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1 Introduction

Let IK be an algebraic number field of degree n with ring of integers ZZIK.
Let IK(i), i = 1, · · · , n be denote the conjugates of IK in the field of the
complex numbers C. Similarly α(i) will denote the i-th conjugate of α ∈
IK, i = 1, . . . , n. For α ∈ ZZIK and N ⊆ ZZ the pair {α,N} is called a number
system NS, if there exist uniquely for every 0 6= β ∈ ZZ[α] a non-negative
integer L(β) and b0, . . . , bL(β) ∈ N such that bL(β) 6= 0 and

β =
L(β)∑

i=0

biα
i. (1)

After partial results Kovács and Pethő [8] gave a complete characteriza-
tion of number systems in algebraic number fields. In [9] they gave asymp-
totic estimate for L(β), which you find here as Lemma 1.

Having a number system it is natural to ask which elements of IR(α)
have an infinite power series expansion of α with ”digits” from N . Remark
that the field IR(α) is IR, the field of the real numbers and C, according as
α is real or non-real. Another natural question is whether the well-known
rationality criterion of the ordinary q-ary representation of real numbers
may be generalized for the new situation.

To be more precise, let {α,N} be a NS such that IK = Q(α). We shall
denote by S(α) the set of those complex numbers γ for which either γ = 0
or

γ =
∞∑

i=L(γ)

a−iα
−i (2)

with some ai ∈ N , i = L(γ), L(γ)− 1, . . . and a−L(γ) 6= 0. We shall call (2)
the αN -expansion of γ. This concept was introduced by Kátai and Szabó [3].
They proved that if α is a Gaussian integer and {α,N} is a NS in ZZ[i] then
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any complex number has an αN -expansion. Later Kovács [5] characterized
those {α,N} number systems for which any γ ∈ IR(α) have αN -expansions.
Using this result and properties of intevall filling sequences Kovács and
Maksa [7] proved far reaching generalization of the theorem of Kátai and
Szabó. They proved for example that if α is real N = {0, 1, . . . , |Norm(α)|−
1} then any real γ have αN -expansions. Norm(α) denotes the norm of α.

This problem was completely solved, even in more general setting, by
Kátai and Környei [2]. By their result any γ ∈ IR(α) has an αN -expansion.
Using this theorem Kovács and Környei [6] proved that the αN -expansion of
a γ ∈ IR(α) is periodic if and only if γ ∈ Q(α). Unfortunately, the method of
Kovács and Környei is not algorithmic, one can hardly compute the periodic
expansion of a given γ ∈ Q(α).

The aim of this paper is to prove that at least one periodic αN - expansion
of any γ ∈ Q(α) can be found by using the arithmetic of ZK. Our method
is independent from the above mentioned theorem of Kátai and Környei,
it is essentially the same as the method which computes the periodic q-ary
expansion of rational numbers. We are stating now our result.

Theorem 1 Let {α,N} be a NS such that K = Q(α). Then there exists
an algorithm, which computes a periodic αN -expansion for any γ ∈ IK.

It is obvious from the theorem of Kátai and Környei, that any γ ∈ IR(α)
may have many different αN -expansions. On the other hand it is not clear
how many periodic αN -expansions of the elements of IK may have. We shall
point out in section 3, that even the periodic αN -expansion of the elements
of IK is not unique. In all of the examples, I studied the different expansions
were closely related, more precisely they were different only in finitely many
digits. It remains an open question whether there exist essentially different
periodic expansions.
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2 Proof of Theorem 1

An important tool in the proof of Theorem 1 is the following theorem of
Kovács and Pethő [9].

Lemma 1 Let {α,N} be a NS, α being of degree n and 0 6= γ ∈ ZZ[α].
Then there exist constants c1(α,N ), c2(α,N ) such that

max
1≤i≤n

log |γ(i)|
log |α(i)| + c1(α,N ) ≤ L(γ) ≤ max

1≤i≤n

log |γ(i)|
log |α(i)| + c2(α,N ).

Remark that the constants c1 and c2 do not depend on γ.

In the proof of Theorem 1. we follow essentially the proof of the anal-
ogous statement for the q-ary representation of real numbers as given in
Bundschuh [1]. Let 0 6= γ ∈ IK = Q(α). Write γ = β

δ with β, δ ∈ ZZ[α].

Assume first, that (δ) + (α) = (1), where and in the sequel (δ) denotes
the principal ideal generated by δ in ZZIK. There exists an integer d > 0 such
that αd ≡ 1 (mod δ) holds in ZZ[α]. Let fix d and put αd − 1 = δκ1. Then
for m ≥ 1 integer δ divides obviously αdm − 1. Put αdm − 1 = δκm. Then
we have κm ∈ ZZ[α] and

γ =
βκ1

αd − 1
=

βκm

αdm − 1
=

βκ1(αd(m−1) + . . . + 1)
αdm − 1

=
εm

αdm − 1
. (3)

As 0 6= εm ∈ ZZ[α], thus εm can be represented in {α,N} and

L(εm) ≤ max
1≤i≤n

log |ε(i)
m |

log |α(i)| + c2 = max
1≤i≤n

log |(βκ1)(i)|+ log |α(i)dm−1
α(i)−1

|
log |α(i)| + c2

< max
1≤i≤n

log |(βκ1)(i)| − log |α(i) − 1|
log |α(i)| + c2 + dm.

Notice that the first two summands are independent from m, hence

|L(εm)− dm| ≤ c3,

with c3 independent from m, and we can write
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εm =
dm−1∑

i=0

amiα
i +

L(εm)∑

i=dm

amiα
i = ωm + αdmτm,

with ami ∈ N , i = 0, . . . , L(εm). As the length of τm is bounded by a con-
stant, which does not depend on m and the ”digits” ami, i = dm, . . . , L(εm)
belong to a finite set, there are only finitely many possibilites for τm, m =
1, 2, . . .. Thus there exist 0 < ` < k integers such that τ2` = τ2k = τ. Let fix
` and k for the sequel. We have

ε2k = βκ1
αd·2k − 1
αd − 1

= βκ1
αd·2` − 1
αd − 1

· αd·2k − 1
αd·2` − 1

= ε2`(1 + αd·2`
+ · · ·+ αd(2k−2`))

= ω2` + (ω2` + τ)αd·2`
(1 + αd·2`

+ · · ·+ αd(2k−2`+1)) + αd·2k
τ.

On the other hand

ε2k = ω2k + αd·2k
τ.

Both ω2` and τ are assumed already represented in {α,N}. If we write
ω2` + τ in {α,N} then it may happen that the length of ω2` + τ is longer
then d · 2` − 1. Let

ηk = (ω2` + τ)
2k−`−2∑

i=0

αd·2`i.

We get in this notation

ε2k = ω2` + αd·2`
ηk + αd·2k

τ.

We have on the other hand

ε2k = ω2k + αd·2k
τ,

where both ω2k and τ are written in {α,N}. Thus ω2k = ω2` + αd·2`
ηk and

we have

L(ηk) ≤ d(2k − 2`)− 1. (4)

for the {α,N} expansion of ηk.
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Let now t ≥ 0 an integer and consider ε2k+t(2k−2`). We have similarly as
above

ε2k+t(2k−2`) = ε2`

(t+1)(2k−`−1)∑

i=0

αd·2`i

= ω2` + (ω2` + τ)
(t+1)(2k−`−1)∑

i=1

αd·2`i + τ · αd·2`[(t+1)(2k−`−1)+1]

= ω2` +
t∑

j=0

αd·2`(j(2k−`−1)+1)(ω2` + τ)
2k−`−2∑

i=0

αd·i2`

+τ · αd·2`[(t+1)(2k−`−1)+1]

= ω2` + ηkα
d·2`

t∑

j=0

αj·d(2k−2`) + ταd[(t+1)(2k−2`)+2`].

This is by (4) already the {α,N} expansion of ε2k+t(2k−2`) if we insert
the {α,N} expansions of ω2` , ηk and τ .

Let A = max{|b|, b ∈ N} then we have

|β| ≤ A · |α|L(β) |α|
|α| − 1

(5)

for any β ∈ ZZ[α]. Put B = max{L(ω2`), L(τ), L(ηk)} = max{d·2`, c3, d(2k−
2`)}. Using (5) we get

∣∣∣∣∣∣
ε2k+t(2k−2`) −


τ + ηk

∞∑

j=1

α−j·d(2k−2`)




(
αd[2k+t(2k−2`)] − 1

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
ω2` − ηk

∞∑

j=t+2

α−jd(2k−2`) + τ + ηk

∞∑

j=1

α−jd(2k−2`)

∣∣∣∣∣∣

≤ 4 ·A|α|B
( |α|
|α| − 1

)2

= c4

for any t ≥ 0 with c4, which is independent from t. Taking now into consid-
eration (3) we have

γ = τ + ηk

∞∑

j=1

α−jd(2k−2`),
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which is a periodic αN -expansion of γ. This proves Theorem 1 in the
particular case.

In the second part of the proof we are dealing with the general situation,
i.e. if γ = β

δ with β, δ ∈ ZZ[α], but (δ) + (α) ⊂ (1) in ZZIK. Let the prime
ideal decomposition of the ideal (α, δ) in ZZIK be

(α, δ) = Pc1
1 · · · Pct

t ,

where c1, . . . , ct are positive integers.

(δ) = Pa1
1 · · · Pat

t Qδ and (α) = Pb1
1 · · · Pbt

t Qα

with Qδ + (α) = (1). Denote by h the class number of ZZIK. Then Ph
i =

(πi), i = 1, . . . , t; Qh
δ = (ρδ) and Qh

α = (ρα) with π1, . . . , πt, ρδ, ρα ∈ ZZIK,
and we have

δh = πa1
1 · · ·πat

t ρδηδ and αh = πb1
1 . . . πbt

t ραηα,

where ηδ and ηα are units in ZZIK. We may assume without loss of generality,
eventually changing ρδ and ρα, that ηδ = ηα = 1.

Let s be a positive integer such that sbi ≥ ai hold for all i = 1, . . . , t and
put

δ1 = δhπsb1−a1
1 · · ·πsbt−at

t ρs
α = αshρδ.

Then we have

γ =
β · δh−1πsb1−a1

1 . . . πsbt−at
t ρs

α

αshρδ
=

β1

αshρδ
.

As (ρδ)+ (α) = 1 there exists a periodic αN -expansion of β1

ρδ
. Division with

αsh does not change the periodicity of this expansion, only the place of the
”period”, hence γ admits a periodic αN -expansion. Theorem 1 is proved.2
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3 Examples

To illustrate how one can compute in the line of the proof of Theorem
1 a periodic αN -expansion we choose α a zero of the cubic polynomial
x3 +9x2 +24x+17. We proved with B. Kovács in [8] that if N = {0, . . . , 16}
then {α,N} is a NS in ZZ[α]. Put γ = 1/2. It is easy to check that α7 ≡
1 (mod 2) and αj 6≡ 1 (mod 2) for any 0 < j < 7. We have

α7 = −7932α2 − 33326α− 27387.

Thus
1
2

=
−3966α2 − 16663α− 13694

α7 − 1

=
8 + 12α + 13α2 + 4α3 + α4 + 8α5 + 4α6 + α7

α7 − 1

=
(

1 +
4
α

+
8
α2

+
1
α3

+
4
α4

+
13
α5

+
12
α6

+
8
α7

) ∞∑

i=0

α−7i

= α + (4α6 + 8α5 + α4 + 4α3 + 13α2 + 12α + 9)
∞∑

i=1

α−7i.

Finally we shall show that the periodic αN -expansion is generally not
unique. Let p(x) = a0x

n +a1x
n−1 + . . .+an ∈ ZZ[x] such that 1 = a0 ≤ a1 ≤

. . . ≤ an, an ≥ 2, α a zero of p(x) and N = {0, . . . , an− 1}. Then {α,N} is
a NS in ZZ[α] by B. Kovács [4], hence |α| > 1.

Put

γ = an

∞∑

i=1

α−i = an
α

α− 1
.

As an 6∈ N this is not an αN -expansion of γ, but we can easily find αN -
expansions of γ. Indeed, let 0 ≤ j ≤ n, then as p(α) = 0 we have

γ = an

∞∑

i=1

α−i − p(α)
αj

∞∑

i=0

α−i(n+1) + p(α)

= a0α
n + . . . + aj−1α

n−j+1 + (aj − a0)αn−j + (an − an−j)α0

+(an − an−j−1)α−1 + . . . + (an − an)α−j

+
∞∑

i=1

((an − a0)αn + . . . + (an − an))α−i(n+1)−j ,

where a−1 = 0, if j = 0. It is clear that the coefficients of this power series
belong to N , hence γ has at least n + 1 different, periodic αN -expansions.
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