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Abstract : We study the double family of Thue equations x3−(n−1)x2y−(n+2)xy2−y3=k.

1. Introduction

The family of cubic Thue equations x3 − (n − 1)x2y − (n + 2)xy2 − y3 = ±1, with n ≥ 0, was studied by
E. Thomas. He proved in [T1] that this family of equations has only “trivial solutions” except for a finite
number of values of the parameter n, explicitly for n < 108. Then, M. Mignotte [M] could solve completely
this family of equations and proved that non-trivial solutions occur only for n ≤ 3.

Then, other infinite families of Thue equations F (x, y) = ±1 were studied. In the cubic case there are
works of Thomas [T2], Mignotte and Tzanakis [MT]; in these cases the family was completely solved except
for an explicit finite range for the parameter. In the quartic case, there are works of Pethő [P2], Lettl and
Pethő [LeP] and Mignotte, Pethő and Roth [MPR], where the last two studies were completely finished.

Here, we come back to the family of cubics investigated by E. Thomas, the case where Fn(x, y) =
x3 − (n − 1)x2y − (n + 2)xy2 − y3, but we add a new parameter: the number k on the right hand side. In
other words, we study a family of cubic diophantine equations which depend on two parameters.

Our results are explicit bounds for the integer solutions in terms of the two parameters n and k; and we
give a special study to the case x3 − (n− 1)x2y − (n + 2)xy2 − y3 = ±(2n + 1). This case has some interest
since we prove that the diophantine equation Fn(x, y) = k has no solution in the range 1 < |k| < 2n + 1,
except when k is a cube (the existence of a solution in this case is trivial).

We formulate now the three theorems, which are the main results of the present paper.

Theorem 1. Let n ≥ 1650, k be integers. If

|x3 − (n− 1)x2y − (n + 2)xy2 − y3| = k

holds for some x, y ∈ Z, then
log |y| < c1 log2(n + 2) + c2 log n log k,

where

c1 = 700 + 476.4
(

1− 1432.1
n

)−1 (
1.501− 1902

n

)
< 1956.4

and

c2 = 29.82 +
(

1− 1432.1
n

)−1 1432
n log n

< 30.71.

It is well known, see [GyP] and the references therein, that the general estimates of the solutions of a
Thue equation depend polynomially in the constant term, but exponentially with respect to the height of
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the form itself, i.e. the maximum of the absolute value of the coefficients of the form corresponding to the
Thue equation. In the present case, the dependence is polynomial in k and “nearly” polynomial in the height
of Fn(x, y) (which is n + 2). Moreover the constants appearing here are much better than in other similar
results, see e.g. [BSt].

To illustrate how sharp is the estimate of Theorem 1 let us take n = 1650 and k = 109, then we get

|y| < 1048698.

This is certainly a bound which is reachable with the present numerical techniques, and in any case such a
bound is much smaller than previous bounds obtained for cubic Thue equations.

From Theorem 1, we are able to derive an effective improvement of Liouville’s inequality for the rational
approximations of the zeros of Fn(x, 1).

Theorem 2. Let λ be one of the zeros of Fn(x, 1). If n ≥ 1650 and λ ∈]− 1, 0[ or λ ∈]− 2,−1[ then

∣∣∣∣λ−
x

y

∣∣∣∣ > (n + 2)−c3y−3+1/(c2 log n)

and if λ ∈ (n, n + 1) then ∣∣∣∣λ−
x

y

∣∣∣∣ > (n + 2)−c3−1y−3+1/(c2 log n),

holds for all (x, y) ∈ Z2, y 6= 0, where

c3 = c1 · log(n + 2)
log n

+ 1 < 64.72.

We are dealing in the second part of the paper with the inequality

|x3 − (n− 1)x2y − (n + 2)xy2 − y3| ≤ 2n + 1 (1).

Combining the method of the proof of Theorem 1 with a result of Lemmermeyer and Pethő [LP] we are able
to solve the above inequality completely and prove the following.

Theorem 3. Let n be a nonnegative integer. If (x, y) ∈ Z2 is a solution of equation (1), then either
(x, y) = t(u, v) with an integer 0 ≤ |t| ≤ 3

√
2n + 1 and ±(u, v) ∈ {(1, 0), (0, 1), (−1, 1)} or ±(x, y) ∈

{(−1,−1), (−1, 2), (−1, n + 1), (−n,−1), (n + 1,−n), (2,−1)}, except when n = 2, in which case (1) has
the extra solutions: ±(x, y) ∈ {(−4, 3), (8, 3), (1,−4), (3, 1), (3,−11)}.
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The plan of this paper is the following. Section 2 contains two general lemmas. The next section is
devoted to a pure numerical study of the roots of the polynomials x3 − (n − 1)x2 − (n + 2)x − 1; these
estimates are used in the linear forms of logs which are studied in the sequel. Section 4, which is short and
easy, contains the proof of Theorem 2 assuming Theorem 1.

The next section is an instance of the classical Siegel-Baker’s reduction of a Thue equation to a linear
form in logs. This study is detailed in order to lead to sharp estimates; here we get linear forms in three
logs. Then, the linear form in logs obtained in Section 5 is studied a first time in Section 6. In this study,
this linear form is considered as a linear form in two logs (we just group two terms). To get sharp estimates,
we apply the general result of Laurent-Mignotte-Nesterenko. Of course, this implies a tedious reconstruction
of the proof of the lower bound of this linear form; for example we have to choose the parameters of the
“auxiliary function” (more exactly, of the interpolation determinant): this is the price to pay. The conclusion
of this section is an upper bound on y, in terms of the heights of the terms of the linear form. The very
long Section 6 contains a second study of this linear form in “two” logs; first, we prove an estimate of the
coefficients of this linear form in terms of y, then we bound these coefficients and (after some computation)
at the end we get an explicit upper bound of y, in terms of the initial parameters n and k. This ends the
proof of Theorem 1.

Section 8, which is short and easy, give a simple upper bound of y depending only on n, when k < n4;
this result is used in the next section.

The last two sections deal with the proof of Theorem 3. Here, a result of Lemmermeyer and Pethő [LP]
plays an essential role. Section 9 contains a study of the special linear form in “two” logs which occur in
this case; this leads to the proof of Theorem 3 for n > 1700. To cover the range n ≤ 1700, in Section 10 we
consider — for the first time — the linear form in logs as a linear form in three logs. This study is classical
and we can easily finish the proof of Theorem 3.
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2. Preliminary lemmas

This section contains two lemmas on cubic fields and cubic forms which have a general interest.

Lemma 1. [P1, Theorem 2.] Let f(X, Y ) = X3 + bX2Y + cXY 2 + dY 3 be a cubic form with positive
discriminant Df , and suppose that f(x, y) = k, where x, y are rational integers, y 6= 0. Let αi, i = 1, 2, 3,
be the roots of the polynomial f(X, 1). Put Li = αi − x

y , i = 1, 2, 3, and suppose that |L1| ≤ |L2| ≤ |L3|;
then

|L1|4|L2|2 ≤ 4|k|4
Df |y|12 .

Proof Notice the formula

Df =
∏

i<j

(αi − αj)2 = L4
3L

2
2

(
1− L2

L3

)2 (
1− L1

L3

)2 (
1− L1

L3

)2

.

Since the function
g(u, v) = (1− u) (1− v)

(
1− u

v

)

satisfies 0 ≤ g(u, v) ≤ 2 on the domain −1 ≤ u, v ≤ 1, |v| ≤ |u|, we have

Df ≤ 4 L4
3L

2
2.

Multiplying both sides of this inequality by L2
2L

4
1 and using the relation L1L2L3 = k/y3, we get the result.

Corollary 1. Using |L1| ≤ |L2|, we get

|L1| ≤
(

4k4

Df

)1/6

× 1
|y|2 .

Lemma 2. Let α ∈ K, where K is a cubic Galois field. Denote by α, α′ and α′′ the conjugates of α.
Choose such an order that these conjugates satisfy |α1| ≥ |α2| ≥ |α3|. Then the measure of the quotient
α/α′ satisfies

M(α/α′) ≤ |α1|2|α2|.

Proof Let k be the norm of α. Consider the polynomial

k(X − α/α′) (X − α′/α′′) (X − α′′/α) = (α′X − α) (α′′X − α′) (αX − α′′),

clearly, this polynomial has rational integer coefficients, and α/α′ is a root of it. Thus,

M(α/α′) ≤ |k| max{1, |α/α′|} max{1, |α′/α′′|} max{1, |α′′/α|}

= k
|α1|
|α3| = |α1|2|α2|.

Remark.— It is easy to verify that the previous lemma can be generalized in the following way: Let
α ∈ K, where K is a cyclic Galois field of degree d. Let α′ be some conjugate of α, with α′ 6= α. Choose an
order on the set α1, . . . , αd of the conjugates of α for which |α1| ≥ |α2| ≥ · · · ≥ |αd|. Then the measure of
the quotient α/α′ satisfies

M(α/α′) ≤ |α1|d−1|α2|d−2 · · · |αd−1|.
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3. Numerical study of the roots of x3 − (n− 1)x2 − (n + 2)x− 1
In this section, we gather several sharp estimates for the roots of the polynomial f associated to the cubic
form

F (x, y) = Fn(x, y) = x3 − (n− 1)x2y − (n + 2)xy2 − y3,

that is
f(x) = fn(x) = x3 − (n− 1)x2 − (n + 2)x− 1.

From now on, we shall keep these definitions for f , fn, Fn and F .

Since f(−2) < 0, f(−1) = 1, f(0) = −1, f(n) = −2n − 1 and f(n + 1) = n2 + n + 1, this polynomial
has three real roots, say λ = λ(1), λ(2), λ(3), and we may suppose that

λ ∈ ]−1, 0[ , λ(2) ∈ ]−2,−1[ , λ(3) ∈ ]n, n + 1[ .

Moreover, the polynomial f is invariant under the change of variable σ : x 7→ −1/(1 + x), which satisfies
σ2(x) = −(1 + x)/x and σ3(x) = x. This proves that the field Q(λ) is a Galois field and that

λ(2) = − 1
λ + 1

, and λ(3) = −
(

1 +
1
λ

)
.

More generally,
σj

(
λ(i)

)
= λ(k), where k ≡ i + j mod 3.

Since
fn

(
n + 2

n

)
= 1 +

4
n

+
4
n2

+
8
n3

,

we see that
λ(3) < n +

2
n

.

A second computation gives

fn

(
n + 2

n+1

)
= −1 +

4
n + 1

− 4
(n + 1)2

+
8

(n + 1)3
,

which shows that
λ(3) > n +

2
n + 1

for n > 2. In the sequel, we suppose n ≥ 3, and the two cases n = 1 and n = 2 will be considered separately.
In terms of λ(3), we have

λ(3) = −
(

1 +
1
λ

)
=⇒ λ = − 1

λ(3) + 1
,

and

λ(2) = − 1
1 + λ

= − 1

1− 1
λ(3) + 1

= −λ(3) + 1
λ(3)

.

These estimates imply (for n ≥ 3)

− n + 1
n2 + 2n + 3

= − 1
1 + n + 2

n+1

< λ < − 1
1 + n + 2

n

= − n

n2 + n + 2
,

and

−1− n + 1
n2 + n + 2

< λ(2) = −
(

1 +
1

λ(3)

)
< −1− n

n2 + 2
.
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These estimates lead to estimates for logarithms. Indeed,

log n +
2

n(n + 1)
− 2(

n(n + 1)
)2 < log

(
n +

2
n + 1

)
< `3 := log λ(3) < log

(
n +

2
n

)
< log n +

2
n2

,

n− 1
2

n2 + 2
<

n

n2 + 2
− n2

2
(
n2 + 2

)2 < `2 := log
∣∣∣λ(2)

∣∣∣ <
n + 1

n2 + n + 2
,

and
− log(n + 1)− 2

n(n + 1)
< `1 := log |λ| < − log(n + 1)− 2

(n + 1)2
+

2
(n + 1)4

.
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4. Proof of Theorem 2.

Assuming that Theorem 1 is true we now give the proof of Theorem 2 because it is short and depends only
on the estimates of section 3. We consider only the case λ ∈]1, 0[. The proofs of the other cases are similar.
Assume that there exists (x, y) ∈ Z2, y 6= 0 such that

∣∣∣∣λ−
x

y

∣∣∣∣ ≤ (n + 2)−c3y−3+1/(c2 log n).

Let λ2 and λ3 denote the other zeros of Fn(x, 1) such that λ2 ∈]− 2,−1[ and λ3 ∈]n, n + 1[. Then

∣∣∣∣λi − x

y

∣∣∣∣ ≤ |λ− λi|+ (n + 2)−c3

for i = 2, 3. Using these inequalities and the estimates of Section 3, one can easily prove that

|λ2y − x||λ3y − x| < (n + 2)|y|,

hence

|Fn(x, y)| < (n + 2)−(c3−1)|y|1/(c2 log n).

Putting k = (n + 2)−(c3−1)|y|1/(c2 log n), Theorem 1 implies

log |y| < c1 log2(n + 2) + c2 log n log k

< c1 log2(n + 2) + c2 log n

(
−c1

log2(n + 2)
c2 log n

+
log |y|
c2 log n

)

= log |y|

a contradiction, and the Theorem is proved.
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5. Reduction of the Thue equation Fn(x, y) = k

Let x, y be rational integers, y > 0, such that

Fn(x, y) = x3 − (n− 1)x2y − (n + 2)xy2 − y3 = ±k, k > 0. (2)

The condition k > 0 is not restrictive since F (−x,−y) = −F (x, y).
We know (see [T1]) that λ, λ(2) constitute a fundamental system of units for the order Z[λ].

The following lemma is useful for the reduction of the Thue equation in the case k > 1.

Lemma 3. Let 0 6= β ∈ Z[λ] and let 0 < c1, c2 ∈ R. Then, there exist rational integers a1 and a2 and some
element γ ∈ Z[λ] such that

β = γλa1(λ(2))a2

with, for n ≥ 3,
ci ≤

∣∣γ(i)| < (n + 3)ci, i = 1, 2,

and
|N(β)|

(n + 3)2c1c2
< |γ(3)| ≤ |N(β)|

c1c2
.

Proof Put

c̃i = ci exp
{

1
2

∣∣log |λ(i)|∣∣ +
1
2

∣∣log |λ(i+1)|∣∣
}

, i = 1, 2,

and consider the system of equations

log
∣∣β(i)/c̃i

∣∣ = r1 log |λ(i)|+ r2 log |λ(i+1)|, i = 1, 2.

As the vectors (log |λ(1)|, log |λ(2)|, log |λ(3)|) and (log |λ(2)|, log |λ(3)|, log |λ(1)|) are linearly independent in
R3, this system has a unique real solution, r1 and r2. Put r1 = a1 + θ1 and r2 = a2 + θ2, where a1, a2 ∈ Z,
and |θ1|, |θ2| ≤ 1/2. Then consider the algebraic number γ = βλ−a1(λ(2))−a2 . Then |Nγ| = |Nβ| and
γ ∈ Z[λ], and we get

∣∣log |γ(i)/c̃i|
∣∣ ≤ 1

2

(∣∣log |λ(i)|∣∣ +
∣∣log |λ(i+1)|∣∣), i = 1, 2,

which implies
log ci < log |γ(i)| ≤ log ci +

(∣∣log |λ(i)|
∣∣ +

∣∣log |λ(i+1)|
∣∣), i = 1, 2.

By the estimates of the previous section, for n ≥ 3,

∣∣log |λ(1)|∣∣ +
∣∣log |λ(2)|∣∣ = log(λ(3) + 1) + log

(
1 +

1
λ(3)

)
= log

(
λ(3) + 2 +

1
λ(3)

)

< log
(

n +
2
n

+ 2 +
n

n2 + 2

)
< log(n + 3),

and ∣∣log |λ(2)|
∣∣ +

∣∣log |λ(3)|
∣∣ = log(λ(3)) + log

(
1 +

1
λ(3)

)
= log(λ(3) + 1) < log(n + 2).

This proves the two first inequalities. The third follows immediately.

Corollary 2. Let 0 6= β ∈ Z[λ] with norm k. Then, there exist rational integers a1 and a2 and some element
γ ∈ Z[λ] such that

β = γλa1(λ(2))a2

with
M

(
γ(2)/γ(3)

) ≤ k(n + 3)5/2,
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and ∣∣∣log
∣∣γ(2)/γ(3)

∣∣
∣∣∣ ≤ 3

2 log(n + 3).

Proof. Put c1 = c2 = 3
√

k/
√

n + 3. The application of Lemma 3 implies the existence of γ ∈ Z[λ],
which is associated to β and which satisfies

3
√

k/(n + 3) <
∣∣γ(3)

∣∣ <
3
√

k · (n + 3).

From Lemma 2, we get
M

(
γ(2)/γ(3)

) ≤ k(n + 3)5/2.

Finally, as

log
∣∣γ(2)

∣∣− log
∣∣γ(3)

∣∣ ≤ 1
3

log k + log(n + 3)− 1
3

log k +
1
2

log(n + 3) =
3
2

log(n + 3)

and
log

∣∣γ(2)
∣∣− log

∣∣γ(3)
∣∣ ≥ 1

3
log k − log(n + 3)− 1

3
log k − 1

2
log(n + 3) = −3

2
log(n + 3),

the statement is proved.

If (x, y) is a solution of (2), then there exist u1, u2 ∈ Z,

x− λy = γλu1(λ(2))u2 , (3)

where γ satisfies the conditions of the preceding corollary.
We may assume (see Thomas [T1]) that

∣∣∣∣
x

y
− λ

∣∣∣∣ ≤
∣∣∣∣
x

y
− λ(2)

∣∣∣∣ ,

∣∣∣∣
x

y
− λ(3)

∣∣∣∣ .

Applying Lemma 1 a first time, we get

|L1| ≤
(

4k4

(n2 + n + 7)2

)1/6 1
y2

,

using the fact that the discriminant of the form Fn is equal to (n2 + n + 7)2.
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We suppose that n > 0 and
y ≥ max{3, k, n}.

Then the previous inequality implies |L1| ≤ 1
7 , thus

|L2| ≥ |λ(2) − λ| − |L1| > 3
4
,

and a second application of Lemma 1 gives

|x− λy| ≤
(

64k4

9(n2 + n + 7)2

)1/4 1
|y|2 ≤

0.55
y

≤ 0.19. (4)

Notice also that, for n ≥ 3,

y ≤
∣∣x− λ(2)y

∣∣ ≤ y

(
1 +

2
n2

)
,

y

(
n +

2
n

)
≤ ∣∣x− λ(3)y

∣∣ ≤ y

(
n +

4
n

)
.

(5)

Let us give the proofs of these two pairs of inequalities. By the estimates of the preceding section, we
have

λ(2) − λ = −λ(3) + 1
λ(3)

+
1

λ(3) + 1
= −1− 1

λ(3)(λ(3) + 1)
,

hence
1 +

1
(n + 2)2

<
∣∣λ(2) − λ

∣∣ < 1 +
1
n2

.

This leads to the estimate

y ≤
(

1 +
1

(n + 2)2

)
y − 0.55

y
≤ |λ− λ(2)|y − |x− λy| ≤ ∣∣x− λ(2)y

∣∣

≤ |λ− λ(2)|y + |x− λy| ≤ 0.55
y

+
(

1 +
1
n2

)
y ≤ y

(
1 +

2
n2

)
.

In the same way,

n +
3

n + 1
< n +

2
n + 1

+
n + 1

n2 + n + 2
< λ(3) − λ = λ(3) +

1
λ(3) + 1

< n +
2
n

+
n

n2 + 2
< n +

3
n

,

which implies (
n +

2
n

)
y <

∣∣x− λ(3)y
∣∣ <

(
n +

4
n

)
y.

Now, using (5), we can refine (4),

|x− λy| = k

|x− λ(2)y| · |x− λ(3)y| <
k

ny2
. (6)
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Considering the conjugates of (3), we get Siegel’s identity

(
λ(3) − λ

)
γ(2)(λ(2))u1(λ(3))u2 − (

λ(2) − λ
)
γ(3)(λ(3))u1λu2 =

(
λ(3) − λ(2)

)
γλu1(λ(2))u2 .

Dividing by
(
λ(2) − λ

)
γ(3)(λ(3))u1λu2 gives

(
λ(3) − λ

)
γ(2)

(
λ(2) − λ

)
γ(3)

(
λ(2)

λ(3)

)u1 (
λ(3)

λ

)u2

− 1 =
λ(3) − λ(2)

λ(2) − λ

γλu1(λ(2))u2

γ(3)(λ(3))u1λu2
.

The right-hand side is nonzero and is also equal to

λ(3) − λ(2)

λ(2) − λ

x− λy

x− λ(3)y
,

thus, by (6) and (5), its absolute value is

≤
∣∣∣∣
λ(3) − λ(2)

λ(2) − λ

∣∣∣∣
k

(n2 + 2)y3
.

We notice that
λ(3) − λ(2)

λ(2) − λ
=

λ(3) + 1
λ(3)+1

−λ(3)+1
λ(3) + 1

λ(3)+1

= −λ(3) · (λ(3))2 + λ(3) + 1
(λ(3))2 + λ(3) + 1

= −λ(3),

hence, the considered right-hand side is

≤ k

ny3
.

Now put

Λ = u1 log
∣∣∣λ

(2)

λ(3)

∣∣∣ + u2 log
∣∣∣λ

(3)

λ

∣∣∣ + log
∣∣∣γ

(2)

γ(3)

∣∣∣ + log
∣∣∣λ

(3) − λ

λ(2) − λ

∣∣∣.

Using the inequality | log z| < 1.5× |z − 1|, which is true for |z − 1| < 1/2, we get

0 < |Λ| < 3k

2ny3
.

The relation
λ(3) − λ

λ(2) − λ
=
−1− 1

λ − λ

− 1
λ+1 − λ

= λ + 1 = − 1
λ(2)

combined with λ(3)/λ = (λ(3))2λ(2) gives

Λ = (u1 + u2 − 1) log
∣∣λ(2)

∣∣ + (2u2 − u1) log
∣∣λ(3)

∣∣ + log
∣∣∣∣
γ(2)

γ(3)

∣∣∣∣ .
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6. A first study of the linear form in logs

The previous linear form Λ can be written as

Λ = V `2 + v`3 + log
∣∣∣∣
γ(2)

γ(3)

∣∣∣∣ ,

where we have put
V = u1 + u2 − 1, v = −u1 + 2u2.

It satisfies
|Λ| < 3k

2ny3
.

Grouping the last two terms we get a linear form of the type (we want to use the results of [LMN], so that
we shall use the notations of this paper),

Λ = b1 log α1 + b2 log α2,

where
b1 = V, b2 = 1, α1 = λ(2), α2 =

∣∣∣(λ(3))v · γ(2)/γ(3)
∣∣∣ .

Concerning α1, we have ∣∣log |λ(2)|∣∣ ≤ 1
n

, M(α1) =
∣∣λ(2) · λ(3)

∣∣,

which implies
h(α1) = h(λ) ≤ 1

3 log(n + 2).

By Corollary 2,

log
(
M

(
γ(2)/γ(3)

)) ≤ log k +
5
2

log(n + 3).

Thus,

h(α2) ≤ |v|
3

log(n + 2) +
1
3

(
log k + 5

2 log(n + 3)
)
.

For the convenience of the reader, we quote the main result of [LMN].

Theorem A. Let K and L be integers ≥ 3, R1, S1, R2, S2 positive integers. Let ρ > 1 be a real number.
Put R = R1 + R2 − 1, S = S1 + S2 − 1,

g =
1
4
− KL

12RS
, b =

(
(R− 1)b2 + (S − 1)b1

)
(

K−1∏

k=1

k!

)−2/(K2−K)

.

Let a1, a2 be real numbers such that

ai ≥ ρ| log αi| − log |αi|+ 2Dh(αi), i = 1, 2,

where D = [Q(α1, α2) : Q]. Suppose that

#
{
αr

1α
s
2 ; 0 ≤ r < R1, 0 ≤ s ≤ S1

} ≥ L,

#
{
b1r + sb2 ; 0 ≤ r < R2, 0 ≤ s < S2

}
> (K − 1)L

(7)

and that

K(L− 1) log ρ + (K − 1) log 2− (D + 1) log(KL)−D(K − 1) log b− gL(Ra1 + Sa2) > 0. (8)

12



Then,

|Λ′| ≥ ρ−KL+0.5, where Λ′ = Λ ·max
{

LReLR|Λ|/(2b1)

2b1
,
LSeLS|Λ|/(2b2)

2b2

}
.

In our case, we have D = 3. The study above shows that one can take

a1 ≥ 2 log(n + 2) + (ρ− 1)/n

and
a2 ≥

(
2|v|+ 5

)
log(n + 3) + 2 log k + (ρ− 1)`0,

where `0 = | log α2|. For further reference, we notice that (by Corollary 2)

`0 ≤
(|v|+ 3

2

)
log(n + 3).

The algebraic numbers α1 and α2 are multiplicatively independent. In fact, assume that they are not.
Then there exist non-zero integers r and s such that

1 = αr
1α

s
2 = λ(2)rλ(3)sv(γ(2)/γ(3))s.

Thus γ(2)/γ(3) is a unit in ZK and can be written as

γ(2)/γ(3) = λ(2)t2λ(3)t3

with suitable t2, t3 ∈ Z. Combining the last two equations and using that λ(2) and λ(3) are multiplicatively
independent we get s(v + t3) = 0 or t3 = −v. This implies

Λ = (V + t2) log |λ(2)|,
and so either Λ = 0 or |Λ| > 1

2n . We already noticed that Λ is nonzero, and the second alternative contradicts

|Λ| < 3k

2ny3
<

1
2ny

.

The claim is proved.
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Thus, in any case, the first one of conditions (7) holds if we suppose

R1S1 ≥ L,

and the choices of these two parameters will satisfy this condition.
To satisfy the second of conditions (7), we take

R2 =
[√

(K − 1)La2/a1

]
+ 1, S2 =

[√
(K − 1)La1/a2

]
+ 1,

so that R2S2 > (K − 1)L.
Now, there are two possibilities: either the numbers rb1 + sb2, 0 ≤ r < R2 and 0 ≤ s < S2 are pairwise

different and then the second of conditions (7) holds, or (since b2 = 1) we have |V | ≤ S2.

We also take
K = [µ2La1a2] + 1,

where 0 < µ ≤ 0.5 and L will be chosen later. Now we study the term g(Ra1 +Sa2). Since R = R1 +R2− 1
and S = S1 + S2 − 1,

g(Ra1 + Sa2) =
(

1
4
− KL

12RS

)
(Ra1 + Sa2)

≤ 1
4
(
(R2 − 1)a1 + (S2 − 1)a2

)
+

1
4
(R1a1 + S1a2)− KL

12

(
a1

(S2 − 1) + S1
+

a2

(R2 − 1) + R1

)
.

Then, the definitions of R2 and S2 imply

g(Ra1 + Sa2) =
1
2

√
KLa1a2 +

1
4
(R1a1 + S1a2)− KL

12

(
a1√

KLa1/a2 + S1

+
a2√

KLa2/a1 + R1

)
.

Now we use the inequality

a1√
KLa1/a2 + S1

≤
(

a1√
KLa1/a2

) (
1− S1√

KLa1/a2

)
=
√

a1a2√
KL

− a2S1

KL
,

and the similar one with R1, and get

g(Ra1 + Sa2) ≤ 1
3

√
KLa1a2 +

1
3
(a1R1 + a2S1).

Choosing
R1 =

[√
La2/a1

]
+ 1, S1 =

[√
La1/a2

]
+ 1

gives

g(Ra1 + Sa2) ≤ 1
3

√
KLa1a2 +

2
√

La1a2

3
+

a1 + a2

3
.

By Lemma 9 of [LMN],

b ≤ (R− 1)b2 + (S − 1)b1

K − 1
× exp

{
3
2
− log(2π(K − 1)/

√
e)

K − 1
+

log K

6K(K − 1)

}
,

where

(R− 1)b2 + (S − 1)b1 ≤
(√

(K − 1)La2/a1 +
√

La2/a1 + 1
)

+
(√

(K − 1)La1/a2 +
√

La1/a2 + 1
)
V.

14



These remarks show that condition (8) holds if

K(L− 1) log ρ + (K − 1) log 2− 4 log(KL)− 3(K − 1)H0 − 3
2
(K − 1)

+ log
(
π(K − 1)/

√
e
)− log K

6K
− L

3

√
KLa1a2 − 2L3/2a1a2

3
− L(a1 + a2)

3
≥ 0,

where we have put

H0 = log




√
La2/a1

(√
K − 1 + 1

)
+ 1 +

(√
La1/a2

(√
K − 1 + 1

)
+ 1

)
V

K − 1


 .

We have √
La2/a1

(√
K − 1 + 1

)
+ 1 +

(√
La1/a2

(√
K − 1 + 1

)
+ 1

)
V

K − 1

≤ K

K − 1
×

(
(
1 + 1/

√
K

)√
La2/a1 + V

√
La1/a2√

K
+

V + 1
K

)

≤ K

K − 1
×

((
1 +

1√
K

) 1
µ

( 1
a1

+
V

a2

)
+

V + 1
µ2La1a2

)

≤ K

K − 1
× 1

µ
×

(
1
a1

+
V

a2

)(
1 +

1√
K

+
1

µL

( 1
a1

+
1
a2

))
.

We put θ = log ρ. Choosing µ = 2/(3θ), and using the definition K = [µ2La1a2] + 1, we get

H0 ≤ H := log
(

K

K − 1

)
+ log

(
1 +

1√
K

+
3θ

2L

( 1
a1

+
1
a2

))
+ log+

(
1

µa1
+

V

µa2

)
,

where, as usual, log+ x = max{0, log x}. Then, we see that condition (8) is satisfied when

Φ :=
2
3θ

(
2(L− 1)

3
− 2H

θ
− L

3
+

2 log 2
3θ

)
− 7 log L

a1a2L
− 3 log

(
4a1a2/(9θ2)

)

a1a2L
− 2

√
L

3
√

a1a2
− 1

3

(
1
a1

+
1
a2

)
≥ 0.

[We divided by La1a2.] Now, we choose

L = max
{
16, [ε + 6H/θ] + 3

}
,

where ε > 0 is to be chosen later. This choice implies

Φ ≥ 4 log 2
9θ2

− 7 log L

a1a2L
− 3 log

(
4a1a2/(9θ2)

)

a1a2L
− 1

3

(
1
a1

+
1
a2

)
+

4εL

9θ
− 2

√
L

3
√

a1a2

≥ 4 log 2
9θ2

− 1.22
a1a2

− 3 log
(
4a1a2/(9θ2)

)

16a1a2
− 1

3

(
1
a1

+
1
a2

)
+
√

L

(
4ε
√

L

9θ
− 2

3
√

a1a2

)
.

Thus, Φ ≥ 0 when both

Θ :=
4 log 2
9θ2

− 1.22
a1a2

− 3 log
(
4a1a2/(9θ2)

)

16a1a2
− 1

3

(
1
a1

+
1
a2

)
≥ 0

and
ε ≥ 3θ

8
√

a1a2
.
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We take ρ = 15, and in this case Θ ≥ 0 for

a2 ≥ a1 ≥ 15, a2 ≥ 24, ε = 0.054. (9)

Then (8) holds, and we get

log |Λ′| ≥ −(µ2L2a1a2 − L)θ = − 4
9θ

L2a1a2 − Lθ.

The choices of R and S imply max{R,S} ≤ L max{a1, a2}, and the definition of Λ′ leads to

log |Λ′| ≤ log |Λ|+ 2 log L + log
(
max{a1, a2}

)
,

except maybe when

|Λ| ≥ 1
L2 ·max{a1, a2} .

Hence, we always have

log |Λ| ≥ − 4
9θ

L2a1a2 − Lθ − 2 log L− log
(
max{a1, a2}

) ≥ −
(

4
9θ

L2 +
0.01
a1

)
a1a2 − (θ + 0.35)L.

Recall that
log |Λ| ≤ log

3k

2n
− 3 log y.

Thus, under condition (9), we get

log y ≤ 1
3

(
4
9θ

+
0.01
a1

)
L2a1a2 +

θ + 0.35
3

L +
1
3

log
3k

2n
.
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7. A second study of linear forms and the proof of Theorem 1
Applying conjugations to relation (3) and taking logs, we get the system of relations

{
u1`2 + u2`3 = log y + η2

u1`3 + u2`1 = log y + η3,

where

η2 = log
∣∣∣∣
x

y
− λ(2)

∣∣∣∣− log |γ(2)|

and

η3 = log
∣∣∣∣
x

y
− λ(3)

∣∣∣∣− log |γ(3)|.

By (5),

0 ≤ log
∣∣∣∣
x

y
− λ(2)

∣∣∣∣ ≤
2
n2

,

and

log n ≤ log
∣∣∣∣
x

y
− λ(3)

∣∣∣∣ ≤ log(n + 1).

Moreover, the choice of γ implies

k1/3

√
n + 3

≤ |γ(2)| ≤ k1/3
√

n + 3,
k1/3

(n + 3)
≤ |γ(3)| ≤ k1/3 (n + 3).

These estimates lead to

−1
2

log(n + 3)− 1
3

log k ≤ η2 ≤ 2
n2
− 1

3
log k +

1
2

log(n + 3)

and
− log(n + 3) + log n− 1

3
log k ≤ η3 ≤ −1

3
log k + 2 log(n + 3).

The above system implies

u1(`23 − `1`2) = (`3 − `1) log y − `1η2 + `3η3,

u2(`23 − `1`2) = (`3 − `2) log y + `3η2 − `2η3.

Hence,

V = u1 + u2 − 1 =
1

`23 − `1`2

(
(2`3 − `1 − `2) log y + (`3 − `1)η2 + (`3 − `2)η3

)
− 1.

Put
∆ = `23 − `1`2,

then
∆(V + 1)− (2`3 − `1 − `2) log y = (`3 − `1)η2 + (`3 − `2)η3.

Using the estimates of the `i’s (end of Section 3) and those of η2 and η3, we get
∣∣∣∆(V + 1)− (2`3 − `1 − `2) log

(
y

/
k1/3

)− (`3 − `2) log(n + 3)
∣∣∣

≤
(
(`3 − `2) log

(
(n + 3)2/n

)
+ (`3 − `1) log(n + 3)

)

≤
((

log n +
2
n2

)
log

(
(n + 3)2/n

)
+ 2

(
log(n + 1) +

2
n2

)
log(n + 3)

)

≤ 3 log(n + 2)× log(n + 3)
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for n ≥ 5. Notice that

∆ ≥ (log n)2 +
log(n + 1)

n + 1
> log2 n

and

2`3 − `1 − `2 < 2 log n +
4
n2

+ log(n + 1) +
2

n(n + 1)
− n− 1

2

n2 + 2
≤ 3 log(n + 1),

and also
2`3 − `1 − `2 > 2 log n +

4
(n + 1)2

+ log(n + 1) +
2

(n + 1)2
− 1

n
> 3 log n,

for n ≥ 3.

We notice that this implies V ≥ 0 for n ≥ 5 and,

V + 1 ≤ 1
∆

(
3 log(n + 1) log

y

k1/3
+ 4 log(n + 2)× log(n + 3)

)

≤ log(n + 2)
log2 n

(
3 log

(
y/k1/3

)
+ 4 log(n + 3)

)
,

for n ≥ 5.
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After this list of estimates, let us bound V . Recall that

log y ≤ 1
3

(
4
9θ

+ 0.01
)

L2a1a2 +
θ + 0.35

3
L +

1
3

log
3k

2n
.

By the conditions on a1 and a2, and since ρ = 15 and L ≥ 16 this implies

log y ≤ 1
3
0.17423× L2a1a2 +

1
3

log
3k

2n
.

Since a1 ≥ 2 log(n + 2), we get (for n ≥ 5)

V + 1 ≤ log(n + 2)
log2 n

(
0.17423× L2a1a2 + 4 log(n + 3)

) ≤ log(n + 2)
log2 n

× 0.17456 · L2a1a2.

We consider the two cases

L =
{

16,

[6H/θ + ε] + 3 ≥ 17.

In the first case,

V + 1 ≤ log(n + 2)
log2 n

× 44.688 · a1a2.

Now suppose L ≥ 17. The definition of H implies

H ≤ 1.522 + log+

( |V |
a2

)
,

and the definition of L, combined with L ≥ 17, implies

log(V/a2) ≥ 4.77.

Then, the inequality

V

a2
≤ log(n + 2)

log2 n
× 0.17456 · L2a1 ≤ 0.17456× a1 log(n + 2)

log2 n

[
3.054 +

6
(
1.522 + log(V/a2)

)

θ

]2

leads to a contradiction. Thus we have proved that

V + 1 ≤ log(n + 2)
log2 n

× 44.688 · a1a2,

and that
L = 16.
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We have just obtained an upper bound for |V |, using a non trivial lower bound of Λ. Using again Λ, we
directly get a lower bound for |V |. Indeed,

Λ = V `2 ± `0,

where |`2| < (n + 1)/(n2 + n + 2); since |Λ| is very small, this implies

V ≥ n`0.

Suppose that n ≥ 1650, then (in this case V ≥ 0)

V + 1 ≤ log(n + 2)
log2 n

× 44.688 · a1a2 ≤ 44.696
log n

· a1a2,

where
a1 = max

{
2 log(n + 2) + 14/n, 15

}
< 2.03 log n,

and

a2 = max
{(

2|v|+ 5
2

)
log(n + 3) + log k + 14`0, 24

}
.

Combining these estimates gives
V < 89.5 a2 for n ≥ 1650.

If v 6= 0 then a2 =
(
2|v|+ 5

2

)
log(n + 3) + log k + 14`0 and

n`0 < 89.5
((

2|v|+ 5
2

)
log(n + 3) + log k + 14`0

)
.

Hence, if v 6= 0,
(n− 1253)`0 <

(
179|v|+ 223.75

)
log(n + 3) + 89.5 log k

for n ≥ 1650. Since

`0 ≥ |v| log n− 3
2

log(n + 3) > (|v| − 1.501) log n,

for n ≥ 1650, we get also

(n− 1253− 179.1)|v| < (
1.501 (n− 1253) + 223.75

)
+ 89.5

log k

log n
,

or,

|v| <
(

1− 1432.1
n

)−1 {
1.501− 1657

n
+ 89.5

log k

n log n

}
.
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Now we consider the y term and we suppose n ≥ 1650. We have

log y ≤ 1
3
0.17423× L2a1a2 +

1
3

log
3k

2n
,

with a1 < 2.03 log n and L = 16, hence

log y ≤ 29.77 a2 log n +
1
3

log k.

Using the inequality `0 ≤ |v| log(n + 1) + 1.5 log(n + 3) and the definition of a2, we get

log y < 29.77 (16|v|+ 23.5) log2(n + 2) + 29.82 log n× log k.

And the upper bound on |v| gives

log y <

(
700 + 476.4

(
1− 1432.1

n

)−1 {
1.501− 1902

n

})
log2(n + 2)

+

(
29.82 +

(
1− 1432.1

n

)−1 1432
n log n

)
log n× log k.

Theorem 1 is proved.
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8. An improved bound, if k is small

In this section we add some hypothesis on k and then get an upper bound for `0, which leads to upper
bounds on |v| and y.

We suppose n ≥ 1650 and
k ≤ n4.

Then, the upper bound on v becomes

|v| <
(

1− 1432.1
n

)−1 {
1.501− 1657

n
+

358
n

}
,

which implies
|v| ≤ 1 for n ≥ 2750.

Using the definition of a2, we also obtain

`0 < max
{

761 log n

n− 1253
,
2148

n

}
=

761 log n

n− 1253
for n ≥ 3150.

This implies

`0 <
log n

n1/3
for n ≥ 23500.

In this case, we choose
ρ = n1/3;

then µ = 2/ log n. Since a1 > 2 log n and a2 > 2.5 log n, taking again L = 16, we have K ≥ 360. It is also
easy to verify that

H < 4.67 + log log n

and that we can take ε = 0.17 (the number ε occurs in the definition of the integer L). These estimates
prove that the choice L = 16 is legitimate. Then applying again Theorem A, for n ≥ 23500, we get

log y ≤ 1
3

(
4
9θ

+
0.01
a1

)
L2a1a2 +

θ + 0.35
3

L +
1
3

log
3k

2n

≤ 1
3

(
4
3

+ 0.005
)

256× 2.02× 9.5× log n +
θ + 0.35

3
L +

1
3

log
3k

2n
.

Thus, we have proved that

log y < 2180 log n if n ≥ 23500 and k ≤ n4.
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9. Proof of Theorem 3.

Let us consider the inequality

|x3 − (n− 1)x2y − (n + 2)xy2 − y3| ≤ k

with k = 2n+1. The family of equations |Fn(x, y)| = 1 was completely solved by Thomas [T1] and Mignotte
[M]. Moreover, it was proved by Lemmermeyer and Pethő [LP] that if γ ∈ Z[λ] has norm, in absolute value,
less then 2n + 1, then γ is a rational integer multiple of a binomial unit from Z[λ]. Thus to prove Theorem
3 it remains to study the equation

|x3 − (n− 1)x2y − (n + 2)xy2 − y3| = 2n + 1. (10)

It is easy to see that

Fn(1, 1) = Fn(1,−2) = Fn(1,−n− 1) = Fn(n, 1) = Fn(−n− 1, n) = Fn(−2, 1) = −(2n + 1),

and

Fn(−1,−1) = Fn(−1, 2) = Fn(−1, n + 1) = Fn(−n,−1) = Fn(n + 1,−n) = Fn(2,−1) = 2n + 1.

The continued fraction expansion of λ is

λ =
[
−1, 1, n,

[n

2

]
, . . .

]
,

if n > 0, and hence its first convergents are

−1, 0, − 1
n + 1

,
− [

n
2

]

(n + 1)
[

n
2

]
+ 1

.

Let (x, y) ∈ Z2 be a solution of (10), such that y ≥ 1 and

|λy − x| < |λ(2)y − x|, |λ(3)y − x|.

By Corollary 1, and by Df = (n2 + n + 7)2 we have

|L1| ≤
(

4(2n + 1)4

(n2 + n + 7)2

)1/6 1
y2

<
2
y2

,

thus ∣∣∣∣
x

y
− λ

∣∣∣∣ <
2
25

,

if |y| ≥ 5. Using the estimations for λ, λ(2) and λ(3) we get

|x− λ(2)y| >
(
|λ(2) − λ| − 2

25

)
|y| >

(
1− 2

25

)
|y| = 23

25
|y|

and

|x− λ(3)y| >
(
|λ(3) − λ| − 2

25

)
|y| >

(
n− 2

25

)
|y|.

Therefore ∣∣∣∣
x

y
− λ

∣∣∣∣ <
2n + 1

23
25

(
n− 2

25

) |y|3 <
1

2y2
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if |y| ≥ 5 and n ≥ 3, which means that in those cases x
y is a convergent of λ. We conclude the same for

n = 1 when |y| ≥ 8 and for n = 2 when |y| ≥ 6.

If n = 0, then (10) is already solved, see Thomas [T1] and Mignotte [M]. For n = 1 with |y| ≤ 7 and
n = 2 with |y| ≤ 5 we get by a direct computation the following solutions.

n 1 2 2 2 2 2 2
x -1 -1 -3 -4 -1 8 -1
y 2 2 2 3 3 3 4
fn(x, y) 3 5 -5 5 5 5 -5

We remark that exactly the values given in the table serve the non-trivial solutions for n = 2.
If n ≥ 3 and 4 ≥ |y| ≥ 2 then |λ| < 2

9 and by using

|x− λy| < 2
|y|

we get

−2 < − 2
|y| − |λ||y| < |x| < 2

|y| + |λ||y| < 2,

but the solutions with |x| ≤ 1 are listed at the beginning. We did the same for |y| ≤ 1. Thus apart from
the cases listed in the table, the solutions of (10) are coming from convergents of λ, hence |y| ≥ n + 1. If
y = n + 1, then

Fn(x, n + 1)− (2n + 1) = (x + 1)
(
x2 − n2x− (n3 + 3n2 + 5n + 2)

)
.

If the second factor q(x) is reducible over Q[x], then it has an integer zero. But a simple calculation
shows, that q(−n− 1) < 0, q(−n− 3) > 0 and q(−n− 2) = 0 iff n = 2. Thus q(x) is reducible over Q[x] iff
n = 2 and these cases are listed in table 1.

Let q1(x) = Fn(x, n + 1) + 2n + 1. Then by q1(0) < 0, q1(−1) > 0, q1(−n− 2) = n2 + 3n > 0 and

q1(−n− 3) = −n3 − 3n2 − 5n− 12 < 0,

q1(n2 + n + 1) = −(n4 + 4n3 + 6n2 + 5n + 1),

q1(n2 + n + 2) = −n3 + n2 + n + 7,

q1(n2 + n + 3) = n4 + 2n3 + 12n2 + 13n + 29

we see that q1(x) has no integer zero if n ≥ 0. Thus we may assume y > n+1, whence the continued fraction
expansion of λ implies y ≥ (n + 1)[n

2 ] + 1 > n2

2 .
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By Theorem 3.1 of Lemmermeyer and Pethő [LP], all elements of Z[λ] of norm 2n + 1 are associated
to one of the conjugates of λ − 1. It is easy to see that λ(2) − 1 = −λ+2

λ+1 and λ(3) − 1 = − 2λ+1
λ and that

λ − 1, λ + 2 and 2λ + 1 satisfy the conclusion of Corollary 2. Hence we may apply the results of sections 6
and 7.

First we prove that if n ≥ 1700 then (10) has only the trivial solutions. We distiguish three cases and
adopt the notations of section 6. We remember that if n ≥ 5 then V ≥ 0 and so v ≤ 1.

Case I. γ = γ1 = λ− 1. Now we have

α2 = λ(3)v

∣∣∣∣
λ(2) − 1
λ(3) − 1

∣∣∣∣ , h(α2) ≤ 1
3
(|v| log(n + 2) + log(n(2n + 1))).

By the choice ρ = 15 we have also a2 = 14`0 + 2(|v|+ 2) log(n + 2) + 2 log 2, where

|v − 1| log λ(3) + log 2 +
1

2(n− 1)
≤ `0 ≤ |v − 1| log λ(3) + log 2 +

3
2(n− 1)

.

As V ≥ 0 and v ≤ 1 we have V > n`0 > n(|v − 1| log n + log 2). On the other hand

V < 89.5a2 ≤ 1253`0 + 179(|v|+ 2) log(n + 2) + 179 log 2.

Combining these inequalities we get n < 8450 for v = 1 and n < 1620 for v < 1.

Case II. γ = γ2 = λ + 2. We now transform

α2 = λ(3)v

∣∣∣∣
λ(2) + 2
λ(3) + 2

∣∣∣∣

to a more appropriate algebraic number to prove a sharp bound for n. Indeed, using λ(2) +2 = (λ−n)λ and
λ(3) + 2 = (λ(2) − n)λ(2) we get

λ(2) + 2
λ(3) + 2

=
(λ− n)λ(λ + 1)2

n(λ + 1) + 1
=

n− λ

n(λ + 1) + 1
1

λ(3)λ(2)3
.

Thus our linearform becomes

Λ = (V − 3) log |λ(2)|+ (v − 1) log |λ(3)|+ log
∣∣∣∣

n− λ

n(λ + 1) + 1

∣∣∣∣ .

By the estimates of λ, we also have

1− 2
n3

<
n− λ

n + nλ + 1
= 1− (n + 1)λ + 1

n(λ + 1) + 1
< 1− 1

n3
.

We proved |Λ| < 3k
2ny3 in section 5 for all n ≥ 3 and k ∈ N. With our special value k = 2n + 1 using the

estimate y > n2

2 we get

|Λ| < 12(2n + 1)
n7

<
1
n3

if n ≥ 4 immediately. This inequality remains true for n = 3 too, which one can verify by a direct
computation. Hence v = 1 is impossible and if v < 1 then

|(V − 3) log |λ(2)|| > |v − 1| log |λ(3)| − |Λ| −
∣∣∣∣log

n− λ

n + nλ + 1

∣∣∣∣ > |v − 1| log n,
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which implies
V − 3 > |v − 1|n log n.

On the other hand
V < 89.5a2

with
a2 = (16|v|+ 18) log(n + 2) + 2 log 2.

These inequalities imply again
n < 1620.

Case III. γ = γ3 = 2λ + 1. This case is similar to case I, and therefore we have given only the most
important data:

α2 = λ(3)v

∣∣∣∣
2λ(2) + 1
2λ(3) + 1

∣∣∣∣ , h(α2) ≤ 1
3
((|v|+ 2) log(n + 2) + 2 log 2)

and
|v − 1| log n− log 2 < `0 < |v − 1| log(n + 2)− log 2.

Thus
a2 < (16|v|+ 18) log(n + 2)− 10 log 2.

If v = 1, then n < 8640 and if v < 1, then n < 1700.

We have proved that equation (10) has just the “trivial solutions” for n > 8640; moreover v = 1 if
1700 ≤ n ≤ 8640 and this can occur only in cases I and III. We shall prove now the impossibility of v = 1.

From |Λ| < 12(2n+1)
n7 we get

∣∣∣∣∣V + v
log |λ(3)|
log |λ(2)| +

log |γ(2)
i | − log |γ(3)

i |
log |λ(2)|

∣∣∣∣∣ <
1
n5

for n ≥ 30 and i = 1, 2, 3. Putting

δ1 =
log |λ(3)|
log |λ(2)| and δ2i =

log |γ(2)
i | − log |γ(3)

i |
log |λ(2)|

this can be reformulated to

||vδ1 + δ2i|| < 1
n5

, (11)

i = 1, 2 or 3, where || || denotes the distance to the nearest integer.
For 1700 ≤ n ≤ 8640 and i = 1 and 3 we tested (11) with v = 1, but did not found any n satisfying

(11) even with the much larger right hand side 10−5. We performed the same test with v = 1 for the values
1 ≤ i ≤ 3 and 0 ≤ n < 1700 with the same result. Thus it remains to prove Theorem 3 only in the range
0 ≤ n ≤ 1700 and with v 6= 1.
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10. The case 0 ≤ n ≤ 1700 and finish the proof of Theorem 3.

In the range 0 ≤ n ≤ 1700 application of linear forms in two logarithms fails to work because we are
not able to prove an upper bound for |v| and V . Therefore we apply the following more general theorem of
Baker and Wüstholz [BW]:

Theorem B. For a linear form Λ 6= 0 in logarithms of m real algebraic numbers α1, . . . , αm with rational
integer coefficients b1, . . . , bm we have

log |Λ| ≥ −18(m + 1)!mm+1(32D)m+2h(α1) . . . h(αm) log B,

where B = max{|b1|, . . . |bm|}, and where D is the degree of the number field generated by α1, . . . , αm.

In the actual case we have m = 3, D = 3,

h(λ(2)) = h(λ(3)) ≤ 1
3

log(n + 2), h

(
γ

(2)
i

γ
(3)
i

)
≤ 1

3
log

(
n(2n + 1)

)
i = 1, 2, 3, B = V,

and we get
log |Λ| ≥ −18 · 4! · 36 · 325 · log2(n + 2) log

(
n(2n + 1)

)
log V

> −1.06 · 1013 log2(n + 2) log(n(2n + 1)) log V.

On the other hand, if |y| ≥ 2 and n ≥ 5 then

log |Λ| < −(V + 1)
log2 n

log(n + 2)
+ 4 log(n + 3)− log n + log

3
2
.

A comparison of these estimates leads to

V < 1017.

This bound is much worse than that we got for n > 1650 and demonstrates that the estimates for
linear forms in two logarithms are much more suitable for solving diophantine problems completely than the
general estimates. Unfortunately, estimates for two logs are not always applicable.

Despite the large bound for V we can prove that our problem has no non-trivial solution in the actual
range too. For this purpose we use a variant of the Baker-Davenport lemma [BD], which was helpful in
[MPR] too. We remember that

|Λi| = |V + vδ1 + δ2i| < 3(2n + 1)
2ny3 log |λ(2)| < exp

{
−(V + 1)

log2 n

log(n + 2)
+ 4 log(n + 3) + log 3

}
(12)

(i = 1, 2, 3), where the numbers δ1 and δ2i were defined in the previous section.

Lemma 4. Suppose that n ≥ 5, 1 ≤ i ≤ 3, V < 1017, v 6= 1 and

|Λi| < 10−50

and that δ̃1 and δ̃2i are rational numbers such that

|δ1 − δ̃1| < 10−50, |δ2i − δ̃2i| < 10−50.

If there exists a convergent p/q in the continued fraction expansion of δ̃1 such that q ≤ 1025 and

q||qδ̃2i|| > 5 · 1017

n log n
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then (12) cannot hold for v, V ∈ Z.

Proof Assume that there exist v, V ∈ Z which satisfy (12) and |Λi| < 10−50. We remember that (12)
implies V > |v − 1|n(log n− log 2). Let us fix i.

Let p/q be a convergent of δ̃1 with the properties given in the lemma. Multiplying (12) by q and inserting
δ1 and δ2i we get

q|Λi| = |qδ̃2 + q(δ2i − δ̃2i) + v(qδ̃1 − p) + vq(δ1 − δ̃1) + vp + V q| < 10−25.

Thus
||qδ̃2i|| < 2 · 10−25 + |v||qδ̃1 − p|+ |v|10−25

and

q||qδ̃2i|| < 2 + |v|q|qδ̃1 − p|+ |v| < 5V

n log n
<

5 · 1017

n log n
,

which is a contradiction. The lemma is proved.

As |v − 1| 6= 0 we have V > n log(n/2), which implies |Λi| < 10−50 for n ≥ 25 immediately. The same
is true for n ≥ 8 and |v| > 10. In these cases we computed δ1 and δ2i with 50 decimal digit precision and
found for all n, where 8 ≤ n ≤ 1700, a convergent p/q of δ̃1 with the properties given in the lemma. For
those values (12) can not hold. We tested (11) for 8 ≤ n ≤ 25 and |v| ≤ 10 separately.

In the remaining cases 0 < n ≤ 7 we used the method from Pethő und Schulenberg [PSch], but did not
found any more solutions. Thus, Theorem 3 is proved.

For the computation we used PARI-GP on a notebook. The total computation time took some hour.
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Laboratory of Informatics
University of Medicine
Nagyerdei Krt. 98
H–4032 Debrecen
Hungary

Franz Lemmermeyer
Erwin-Rohde-Str. 19
D–69120 Heidelberg,
Germany

29


