ( 17

4 , 2279
8 ), ( 41

4 , 2293
8 ), (−89

9 , 7642
27 )

92025 4 1 (−30, 255), (30, 345), (60, 555), (−45, 30)
94636 5 1 (−10, 306), (−18, 298), (110, 1194), (45, 431), (125, 1431)

r = rank of E/Q
t = order of the torsion group

Number of integral and S-integral points

k S0 S1 S2 S3 S4 S5 S6 S7 S8

−92712 16 28 56 74 82 96 112 128 134
−43847 36 50 72 106 126 144 176 202 220
−28279 42 58 80 118 146 176 192 226 246
32977 30 46 66 96 106 126 148 170 184
54225 48 68 84 98 120 146 166 188 204
66265 20 28 64 98 104 138 150 166 180
81077 8 28 56 70 80 94 102 104 128
92025 38 58 76 90 112 132 148 174 188
94636 26 52 72 108 126 156 172 200 216

where S0 = {∞}
S1 = {2,∞}
S2 = {2, 3, ∞}
S3 = {2, 3, 5, ∞}
S4 = {2, 3, 5, 7, ∞}
S5 = {2, 3, 5, 7, 11, ∞}
S6 = {2, 3, 5, 7, 11, 13, ∞}
S7 = {2, 3, 5, 7, 11, 13, 17, ∞}
S8 = {2, 3, 5, 7, 11, 13, 17, 19, ∞}
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