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1 Introduction

Let IK be an algebraic number field of degree n with ring of integers Z.
Let ]I((i), i = 1,---,n be denote the conjugates of IK in the field of the
complex numbers C. Similarly o9 will denote the i-th conjugate of o €
K, i=1,...,n Fora € Zk and N' C 7 the pair {a, N'} is called a number
system NS, if there exist uniquely for every 0 # [ € Z[a] a non-negative
integer L(f3) and bo, . ..,brs) € N such that by # 0 and

Ly
B=> ba. (1)
i=0

After partial results Kovédcs and Pethd [8] gave a complete characteriza-
tion of number systems in algebraic number fields. In [9] they gave asymp-
totic estimate for L(3), which you find here as Lemma 1.

Having a number system it is natural to ask which elements of IR(«a)
have an infinite power series expansion of « with "digits” from N. Remark
that the field R(«) is IR, the field of the real numbers and C, according as
« is real or non-real. Another natural question is whether the well-known
rationality criterion of the ordinary g¢-ary representation of real numbers
may be generalized for the new situation.

To be more precise, let {a, N'} be a NS such that IK = Q(a)). We shall
denote by S(«) the set of those complex numbers « for which either v = 0
or

i .
v= > aja’ 2)
i=L(7)
with some a; € N,i = L(v),L(y) — 1,... and a_g) # 0. We shall call (2)
the aN-expansion of . This concept was introduced by Kétai and Szabé [3].
They proved that if «v is a Gaussian integer and {«, N'} is a N'S in ZZ[i] then
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any complex number has an a/N-expansion. Later Kovécs [5] characterized
those {a, N'} number systems for which any v € R(a) have aN-expansions.
Using this result and properties of intevall filling sequences Kovécs and
Maksa [7] proved far reaching generalization of the theorem of Kéatai and
Szab6. They proved for example that if o is real N'= {0, 1, ..., |Norm(a)|—
1} then any real v have aN-expansions. Norm(«) denotes the norm of a.

This problem was completely solved, even in more general setting, by
Kétai and Kornyei [2]. By their result any v € IR(«) has an aN-expansion.
Using this theorem Kovécs and Kornyei [6] proved that the aN-expansion of
ay € R(«) is periodic if and only if v € Q(«). Unfortunately, the method of
Kovacs and Kornyei is not algorithmic, one can hardly compute the periodic
expansion of a given v € Q(«).

The aim of this paper is to prove that at least one periodic aV- expansion
of any v € Q(«) can be found by using the arithmetic of Zx. Our method
is independent from the above mentioned theorem of Kéatai and Kornyei,
it is essentially the same as the method which computes the periodic g-ary
expansion of rational numbers. We are stating now our result.

Theorem 1 Let {a, N'} be a NS such that K = Q(«). Then there exists
an algorithm, which computes a periodic aN -expansion for any v € K.

It is obvious from the theorem of Kétai and Kornyei, that any v € R(«)
may have many different aNV-expansions. On the other hand it is not clear
how many periodic aN-expansions of the elements of IK may have. We shall
point out in section 3, that even the periodic cN-expansion of the elements
of IK is not unique. In all of the examples, I studied the different expansions
were closely related, more precisely they were different only in finitely many
digits. It remains an open question whether there exist essentially different
periodic expansions.



2 Proof of Theorem 1

An important tool in the proof of Theorem 1 is the following theorem of
Kovécs and Pethé [9].

Lemma 1 Let {a, N} be a NS, a being of degree n and 0 # ~ € ZL[a].
Then there exist constants c1(a, N'), ca(a, N') such that

log [y?] log [y?]
B e ]| +ci(a, N) < L(y) < Jax og [a® + co(a, N).

Remark that the constants c1 and co do not depend on .

In the proof of Theorem 1. we follow essentially the proof of the anal-
ogous statement for the g-ary representation of real numbers as given in
Bundschuh [1]. Let 0 # v € K = Q(). Write v = 2 with 3,6 € Z|a].

Assume first, that (§) + (o) = (1), where and in the sequel (J) denotes
the principal ideal generated by § in Zy. There exists an integer d > 0 such
that a? =1 (mod 6) holds in Z[a]. Let fix d and put a? — 1 = §x;. Then
for m > 1 integer § divides obviously a® — 1. Put o™ — 1 = §k,,. Then
we have Ky, € Z[a] and

_ Brr PEm _ﬁm(ad(m_l)+...+1) Em
S ad—1 adm—1 adm — 1 adm —1°

As 0 # e, € Z[a], thus &, can be represented in {a, N'} and

; i a(ddm _
log\eg,m log | (Br1)] + log | a(i)_11’
L(ey) < max ———— + ¢o = max , cy
1<i<n log \a(%)] 1<i<n log ‘a(%)|
1 @) _ (@) _
< max 0g |(Br1)"| lgg o 1l 4+ co + dm.
1<i<n log |a(l)’

Notice that the first two summands are independent from m, hence

|L(em) —dm| < cs,

with c3 independent from m, and we can write



dm—1 L(em)
Em = Z amic + Z ami0t = wp + a7,

i=0 i=dm
with a;; € N, i =0,...,L(ey). As the length of 7, is bounded by a con-
stant, which does not depend on m and the ”digits” ami, i = dm, ..., L(ey)
belong to a finite set, there are only finitely many possibilites for 7,,,, m =
1,2,.... Thus there exist 0 < ¢ < k integers such that 7y = m9x = 7. Let fix
¢ and k for the sequel. We have

k 4 k
a?” 1 4 a? —1 %2 _q
ad —1 ad —1  @d2 1

= ey(l+ a®? 4+t ad(Zk—QZ))

= Wy o+ (wye + M (1 + % . 4 2T 4 042

Eok = ﬁlﬂ

On the other hand

ok
Eok = Wok +a%?r,

Both wy and 7 are assumed already represented in {a, N'}. If we write
wye + 7 in {a, N'} then it may happen that the length of wy + 7 is longer
then d - 2¢ — 1. Let

2k—f_2

Nk = (wye + 7) Z ad 2,
i=0

We get in this notation
Eok = Wor + ad'ank +at?r,
We have on the other hand

ok
Eok = Wok +Oéd2 T,

where both wyr and 7 are written in {a, N'}. Thus wor = woye + a®2y,. and
we have

L(ng) < d(2F =29 — 1. (4)
for the {a, N'} expansion of 7.



Let now ¢ > 0 an integer and consider €9k 4(or_9¢). We have similarly as
above

(t+1)(2F 4 ~1)

€2k+t(2k_28) = &g Z «
=0

d-2%;

(t+1) 2k7271) 0 Y4 k—¢
T S AN L GRS
i=1
¢ 0fiiok—0 P2 0
= Wy + Zad'2 (GEF=1+1) (Woe +T) Z a2
j=0 i=0
7 Q@2 1+ (2F = 1)+1]

t
= g+ a2 3 aF A2 gD =242
=0
This is by (4) already the {a, N'} expansion of eor ok _oe) if we insert
the {a, N'} expansions of wye, nx and 7.
Let A = max{|b|, b € N'} then we have

|

for any 3 € Z[a]. Put B = max{L(wy), L(7), L(n)} = max{d-2%, c3,d(2" -
26)}. Using (5) we get

18] < A-|a|*®)

Eok yy(2k—2¢) — (T + Mk Z aj-d(2k24)) (ad[2k+t(2k72l)] — 1)

j=1
> ek or s ok ol
= |wor — Mg Z a 9422 ey Zofjd@ -2
j=t+2 j=1
B o] \?
< 4. Ala a1 =cy

for any ¢ > 0 with ¢4, which is independent from ¢. Taking now into consid-
eration (3) we have

[e.o]

J =Y a ),
j=1



which is a periodic aN-expansion of . This proves Theorem 1 in the
particular case.

In the second part of the proof we are dealing with the general situation,
ie. if v = % with 3,0 € Zla], but (0) + (o) C (1) in Zk. Let the prime
ideal decomposition of the ideal («,d) in Zxk be

(v, 0) = Pfl P

where ¢y, ..., ¢ are positive integers.

(0) =P - PQs and (a) =Pyt - P Qa
with Qs 4+ () = (1). Denote by h the class number of Zk. Then P! =

K3
(m3), i=1,...,¢t Qg‘ = (ps) and Q" = (pa) with 71,..., 7, ps, pa € ZK,
and we have
sh = it it psns and ol = 7rl1’1 ...ﬂftpana,

where 75 and 7, are units in Z. We may assume without loss of generality,
eventually changing ps and p,, that 75 =1, = 1.

Let s be a positive integer such that sb; > a; hold for all:=1,...,¢ and
put

i = Sty = oty

Then we have

h—1,_sb1—a1 sbt—a
Bt com s By

! a'ps ahps

As (ps) + (o) = 1 there exists a periodic e\ -expansion of %. Division with

a®" does not change the periodicity of this expansion, only the place of the
”period”, hence v admits a periodic aN-expansion. Theorem 1 is proved.O



3 Examples

To illustrate how one can compute in the line of the proof of Theorem
1 a periodic aN-expansion we choose a a zero of the cubic polynomial
234922 4242+ 17. We proved with B. Kovécs in [8] that if V' = {0,...,16}
then {a, N} is a N'S in Z[a]. Put v = 1/2. It is easy to check that o’ =
1 (mod2)and o/ 1 (mod 2) for any 0 < j < 7. We have

a’ = —79320° — 333260 — 27387.

Thus
I —396602% — 16663 — 13694
2 a’ —1
_ 8 + 12a + 1302 + 403 + a* + 8a® + 408 + a”
a’ —1

4 8 1 4 13 12 8\ &
= 1 J— _ _ - — . _ — (1
( +a+a2+a3+a4+a5+a6+a7>§a

(e 9]
= a+ (408 +8a° 4+ ot + 40 4+ 130% 4 12a + 9) Za‘”.
i=1

Finally we shall show that the periodic aN-expansion is generally not
unique. Let p(z) = apx™ +a12" ' +... +a, € Z[r] such that 1 = ag < a1 <
. <ap, ap > 2, aazeroof p(z) and N ={0,...,a, —1}. Then {a, N} is
a NS in Z]a] by B. Kovécs [4], hence |a| > 1.

Put

o
— «
fy:anZa = ay .
i=1 a—1

As a, € N this is not an aN-expansion of ~, but we can easily find aN-
expansions of 7. Indeed, let 0 < j < n, then as p(a) = 0 we have

— i pla) & —i(n+1)
yo= anZa ——J.Zoz + p(a)
i=1 &0
= apa" + ... +aj—1a" T 4 (a; — ap)a™ I + (an — an—j)a

4 (an —ap)a™d

0
+(an — an,j,l)a

+ ((an — ag)a™ + ... + (ap — ap)) a7
i=1

where a_1 = 0, if 7 = 0. It is clear that the coefficients of this power series
belong to N, hence 7 has at least n + 1 different, periodic aN-expansions.
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