On a periodic expansion of algebraic numbers

Attila Pethő¹, Debrecen

To the memory of B. Kovács and I. Környei

1 Introduction

Let \mathbb{K} be an algebraic number field of degree n with ring of integers $\mathbb{Z}_{\mathbb{K}}$. Let $\mathbb{K}^{(i)}$, $i = 1, \dots, n$ be denote the conjugates of \mathbb{K} in the field of the complex numbers \mathbb{C} . Similarly $\alpha^{(i)}$ will denote the *i*-th conjugate of $\alpha \in \mathbb{K}$, $i = 1, \dots, n$. For $\alpha \in \mathbb{Z}_{\mathbb{K}}$ and $\mathcal{N} \subseteq \mathbb{Z}$ the pair $\{\alpha, \mathcal{N}\}$ is called a number system \mathcal{NS} , if there exist uniquely for every $0 \neq \beta \in \mathbb{Z}[\alpha]$ a non-negative integer $L(\beta)$ and $b_0, \dots, b_{L(\beta)} \in \mathcal{N}$ such that $b_{L(\beta)} \neq 0$ and

$$\beta = \sum_{i=0}^{L(\beta)} b_i \alpha^i.$$
(1)

After partial results Kovács and Pethő [8] gave a complete characterization of number systems in algebraic number fields. In [9] they gave asymptotic estimate for $L(\beta)$, which you find here as Lemma 1.

Having a number system it is natural to ask which elements of $\mathbb{R}(\alpha)$ have an infinite power series expansion of α with "digits" from \mathcal{N} . Remark that the field $\mathbb{R}(\alpha)$ is \mathbb{R} , the field of the real numbers and \mathbb{C} , according as α is real or non-real. Another natural question is whether the well-known rationality criterion of the ordinary q-ary representation of real numbers may be generalized for the new situation.

To be more precise, let $\{\alpha, \mathcal{N}\}$ be a \mathcal{NS} such that $\mathbb{K} = \mathbb{Q}(\alpha)$. We shall denote by $\mathcal{S}(\alpha)$ the set of those complex numbers γ for which either $\gamma = 0$ or

$$\gamma = \sum_{i=L(\gamma)}^{\infty} a_{-i} \alpha^{-i} \tag{2}$$

with some $a_i \in \mathcal{N}, i = L(\gamma), L(\gamma) - 1, \ldots$ and $a_{-L(\gamma)} \neq 0$. We shall call (2) the $\alpha \mathcal{N}$ -expansion of γ . This concept was introduced by Kátai and Szabó [3]. They proved that if α is a Gaussian integer and $\{\alpha, \mathcal{N}\}$ is a \mathcal{NS} in $\mathbb{Z}[i]$ then

¹Research supported by the Hungarian National Foundation for Scientific Research, Grant No. 16791.

any complex number has an $\alpha \mathcal{N}$ -expansion. Later Kovács [5] characterized those $\{\alpha, \mathcal{N}\}$ number systems for which any $\gamma \in \mathbb{R}(\alpha)$ have $\alpha \mathcal{N}$ -expansions. Using this result and properties of intevall filling sequences Kovács and Maksa [7] proved far reaching generalization of the theorem of Kátai and Szabó. They proved for example that if α is real $\mathcal{N} = \{0, 1, \ldots, |Norm(\alpha)| - 1\}$ then any real γ have $\alpha \mathcal{N}$ -expansions. $Norm(\alpha)$ denotes the norm of α .

This problem was completely solved, even in more general setting, by Kátai and Környei [2]. By their result any $\gamma \in \mathbb{R}(\alpha)$ has an $\alpha \mathcal{N}$ -expansion. Using this theorem Kovács and Környei [6] proved that the $\alpha \mathcal{N}$ -expansion of a $\gamma \in \mathbb{R}(\alpha)$ is periodic if and only if $\gamma \in \mathbb{Q}(\alpha)$. Unfortunately, the method of Kovács and Környei is not algorithmic, one can hardly compute the periodic expansion of a given $\gamma \in \mathbb{Q}(\alpha)$.

The aim of this paper is to prove that at least one periodic $\alpha \mathcal{N}$ - expansion of any $\gamma \in \mathbf{Q}(\alpha)$ can be found by using the arithmetic of $\mathbf{Z}_{\mathbf{K}}$. Our method is independent from the above mentioned theorem of Kátai and Környei, it is essentially the same as the method which computes the periodic *q*-ary expansion of rational numbers. We are stating now our result.

Theorem 1 Let $\{\alpha, \mathcal{N}\}$ be a \mathcal{NS} such that $K = \mathbf{Q}(\alpha)$. Then there exists an algorithm, which computes a periodic $\alpha \mathcal{N}$ -expansion for any $\gamma \in \mathbb{K}$.

It is obvious from the theorem of Kátai and Környei, that any $\gamma \in \mathbb{R}(\alpha)$ may have many different $\alpha \mathcal{N}$ -expansions. On the other hand it is not clear how many periodic $\alpha \mathcal{N}$ -expansions of the elements of \mathbb{K} may have. We shall point out in section 3, that even the periodic $\alpha \mathcal{N}$ -expansion of the elements of \mathbb{K} is not unique. In all of the examples, I studied the different expansions were closely related, more precisely they were different only in finitely many digits. It remains an open question whether there exist essentially different periodic expansions.

2 Proof of Theorem 1

An important tool in the proof of Theorem 1 is the following theorem of Kovács and Pethő [9].

Lemma 1 Let $\{\alpha, \mathcal{N}\}$ be a \mathcal{NS} , α being of degree n and $0 \neq \gamma \in \mathbb{Z}[\alpha]$. Then there exist constants $c_1(\alpha, \mathcal{N}), c_2(\alpha, \mathcal{N})$ such that

$$\max_{1 \le i \le n} \frac{\log |\gamma^{(i)}|}{\log |\alpha^{(i)}|} + c_1(\alpha, \mathcal{N}) \le L(\gamma) \le \max_{1 \le i \le n} \frac{\log |\gamma^{(i)}|}{\log |\alpha^{(i)}|} + c_2(\alpha, \mathcal{N}).$$

Remark that the constants c_1 and c_2 do not depend on γ .

In the proof of Theorem 1. we follow essentially the proof of the analogous statement for the q-ary representation of real numbers as given in Bundschuh [1]. Let $0 \neq \gamma \in \mathbb{K} = \mathbb{Q}(\alpha)$. Write $\gamma = \frac{\beta}{\delta}$ with $\beta, \delta \in \mathbb{Z}[\alpha]$.

Assume first, that $(\delta) + (\alpha) = (1)$, where and in the sequel (δ) denotes the principal ideal generated by δ in $\mathbb{Z}_{\mathbb{K}}$. There exists an integer d > 0 such that $\alpha^d \equiv 1 \pmod{\delta}$ holds in $\mathbb{Z}[\alpha]$. Let fix d and put $\alpha^d - 1 = \delta \kappa_1$. Then for $m \geq 1$ integer δ divides obviously $\alpha^{dm} - 1$. Put $\alpha^{dm} - 1 = \delta \kappa_m$. Then we have $\kappa_m \in \mathbb{Z}[\alpha]$ and

$$\gamma = \frac{\beta \kappa_1}{\alpha^d - 1} = \frac{\beta \kappa_m}{\alpha^{dm} - 1} = \frac{\beta \kappa_1 (\alpha^{d(m-1)} + \ldots + 1)}{\alpha^{dm} - 1} = \frac{\varepsilon_m}{\alpha^{dm} - 1}.$$
 (3)

As $0 \neq \varepsilon_m \in \mathbb{Z}[\alpha]$, thus ε_m can be represented in $\{\alpha, \mathcal{N}\}$ and

$$L(\varepsilon_m) \le \max_{1 \le i \le n} \frac{\log |\varepsilon_m^{(i)}|}{\log |\alpha^{(i)}|} + c_2 = \max_{1 \le i \le n} \frac{\log |(\beta \kappa_1)^{(i)}| + \log |\frac{\alpha^{(i)dm} - 1}{\alpha^{(i)} - 1}|}{\log |\alpha^{(i)}|} + c_2$$
$$< \max_{1 \le i \le n} \frac{\log |(\beta \kappa_1)^{(i)}| - \log |\alpha^{(i)} - 1|}{\log |\alpha^{(i)}|} + c_2 + dm.$$

Notice that the first two summands are independent from m, hence

$$|L(\varepsilon_m) - dm| \le c_3,$$

with c_3 independent from m, and we can write

$$\varepsilon_m = \sum_{i=0}^{dm-1} a_{mi} \alpha^i + \sum_{i=dm}^{L(\varepsilon_m)} a_{mi} \alpha^i = \omega_m + \alpha^{dm} \tau_m,$$

with $a_{mi} \in \mathcal{N}$, $i = 0, \ldots, L(\varepsilon_m)$. As the length of τ_m is bounded by a constant, which does not depend on m and the "digits" a_{mi} , $i = dm, \ldots, L(\varepsilon_m)$ belong to a finite set, there are only finitely many possibilities for τ_m , $m = 1, 2, \ldots$. Thus there exist $0 < \ell < k$ integers such that $\tau_{2\ell} = \tau_{2k} = \tau$. Let fix ℓ and k for the sequel. We have

$$\begin{aligned} \varepsilon_{2^{k}} &= \beta \kappa_{1} \frac{\alpha^{d \cdot 2^{k}} - 1}{\alpha^{d} - 1} = \beta \kappa_{1} \frac{\alpha^{d \cdot 2^{\ell}} - 1}{\alpha^{d} - 1} \cdot \frac{\alpha^{d \cdot 2^{k}} - 1}{\alpha^{d \cdot 2^{\ell}} - 1} \\ &= \varepsilon_{2^{\ell}} (1 + \alpha^{d \cdot 2^{\ell}} + \dots + \alpha^{d(2^{k} - 2^{\ell})}) \\ &= \omega_{2^{\ell}} + (\omega_{2^{\ell}} + \tau) \alpha^{d \cdot 2^{\ell}} (1 + \alpha^{d \cdot 2^{\ell}} + \dots + \alpha^{d(2^{k} - 2^{\ell+1})}) + \alpha^{d \cdot 2^{k}} \tau. \end{aligned}$$

On the other hand

$$\varepsilon_{2^k} = \omega_{2^k} + \alpha^{d \cdot 2^k} \tau$$

Both $\omega_{2^{\ell}}$ and τ are assumed already represented in $\{\alpha, \mathcal{N}\}$. If we write $\omega_{2^{\ell}} + \tau$ in $\{\alpha, \mathcal{N}\}$ then it may happen that the length of $\omega_{2^{\ell}} + \tau$ is longer then $d \cdot 2^{\ell} - 1$. Let

$$\eta_k = (\omega_{2^\ell} + \tau) \sum_{i=0}^{2^{k-\ell}-2} \alpha^{d \cdot 2^\ell i}$$

We get in this notation

$$\varepsilon_{2^k} = \omega_{2^\ell} + \alpha^{d \cdot 2^\ell} \eta_k + \alpha^{d \cdot 2^k} \tau_k$$

We have on the other hand

$$\varepsilon_{2^k} = \omega_{2^k} + \alpha^{d \cdot 2^k} \tau_{2^k}$$

where both ω_{2^k} and τ are written in $\{\alpha, \mathcal{N}\}$. Thus $\omega_{2^k} = \omega_{2^\ell} + \alpha^{d \cdot 2^\ell} \eta_k$ and we have

$$L(\eta_k) \le d(2^k - 2^\ell) - 1.$$
(4)

for the $\{\alpha, \mathcal{N}\}$ expansion of η_k .

Let now $t \ge 0$ an integer and consider $\varepsilon_{2^k + t(2^k - 2^\ell)}$. We have similarly as above

$$\begin{split} \varepsilon_{2^{k}+t(2^{k}-2^{\ell})} &= \varepsilon_{2^{\ell}} \sum_{i=0}^{(t+1)(2^{k-\ell}-1)} \alpha^{d \cdot 2^{\ell} i} \\ &= \omega_{2^{\ell}} + (\omega_{2^{\ell}} + \tau) \sum_{i=1}^{(t+1)(2^{k-\ell}-1)} \alpha^{d \cdot 2^{\ell} i} + \tau \cdot \alpha^{d \cdot 2^{\ell} [(t+1)(2^{k-\ell}-1)+1]} \\ &= \omega_{2^{\ell}} + \sum_{j=0}^{t} \alpha^{d \cdot 2^{\ell} (j(2^{k-\ell}-1)+1)} (\omega_{2^{\ell}} + \tau) \sum_{i=0}^{2^{k-\ell}-2} \alpha^{d \cdot i2^{\ell}} \\ &+ \tau \cdot \alpha^{d \cdot 2^{\ell} [(t+1)(2^{k-\ell}-1)+1]} \\ &= \omega_{2^{\ell}} + \eta_{k} \alpha^{d \cdot 2^{\ell}} \sum_{j=0}^{t} \alpha^{j \cdot d(2^{k}-2^{\ell})} + \tau \alpha^{d[(t+1)(2^{k}-2^{\ell})+2^{\ell}]}. \end{split}$$

This is by (4) already the $\{\alpha, \mathcal{N}\}$ expansion of $\varepsilon_{2^k+t(2^k-2^\ell)}$ if we insert the $\{\alpha, \mathcal{N}\}$ expansions of ω_{2^ℓ} , η_k and τ . Let $A = \max\{|b|, \ b \in \mathcal{N}\}$ then we have

$$|\beta| \le A \cdot |\alpha|^{L(\beta)} \frac{|\alpha|}{|\alpha| - 1} \tag{5}$$

for any $\beta \in \mathbb{Z}[\alpha]$. Put $B = \max\{L(\omega_{2^{\ell}}), L(\tau), L(\eta_k)\} = \max\{d \cdot 2^{\ell}, c_3, d(2^k - d(2$ 2^{ℓ}). Using (5) we get

$$\left| \begin{aligned} \varepsilon_{2^{k}+t(2^{k}-2^{\ell})} &- \left(\tau + \eta_{k} \sum_{j=1}^{\infty} \alpha^{-j \cdot d(2^{k}-2^{\ell})} \right) \left(\alpha^{d[2^{k}+t(2^{k}-2^{\ell})]} - 1 \right) \right| \\ &= \left| \omega_{2^{\ell}} - \eta_{k} \sum_{j=t+2}^{\infty} \alpha^{-jd(2^{k}-2^{\ell})} + \tau + \eta_{k} \sum_{j=1}^{\infty} \alpha^{-jd(2^{k}-2^{\ell})} \right| \\ &\leq 4 \cdot A |\alpha|^{B} \left(\frac{|\alpha|}{|\alpha|-1} \right)^{2} = c_{4} \end{aligned}$$

for any $t \ge 0$ with c_4 , which is independent from t. Taking now into consideration (3) we have

$$\gamma = \tau + \eta_k \sum_{j=1}^{\infty} \alpha^{-jd(2^k - 2^\ell)},$$

which is a periodic $\alpha \mathcal{N}$ -expansion of γ . This proves Theorem 1 in the particular case.

In the second part of the proof we are dealing with the general situation, i.e. if $\gamma = \frac{\beta}{\delta}$ with $\beta, \delta \in \mathbb{Z}[\alpha]$, but $(\delta) + (\alpha) \subset (1)$ in $\mathbb{Z}_{\mathbb{K}}$. Let the prime ideal decomposition of the ideal (α, δ) in $\mathbb{Z}_{\mathbb{K}}$ be

$$(\alpha, \delta) = \mathcal{P}_1^{c_1} \cdots \mathcal{P}_t^{c_t},$$

where c_1, \ldots, c_t are positive integers.

$$(\delta) = \mathcal{P}_1^{a_1} \cdots \mathcal{P}_t^{a_t} \mathcal{Q}_{\delta} \text{ and } (\alpha) = \mathcal{P}_1^{b_1} \cdots \mathcal{P}_t^{b_t} \mathcal{Q}_{\alpha}$$

with $\mathcal{Q}_{\delta} + (\alpha) = (1)$. Denote by *h* the class number of $\mathbb{Z}_{\mathbb{K}}$. Then $\mathcal{P}_{i}^{h} = (\pi_{i}), i = 1, \ldots, t; \quad \mathcal{Q}_{\delta}^{h} = (\rho_{\delta}) \text{ and } \mathcal{Q}_{\alpha}^{h} = (\rho_{\alpha}) \text{ with } \pi_{1}, \ldots, \pi_{t}, \ \rho_{\delta}, \ \rho_{\alpha} \in \mathbb{Z}_{\mathbb{K}},$ and we have

$$\delta^h = \pi_1^{a_1} \cdots \pi_t^{a_t} \rho_\delta \eta_\delta$$
 and $\alpha^h = \pi_1^{b_1} \dots \pi_t^{b_t} \rho_\alpha \eta_\alpha$,

where η_{δ} and η_{α} are units in $\mathbb{Z}_{\mathbb{K}}$. We may assume without loss of generality, eventually changing ρ_{δ} and ρ_{α} , that $\eta_{\delta} = \eta_{\alpha} = 1$.

Let s be a positive integer such that $sb_i \ge a_i$ hold for all i = 1, ..., t and put

$$\delta_1 = \delta^h \pi_1^{sb_1 - a_1} \cdots \pi_t^{sb_t - a_t} \rho_\alpha^s = \alpha^{sh} \rho_\delta.$$

Then we have

$$\gamma = \frac{\beta \cdot \delta^{h-1} \pi_1^{sb_1-a_1} \dots \pi_t^{sb_t-a_t} \rho_{\alpha}^s}{\alpha^{sh} \rho_{\delta}} = \frac{\beta_1}{\alpha^{sh} \rho_{\delta}}$$

As $(\rho_{\delta}) + (\alpha) = 1$ there exists a periodic $\alpha \mathcal{N}$ -expansion of $\frac{\beta_1}{\rho_{\delta}}$. Division with α^{sh} does not change the periodicity of this expansion, only the place of the "period", hence γ admits a periodic $\alpha \mathcal{N}$ -expansion. Theorem 1 is proved.

3 Examples

To illustrate how one can compute in the line of the proof of Theorem 1 a periodic $\alpha \mathcal{N}$ -expansion we choose α a zero of the cubic polynomial $x^3 + 9x^2 + 24x + 17$. We proved with B. Kovács in [8] that if $\mathcal{N} = \{0, \ldots, 16\}$ then $\{\alpha, \mathcal{N}\}$ is a \mathcal{NS} in $\mathbb{Z}[\alpha]$. Put $\gamma = 1/2$. It is easy to check that $\alpha^7 \equiv 1 \pmod{2}$ and $\alpha^j \not\equiv 1 \pmod{2}$ for any 0 < j < 7. We have

$$\alpha^7 = -7932\alpha^2 - 33326\alpha - 27387.$$

Thus

$$\begin{aligned} \frac{1}{2} &= \frac{-3966\alpha^2 - 16663\alpha - 13694}{\alpha^7 - 1} \\ &= \frac{8 + 12\alpha + 13\alpha^2 + 4\alpha^3 + \alpha^4 + 8\alpha^5 + 4\alpha^6 + \alpha^7}{\alpha^7 - 1} \\ &= \left(1 + \frac{4}{\alpha} + \frac{8}{\alpha^2} + \frac{1}{\alpha^3} + \frac{4}{\alpha^4} + \frac{13}{\alpha^5} + \frac{12}{\alpha^6} + \frac{8}{\alpha^7}\right) \sum_{i=0}^{\infty} \alpha^{-7i} \\ &= \alpha + (4\alpha^6 + 8\alpha^5 + \alpha^4 + 4\alpha^3 + 13\alpha^2 + 12\alpha + 9) \sum_{i=1}^{\infty} \alpha^{-7i}. \end{aligned}$$

Finally we shall show that the periodic $\alpha \mathcal{N}$ -expansion is generally not unique. Let $p(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n \in \mathbb{Z}[x]$ such that $1 = a_0 \leq a_1 \leq \ldots \leq a_n$, $a_n \geq 2$, α a zero of p(x) and $\mathcal{N} = \{0, \ldots, a_n - 1\}$. Then $\{\alpha, \mathcal{N}\}$ is a \mathcal{NS} in $\mathbb{Z}[\alpha]$ by B. Kovács [4], hence $|\alpha| > 1$.

Put

$$\gamma = a_n \sum_{i=1}^{\infty} \alpha^{-i} = a_n \frac{\alpha}{\alpha - 1}.$$

As $a_n \notin \mathcal{N}$ this is not an $\alpha \mathcal{N}$ -expansion of γ , but we can easily find $\alpha \mathcal{N}$ -expansions of γ . Indeed, let $0 \leq j \leq n$, then as $p(\alpha) = 0$ we have

$$\gamma = a_n \sum_{i=1}^{\infty} \alpha^{-i} - \frac{p(\alpha)}{\alpha^j} \sum_{i=0}^{\infty} \alpha^{-i(n+1)} + p(\alpha)$$

= $a_0 \alpha^n + \ldots + a_{j-1} \alpha^{n-j+1} + (a_j - a_0) \alpha^{n-j} + (a_n - a_{n-j}) \alpha^0$
+ $(a_n - a_{n-j-1}) \alpha^{-1} + \ldots + (a_n - a_n) \alpha^{-j}$
+ $\sum_{i=1}^{\infty} ((a_n - a_0) \alpha^n + \ldots + (a_n - a_n)) \alpha^{-i(n+1)-j},$

where $a_{-1} = 0$, if j = 0. It is clear that the coefficients of this power series belong to \mathcal{N} , hence γ has at least n + 1 different, periodic $\alpha \mathcal{N}$ -expansions.

References

- P. Bundschuh, Einführung in die Zahlentheorie, Springer Verlag, (1988) 5.1
- [2] I. Kátai and I. Környei, On number systems in algebraic number fields, Publ. Math. Debrecen 41 (1992), 289-294.
- [3] I. Kátai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. Szeged 37 (1975), 255-260.
- [4] B. Kovács, Integral domains with canonical number systems, Publ. Math. Debrecen, 36 (1989), 153–156.
- [5] B. Kovács, Representation of complex numbers in number systems, Acta Math. Hungar. 58 (1991), 113-120.
- [6] B. Kovács and I. Környei, On the periodicity of the radix representation, Ann. Univ. Sci. Budapest Sect. Comput. 13 (1992), 129-133.
- B. Kovács and Gy. Maksa, Interval-filling sequences of order N and a representation of real numbers in canonical number systems, Publ. Math. Debrecen 39 (1991), 305-313.
- [8] B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. Szeged 55 (1991), 287-299.
- B. Kovács and A. Pethő, On a representation of algebraic integers, Studia Sci. Math. Hungar. 27 (1992), 169-172.

Laboratory of Informatics University Medical School Debrecen Nagyerdei krt. 98. H-4028 Debrecen, Hungary