On a periodic expansion of algebraic numbers

Attila Pethö ${ }^{1}$, Debrecen

To the memory of B. Kovács and I. Környei

1 Introduction

Let \mathbb{K} be an algebraic number field of degree n with ring of integers $\mathbb{Z}_{\mathbb{K}}$. Let $\mathbb{K}^{(i)}, i=1, \cdots, n$ be denote the conjugates of \mathbb{K} in the field of the complex numbers C. Similarly $\alpha^{(i)}$ will denote the i-th conjugate of $\alpha \in$ $\mathbb{K}, i=1, \ldots, n$. For $\alpha \in \mathbb{Z}_{\mathbb{K}}$ and $\mathcal{N} \subseteq \mathbb{Z}$ the pair $\{\alpha, \mathcal{N}\}$ is called a number system $\mathcal{N S}$, if there exist uniquely for every $0 \neq \beta \in \mathbb{Z}[\alpha]$ a non-negative integer $L(\beta)$ and $b_{0}, \ldots, b_{L(\beta)} \in \mathcal{N}$ such that $b_{L(\beta)} \neq 0$ and

$$
\begin{equation*}
\beta=\sum_{i=0}^{L(\beta)} b_{i} \alpha^{i} . \tag{1}
\end{equation*}
$$

After partial results Kovács and Pethő [8] gave a complete characterization of number systems in algebraic number fields. In [9] they gave asymptotic estimate for $L(\beta)$, which you find here as Lemma 1.

Having a number system it is natural to ask which elements of $\mathbb{R}(\alpha)$ have an infinite power series expansion of α with "digits" from \mathcal{N}. Remark that the field $\mathbb{R}(\alpha)$ is \mathbb{R}, the field of the real numbers and \mathbf{C}, according as α is real or non-real. Another natural question is whether the well-known rationality criterion of the ordinary q-ary representation of real numbers may be generalized for the new situation.

To be more precise, let $\{\alpha, \mathcal{N}\}$ be a $\mathcal{N S}$ such that $\mathbb{K}=\mathbf{Q}(\alpha)$. We shall denote by $\mathcal{S}(\alpha)$ the set of those complex numbers γ for which either $\gamma=0$ or

$$
\begin{equation*}
\gamma=\sum_{i=L(\gamma)}^{\infty} a_{-i} \alpha^{-i} \tag{2}
\end{equation*}
$$

with some $a_{i} \in \mathcal{N}, i=L(\gamma), L(\gamma)-1, \ldots$ and $a_{-L(\gamma)} \neq 0$. We shall call (2) the $\alpha \mathcal{N}$-expansion of γ. This concept was introduced by Kátai and Szabó [3]. They proved that if α is a Gaussian integer and $\{\alpha, \mathcal{N}\}$ is a $\mathcal{N S}$ in $\mathbb{Z}[i]$ then

[^0]any complex number has an $\alpha \mathcal{N}$-expansion. Later Kovács [5] characterized those $\{\alpha, \mathcal{N}\}$ number systems for which any $\gamma \in \mathbb{R}(\alpha)$ have $\alpha \mathcal{N}$-expansions. Using this result and properties of intevall filling sequences Kovács and Maksa [7] proved far reaching generalization of the theorem of Kátai and Szabó. They proved for example that if α is real $\mathcal{N}=\{0,1, \ldots,|\operatorname{Norm}(\alpha)|-$ $1\}$ then any real γ have $\alpha \mathcal{N}$-expansions. $\operatorname{Norm}(\alpha)$ denotes the norm of α.

This problem was completely solved, even in more general setting, by Kátai and Környei [2]. By their result any $\gamma \in \mathbb{R}(\alpha)$ has an $\alpha \mathcal{N}$-expansion. Using this theorem Kovács and Környei [6] proved that the $\alpha \mathcal{N}$-expansion of a $\gamma \in \mathbb{R}(\alpha)$ is periodic if and only if $\gamma \in \mathbf{Q}(\alpha)$. Unfortunately, the method of Kovács and Környei is not algorithmic, one can hardly compute the periodic expansion of a given $\gamma \in \mathbf{Q}(\alpha)$.

The aim of this paper is to prove that at least one periodic $\alpha \mathcal{N}$ - expansion of any $\gamma \in \mathbf{Q}(\alpha)$ can be found by using the arithmetic of $\mathbf{Z}_{\mathbf{K}}$. Our method is independent from the above mentioned theorem of Kátai and Környei, it is essentially the same as the method which computes the periodic q-ary expansion of rational numbers. We are stating now our result.

Theorem 1 Let $\{\alpha, \mathcal{N}\}$ be a $\mathcal{N S}$ such that $K=\mathbf{Q}(\alpha)$. Then there exists an algorithm, which computes a periodic $\alpha \mathcal{N}$-expansion for any $\gamma \in \mathbb{K}$.

It is obvious from the theorem of Kátai and Környei, that any $\gamma \in \mathbb{R}(\alpha)$ may have many different $\alpha \mathcal{N}$-expansions. On the other hand it is not clear how many periodic $\alpha \mathcal{N}$-expansions of the elements of \mathbb{K} may have. We shall point out in section 3, that even the periodic $\alpha \mathcal{N}$-expansion of the elements of \mathbb{K} is not unique. In all of the examples, I studied the different expansions were closely related, more precisely they were different only in finitely many digits. It remains an open question whether there exist essentially different periodic expansions.

2 Proof of Theorem 1

An important tool in the proof of Theorem 1 is the following theorem of Kovács and Pethő [9]

Lemma 1 Let $\{\alpha, \mathcal{N}\}$ be a $\mathcal{N S}$, α being of degree n and $0 \neq \gamma \in \mathbb{Z}[\alpha]$. Then there exist constants $c_{1}(\alpha, \mathcal{N}), c_{2}(\alpha, \mathcal{N})$ such that

$$
\max _{1 \leq i \leq n} \frac{\log \left|\gamma^{(i)}\right|}{\log \left|\alpha^{(i)}\right|}+c_{1}(\alpha, \mathcal{N}) \leq L(\gamma) \leq \max _{1 \leq i \leq n} \frac{\log \left|\gamma^{(i)}\right|}{\log \left|\alpha^{(i)}\right|}+c_{2}(\alpha, \mathcal{N}) .
$$

Remark that the constants c_{1} and c_{2} do not depend on γ.
In the proof of Theorem 1. we follow essentially the proof of the analogous statement for the q-ary representation of real numbers as given in Bundschuh [1]. Let $0 \neq \gamma \in \mathbb{K}=\mathbf{Q}(\alpha)$. Write $\gamma=\frac{\beta}{\delta}$ with $\beta, \delta \in \mathbb{Z}[\alpha]$.

Assume first, that $(\delta)+(\alpha)=(1)$, where and in the sequel (δ) denotes the principal ideal generated by δ in $\mathbb{Z}_{\mathbb{K}}$. There exists an integer $d>0$ such that $\alpha^{d} \equiv 1 \quad(\bmod \delta)$ holds in $\mathbb{Z}[\alpha]$. Let fix d and put $\alpha^{d}-1=\delta \kappa_{1}$. Then for $m \geq 1$ integer δ divides obviously $\alpha^{d m}-1$. Put $\alpha^{d m}-1=\delta \kappa_{m}$. Then we have $\kappa_{m} \in \mathbb{Z}[\alpha]$ and

$$
\begin{equation*}
\gamma=\frac{\beta \kappa_{1}}{\alpha^{d}-1}=\frac{\beta \kappa_{m}}{\alpha^{d m}-1}=\frac{\beta \kappa_{1}\left(\alpha^{d(m-1)}+\ldots+1\right)}{\alpha^{d m}-1}=\frac{\varepsilon_{m}}{\alpha^{d m}-1} . \tag{3}
\end{equation*}
$$

As $0 \neq \varepsilon_{m} \in \mathbb{Z}[\alpha]$, thus ε_{m} can be represented in $\{\alpha, \mathcal{N}\}$ and

$$
\begin{gathered}
L\left(\varepsilon_{m}\right) \leq \max _{1 \leq i \leq n} \frac{\log \left|\varepsilon_{m}^{(i)}\right|}{\log \left|\alpha^{(i)}\right|}+c_{2}=\max _{1 \leq i \leq n} \frac{\log \left|\left(\beta \kappa_{1}\right)^{(i)}\right|+\log \left|\frac{\alpha^{(i) d m}-1}{\alpha^{(i)}-1}\right|}{\log \left|\alpha^{(i)}\right|}+c_{2} \\
\quad<\max _{1 \leq i \leq n} \frac{\log \left|\left(\beta \kappa_{1}\right)^{(i)}\right|-\log \left|\alpha^{(i)}-1\right|}{\log \left|\alpha^{(i)}\right|}+c_{2}+d m .
\end{gathered}
$$

Notice that the first two summands are independent from m, hence

$$
\left|L\left(\varepsilon_{m}\right)-d m\right| \leq c_{3},
$$

with c_{3} independent from m, and we can write

$$
\varepsilon_{m}=\sum_{i=0}^{d m-1} a_{m i} \alpha^{i}+\sum_{i=d m}^{L\left(\varepsilon_{m}\right)} a_{m i} \alpha^{i}=\omega_{m}+\alpha^{d m} \tau_{m}
$$

with $a_{m i} \in \mathcal{N}, i=0, \ldots, L\left(\varepsilon_{m}\right)$. As the length of τ_{m} is bounded by a constant, which does not depend on m and the "digits" $a_{m i}, i=d m, \ldots, L\left(\varepsilon_{m}\right)$ belong to a finite set, there are only finitely many possibilites for $\tau_{m}, m=$ $1,2, \ldots$. Thus there exist $0<\ell<k$ integers such that $\tau_{2^{\ell}}=\tau_{2^{k}}=\tau$. Let fix ℓ and k for the sequel. We have

$$
\begin{aligned}
\varepsilon_{2^{k}} & =\beta \kappa_{1} \frac{\alpha^{d \cdot 2^{k}}-1}{\alpha^{d}-1}=\beta \kappa_{1} \frac{\alpha^{d \cdot 2^{\ell}}-1}{\alpha^{d}-1} \cdot \frac{\alpha^{d \cdot 2^{k}}-1}{\alpha^{d \cdot 2^{\ell}}-1} \\
& =\varepsilon_{2^{\ell}}\left(1+\alpha^{d \cdot 2^{\ell}}+\cdots+\alpha^{d\left(2^{k}-2^{\ell}\right)}\right) \\
& =\omega_{2^{\ell}}+\left(\omega_{2^{\ell}}+\tau\right) \alpha^{d \cdot 2^{\ell}}\left(1+\alpha^{d \cdot 2^{\ell}}+\cdots+\alpha^{d\left(2^{k}-2^{\ell+1}\right)}\right)+\alpha^{d \cdot 2^{k}} \tau
\end{aligned}
$$

On the other hand

$$
\varepsilon_{2^{k}}=\omega_{2^{k}}+\alpha^{d \cdot 2^{k}} \tau
$$

Both $\omega_{2^{\ell}}$ and τ are assumed already represented in $\{\alpha, \mathcal{N}\}$. If we write $\omega_{2^{\ell}}+\tau$ in $\{\alpha, \mathcal{N}\}$ then it may happen that the length of $\omega_{2^{\ell}}+\tau$ is longer then $d \cdot 2^{\ell}-1$. Let

$$
\eta_{k}=\left(\omega_{2^{\ell}}+\tau\right) \sum_{i=0}^{2^{k-\ell}-2} \alpha^{d \cdot 2^{\ell} i}
$$

We get in this notation

$$
\varepsilon_{2^{k}}=\omega_{2^{\ell}}+\alpha^{d \cdot 2^{\ell}} \eta_{k}+\alpha^{d \cdot 2^{k}} \tau
$$

We have on the other hand

$$
\varepsilon_{2^{k}}=\omega_{2^{k}}+\alpha^{d \cdot 2^{k}} \tau
$$

where both $\omega_{2^{k}}$ and τ are written in $\{\alpha, \mathcal{N}\}$. Thus $\omega_{2^{k}}=\omega_{2^{\ell}}+\alpha^{d \cdot 2^{\ell}} \eta_{k}$ and we have

$$
\begin{equation*}
L\left(\eta_{k}\right) \leq d\left(2^{k}-2^{\ell}\right)-1 \tag{4}
\end{equation*}
$$

for the $\{\alpha, \mathcal{N}\}$ expansion of η_{k}.

Let now $t \geq 0$ an integer and consider $\varepsilon_{2^{k}+t\left(2^{k}-2^{\ell}\right)}$. We have similarly as above

$$
\begin{aligned}
\varepsilon_{2^{k}+t\left(2^{k}-2^{\ell}\right)}= & \varepsilon_{2^{\ell}} \sum_{i=0}^{(t+1)\left(2^{k-\ell}-1\right)} \alpha^{d \cdot 2^{\ell} i} \\
= & \omega_{2^{\ell}}+\left(\omega_{2^{\ell}}+\tau\right) \sum_{i=1}^{(t+1)\left(2^{k-\ell}-1\right)} \alpha^{d \cdot 2^{\ell} i}+\tau \cdot \alpha^{d \cdot 2^{\ell}\left[(t+1)\left(2^{k-\ell}-1\right)+1\right]} \\
= & \omega_{2^{\ell}}+\sum_{j=0}^{t} \alpha^{d \cdot 2^{\ell}\left(j\left(2^{k-\ell}-1\right)+1\right)}\left(\omega_{2^{\ell}}+\tau\right) \sum_{i=0}^{2^{k-\ell}-2} \alpha^{d \cdot 2^{\ell}} \\
& +\tau \cdot \alpha^{d \cdot 2^{\ell}\left[(t+1)\left(2^{k-\ell}-1\right)+1\right]} \\
= & \omega_{2^{\ell}}+\eta_{k} \alpha^{d \cdot 2^{\ell}} \sum_{j=0}^{t} \alpha^{j \cdot d\left(2^{k}-2^{\ell}\right)}+\tau \alpha^{d\left[(t+1)\left(2^{k}-2^{\ell}\right)+2^{\ell}\right]}
\end{aligned}
$$

This is by (4) already the $\{\alpha, \mathcal{N}\}$ expansion of $\varepsilon_{2^{k}+t\left(2^{k}-2^{\ell}\right)}$ if we insert the $\{\alpha, \mathcal{N}\}$ expansions of $\omega_{2^{\ell}}, \eta_{k}$ and τ.

Let $A=\max \{|b|, b \in \mathcal{N}\}$ then we have

$$
\begin{equation*}
|\beta| \leq A \cdot|\alpha|^{L(\beta)} \frac{|\alpha|}{|\alpha|-1} \tag{5}
\end{equation*}
$$

for any $\beta \in \mathbb{Z}[\alpha]$. Put $B=\max \left\{L\left(\omega_{2^{\ell}}\right), L(\tau), L\left(\eta_{k}\right)\right\}=\max \left\{d \cdot 2^{\ell}, c_{3}, d\left(2^{k}-\right.\right.$ $\left.\left.2^{\ell}\right)\right\}$. Using (5) we get

$$
\begin{aligned}
& \left|\varepsilon_{2^{k}+t\left(2^{k}-2^{\ell}\right)}-\left(\tau+\eta_{k} \sum_{j=1}^{\infty} \alpha^{-j \cdot d\left(2^{k}-2^{\ell}\right)}\right)\left(\alpha^{d\left[2^{k}+t\left(2^{k}-2^{\ell}\right)\right]}-1\right)\right| \\
= & \left|\omega_{2^{\ell}}-\eta_{k} \sum_{j=t+2}^{\infty} \alpha^{-j d\left(2^{k}-2^{\ell}\right)}+\tau+\eta_{k} \sum_{j=1}^{\infty} \alpha^{-j d\left(2^{k}-2^{\ell}\right)}\right| \\
\leq & 4 \cdot A|\alpha|^{B}\left(\frac{|\alpha|}{|\alpha|-1}\right)^{2}=c_{4}
\end{aligned}
$$

for any $t \geq 0$ with c_{4}, which is independent from t. Taking now into consideration (3) we have

$$
\gamma=\tau+\eta_{k} \sum_{j=1}^{\infty} \alpha^{-j d\left(2^{k}-2^{\ell}\right)}
$$

which is a periodic $\alpha \mathcal{N}$-expansion of γ. This proves Theorem 1 in the particular case.

In the second part of the proof we are dealing with the general situation, i.e. if $\gamma=\frac{\beta}{\delta}$ with $\beta, \delta \in \mathbb{Z}[\alpha]$, but $(\delta)+(\alpha) \subset(1)$ in $\mathbb{Z}_{\mathbb{K}}$. Let the prime ideal decomposition of the ideal (α, δ) in $\mathbb{Z}_{\mathbb{K}}$ be

$$
(\alpha, \delta)=\mathcal{P}_{1}^{c_{1}} \cdots \mathcal{P}_{t}^{c_{t}}
$$

where c_{1}, \ldots, c_{t} are positive integers.

$$
(\delta)=\mathcal{P}_{1}^{a_{1}} \cdots \mathcal{P}_{t}^{a_{t}} \mathcal{Q}_{\delta} \text { and }(\alpha)=\mathcal{P}_{1}^{b_{1}} \cdots \mathcal{P}_{t}^{b_{t}} \mathcal{Q}_{\alpha}
$$

with $\mathcal{Q}_{\delta}+(\alpha)=(1)$. Denote by h the class number of $\mathbb{Z}_{\mathbb{K}}$. Then $\mathcal{P}_{i}^{h}=$ $\left(\pi_{i}\right), i=1, \ldots, t ; \quad \mathcal{Q}_{\delta}^{h}=\left(\rho_{\delta}\right)$ and $\mathcal{Q}_{\alpha}^{h}=\left(\rho_{\alpha}\right)$ with $\pi_{1}, \ldots, \pi_{t}, \rho_{\delta}, \rho_{\alpha} \in \mathbb{Z}_{\mathbb{K}}$, and we have

$$
\delta^{h}=\pi_{1}^{a_{1}} \cdots \pi_{t}^{a_{t}} \rho_{\delta} \eta_{\delta} \text { and } \alpha^{h}=\pi_{1}^{b_{1}} \ldots \pi_{t}^{b_{t}} \rho_{\alpha} \eta_{\alpha}
$$

where η_{δ} and η_{α} are units in $\mathbb{Z}_{\mathbb{K}}$. We may assume without loss of generality, eventually changing ρ_{δ} and ρ_{α}, that $\eta_{\delta}=\eta_{\alpha}=1$.

Let s be a positive integer such that $s b_{i} \geq a_{i}$ hold for all $i=1, \ldots, t$ and put

$$
\delta_{1}=\delta^{h} \pi_{1}^{s b_{1}-a_{1}} \cdots \pi_{t}^{s b_{t}-a_{t}} \rho_{\alpha}^{s}=\alpha^{s h} \rho_{\delta}
$$

Then we have

$$
\gamma=\frac{\beta \cdot \delta^{h-1} \pi_{1}^{s b_{1}-a_{1}} \ldots \pi_{t}^{s b_{t}-a_{t}} \rho_{\alpha}^{s}}{\alpha^{s h} \rho_{\delta}}=\frac{\beta_{1}}{\alpha^{s h} \rho_{\delta}}
$$

As $\left(\rho_{\delta}\right)+(\alpha)=1$ there exists a periodic $\alpha \mathcal{N}$-expansion of $\frac{\beta_{1}}{\rho_{\delta}}$. Division with $\alpha^{s h}$ does not change the periodicity of this expansion, only the place of the "period", hence γ admits a periodic $\alpha \mathcal{N}$-expansion. Theorem 1 is proved. \square

3 Examples

To illustrate how one can compute in the line of the proof of Theorem 1 a periodic $\alpha \mathcal{N}$-expansion we choose α a zero of the cubic polynomial $x^{3}+9 x^{2}+24 x+17$. We proved with B. Kovács in [8] that if $\mathcal{N}=\{0, \ldots, 16\}$ then $\{\alpha, \mathcal{N}\}$ is a $\mathcal{N S}$ in $\mathbb{Z}[\alpha]$. Put $\gamma=1 / 2$. It is easy to check that $\alpha^{7} \equiv$ $1(\bmod 2)$ and $\alpha^{j} \not \equiv 1(\bmod 2)$ for any $0<j<7$. We have

$$
\alpha^{7}=-7932 \alpha^{2}-33326 \alpha-27387
$$

Thus

$$
\begin{aligned}
\frac{1}{2} & =\frac{-3966 \alpha^{2}-16663 \alpha-13694}{\alpha^{7}-1} \\
& =\frac{8+12 \alpha+13 \alpha^{2}+4 \alpha^{3}+\alpha^{4}+8 \alpha^{5}+4 \alpha^{6}+\alpha^{7}}{\alpha^{7}-1} \\
& =\left(1+\frac{4}{\alpha}+\frac{8}{\alpha^{2}}+\frac{1}{\alpha^{3}}+\frac{4}{\alpha^{4}}+\frac{13}{\alpha^{5}}+\frac{12}{\alpha^{6}}+\frac{8}{\alpha^{7}}\right) \sum_{i=0}^{\infty} \alpha^{-7 i} \\
& =\alpha+\left(4 \alpha^{6}+8 \alpha^{5}+\alpha^{4}+4 \alpha^{3}+13 \alpha^{2}+12 \alpha+9\right) \sum_{i=1}^{\infty} \alpha^{-7 i} .
\end{aligned}
$$

Finally we shall show that the periodic $\alpha \mathcal{N}$-expansion is generally not unique. Let $p(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \in \mathbb{Z}[x]$ such that $1=a_{0} \leq a_{1} \leq$ $\ldots \leq a_{n}, a_{n} \geq 2, \alpha$ a zero of $p(x)$ and $\mathcal{N}=\left\{0, \ldots, a_{n}-1\right\}$. Then $\{\alpha, \mathcal{N}\}$ is a $\mathcal{N S}$ in $\mathbb{Z}[\alpha]$ by B. Kovács [4], hence $|\alpha|>1$.

Put

$$
\gamma=a_{n} \sum_{i=1}^{\infty} \alpha^{-i}=a_{n} \frac{\alpha}{\alpha-1} .
$$

As $a_{n} \notin \mathcal{N}$ this is not an $\alpha \mathcal{N}$-expansion of γ, but we can easily find $\alpha \mathcal{N}$ expansions of γ. Indeed, let $0 \leq j \leq n$, then as $p(\alpha)=0$ we have

$$
\begin{aligned}
\gamma= & a_{n} \sum_{i=1}^{\infty} \alpha^{-i}-\frac{p(\alpha)}{\alpha^{j}} \sum_{i=0}^{\infty} \alpha^{-i(n+1)}+p(\alpha) \\
= & a_{0} \alpha^{n}+\ldots+a_{j-1} \alpha^{n-j+1}+\left(a_{j}-a_{0}\right) \alpha^{n-j}+\left(a_{n}-a_{n-j}\right) \alpha^{0} \\
& +\left(a_{n}-a_{n-j-1}\right) \alpha^{-1}+\ldots+\left(a_{n}-a_{n}\right) \alpha^{-j} \\
& +\sum_{i=1}^{\infty}\left(\left(a_{n}-a_{0}\right) \alpha^{n}+\ldots+\left(a_{n}-a_{n}\right)\right) \alpha^{-i(n+1)-j},
\end{aligned}
$$

where $a_{-1}=0$, if $j=0$. It is clear that the coefficients of this power series belong to \mathcal{N}, hence γ has at least $n+1$ different, periodic $\alpha \mathcal{N}$-expansions.

References

[1] P. Bundschuh, Einführung in die Zahlentheorie, Springer Verlag, (1988) 5.1
[2] I. Kátai and I. Környei, On number systems in algebraic number fields, Publ. Math. Debrecen 41 (1992), 289-294.
[3] I. Kátai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. Szeged 37 (1975), 255-260.
[4] B. Kovács, Integral domains with canonical number systems, Publ. Math. Debrecen, 36 (1989), 153-156.
[5] B. Kovács, Representation of complex numbers in number systems, Acta Math. Hungar. 58 (1991), 113-120.
[6] B. Kovács and I. Környei, On the periodicity of the radix representation, Ann. Univ. Sci. Budapest Sect. Comput. 13 (1992), 129-133.
[7] B. Kovács and Gy. Maksa, Interval-filling sequences of order N and a representation of real numbers in canonical number systems, Publ. Math. Debrecen 39 (1991), 305-313.
[8] B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. Szeged 55 (1991), 287-299.
[9] B. Kovács and A. Pethő, On a representation of algebraic integers, Studia Sci. Math. Hungar. 27 (1992), 169-172.

Laboratory of Informatics
University Medical School Debrecen
Nagyerdei krt. 98.
H-4028 Debrecen, Hungary

[^0]: ${ }^{1}$ Research supported by the Hungarian National Foundation for Scientific Research, Grant No. 16791.

